攀枝花钒钛磁铁矿综合利用技术路线图研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攀枝花目前已成为我国西部最大的钢铁生产基地,全国最大的钛原料、钛制品基地,位列世界第二的钒制品基地和国内唯一的全流程钛工业基地。其发展的基础是拥有世界罕见的超大型钒钛磁铁矿多金属伴生矿床,该矿具有资源储量大、经济价值高、易采难选冶等特点。经过几代人的共同努力,突破了多项关键技术,已经实现了铁、钒、钛的规模化利用,形成了采选、钢铁、钒、钛原料、钛白和钛金属6个主产业及其配套的伴随产业。然而在上述产业快速发展的同时也存在资源综合利用总体水平不高、一些重大关键技术尚未突破、节能环保问题日益凸显、现有产业规模与资源量不相匹配等问题。分析其原因是多方面的,其中一个重要的原因就是产业、市场、技术相互结合不紧密,存在资源系统集成开发方向不明、单兵作战等现象,缺少系统思考、缺乏高层面的战略思想和顶层设计等。
     当前,我国正在实施新一轮西部大开发规划和钢铁产业调整和振兴计划,国家鼓励攀枝花的钒钛资源综合利用,出台了一系列的政策措施,四川省提出了建设“世界级钒钛产业基地”的奋斗目标,攀枝花市提出了“打造中国钒钛之都、建设特色经济强市”的战略目标,这些都将对攀枝花钒钛资源综合利用产生重大而深远的影响。本论文就是在这样的背景下开展研究的。
     要解决攀枝花钒钛磁铁矿综合利用中存在的问题,适应国家经济和产业政策的调整,实现四川省和攀枝花市提出的奋斗目标,亟需用一种新的战略研究工具总结过去、明确现状,并对将来的资源走向、目标、路径进行系统分析,技术路线图为我们提供了一个解决的思路和方法。
     本论文即是通过技术路线图编制的主要方法,辅助使用头脑风暴、SWOT分析、问卷调查等方法,对攀枝花钒钛磁铁矿资源特点进行了全面梳理,并与国内外相关资源进行了对比;对攀枝花钒钛磁铁矿综合开发利用形成的6个主产业及其伴随产业的发展现状进行全面、系统的分析。结合市场需求、国内外技术发展现状和趋势,进行了6个主产业的SWOT分析,提出了发展策略;绘制出了攀枝花市钒钛磁铁矿综合开发利用技术路线图。其要素包括产业目标、关键技术、技术重要性、两个层次(国际、国内)的技术差距、技术预计实现时间、实现路径以及需优先发展的关键技术等。同时,还对2015年和2020年7个产业的规模进行了预测。
     论文通过对上述6个主产业和伴随产业发展现状及趋势的系统分析,以及与国内外相关产业的分析比较,提出了攀枝花钒钛磁铁矿综合利用的发展方向。(1)采选产业:近年来,我国铁矿石的需求量持续增加,对外依存度已超过60%,应充分利用钒钛磁铁矿资源量大、易采的优势;攀枝花采选业已具有一定规模,但生产工艺和装备水平有待提高,发展潜力较大。(2)钢铁产业:全球重心已从欧洲向亚洲转移,短期内需求低迷的状况难以有效改善,钢铁产量还会有所增长,高炉生铁产量将趋于稳定;中国已成为全球增长的重心,对钢铁的巨大需求,预计能持续到2020年,目前是典型的结构性过剩;攀枝花目前面临着产能不足、技术、配套资源、交通等因素制约。(3)钒产业:全球钒资源和产业高度集中。85%以上的钒用于钢铁生产的添加剂,随着应用领域的拓展,钒的需求有望大幅度提高;国内钒行业高度垄断,但随着产业链的延伸,仍有巨大的发展空间。(4)钛原料产业:国际钛铁矿形成了寡头竞争态势,我国对外依存度高,用攀枝花钛精矿规模化生产氯化原料存在技术瓶颈。(5)钛白产业:发达国家产业集中度高,以氯化法为主,我国是生产大国而非强国;攀枝花生产能力和规模居全国第一,氯化法钛白生产有望取得较大突破。(6)金属钛产业:全球海绵钛和钛材生产高度垄断,主要应用领域正从航空航天转向民用;我国海绵钛产能和产量居世界第
     钛材加工技术与国外先进水平差距较大;攀枝花具备了生产海绵钛、钛锭、钛板卷、钛铁的能力,但尚未形成规模。(7)伴随产业:攀枝花在钒钛磁铁矿开发利用过程中形成了硫酸、氯碱、机械加工、测试、环保等伴随产业,发展空间较大。
     对攀枝花钒钛磁铁矿形成的主产业进行了SWOT分析。从优势上看,资源优势明显,产业政策利好因素多,产业链前端优势明显,后端薄弱。从劣势上看,大部分产业存在技术瓶颈,部分产业缺少辅助性产业支撑,高新技术产品缺乏,地域条件欠佳,交通成为重要的限制性因素。从面临的机遇看,具有西部大开发、国家新型工业化产业示范基地、战略资源综合开发试验区等利好因素,很多关键技术处于突破前夜,多数产业市场前景好。从面临的威胁看,国际市场竞争激烈,国内资源同类城市和周边地区发展迅速,技术壁垒无法在短时间内突破,高端市场进入难度大,环保、节能减排压力大。对此,本论文从提高资源综合利用率、加强技术创新及成果转化、延长产业链、培育重点龙头企业、扩大产业规模、树立品牌意识等方面提出了对策。
     在对产业的市场需求、国家战略、产业现状、部门及行业规划等进行分析的基础上,提出了提高资源综合利用率、扩大生产能力、提升技术水平、促进安全及环境友好、高效及低成本、产业链延伸及高附加值产品开发、拓展市场等发展目标。围绕发展目标,深入分析研究提炼出关键技术82项,对每一项技术内涵进行了描述,其中重要性指数超过90的13项、80-90的39项,70-80的26项,60-70的4项。与国际先进技术相比较,4项差距大,58项差距中~大,18项差距小-中,2项差距小;与国内先进水平相比较,31项差距中-大,40项差距小~中,8项差距小,3项国内领先。对关键技术的实现时间进行了预测,预测在2015年以前实现的技术23项,2015-2020年实现的技术56项,2020-2025年实现的技术3项。可以采取以自主研发为主的技术17项,以引进为主的3项。列出了各产业应优先发展的技术42项,通过对产业间的分析比较,列出了当前应优先发展的技术13项。
     依据2010年7个产业中的主要产品市场价格,预计2015年可形成产业产值1101亿元,2020年可达1812.7亿元。
     本论文研究的技术路线图是全球首个矿产资源综合利用类技术路线图,国内资源综合利用类和四川省第一个产业技术路线图。其对明确攀枝花钒钛磁铁矿综合利用的技术路线,系统认识攀枝花钒钛磁铁矿的资源特点、市场前景,促进技术进步、产业完善、资源整合和产学研结合均具有重要的意义。
Panzhihua city has become the biggest steel production base in western region of China, as well as the nation's largest material and product base of titanium, the world's second large vanadium product base and the only whole flow sheet titanium industrial base in China. Panzhihua city has the ultra large deposit of vanadium and titanium magnetite associated with multi metal in the world, which is the development foundation of Panzhihua. This deposit has such characteristics as huge resources reserve, high economic value, easy for mining but hard for processing, etc. Several key technologies, after the efforts of many generations, have been broken through, followed by the large-scale industrial utilization of iron, vanadium and titanium. Moreover, six main industries, i.e., mining and processing, iron and steel, material of vanadium and titanium, titanium white and titanium metal, as well as their associated industries are formed. However, there are also some problems occurring in rapid development of the above industries, such as the relatively poor comprehensive utilization of resources, some un-breakthrough key technologies, the urgent problem of energy-saving and environmental protection, the unmatched industry scale for the resource reserves and so on. There are many reasons for the above problems, but the most important problem is the loose combining of industry, market and technology. Furthermore, there also exists uncertainty development direction of resource integrated exploiting and lacking of systematic thinking, top-level strategic thoughts and top design, etc.
     This research is based on the background of implementing the new round of western development planning as well as adjusting and revitalizing of iron and steel industry. The comprehensive utilization of vanadium and titanium resources in Panzhihua is encouraged by state's policy and a series of policies. A target of construction " world-class vanadium titanium industry base" is proposed by Sichuan province and another strategic target of " building China's vanadium and titanium capital and constructing a strong city of special economy" is proposed by Panzhihua city. These targets will have a great and long period influence on the comprehensive utilization of vanadium and titanium resources in Panzhihua.
     In order to solve the problems existing in the comprehensive utilization of vanadium and titanium resources in Panzhihua, adapt to national economic and industrial policy adjustment and realize the targets proposed by Sichuan province and Panzhihua city, a new strategic research tool is urgently needed for summing up the past, clearing status and system analyzing the future direction, goal and the path of resources recovery. The technology roadmap provides us an idea to solve these problems.
     In this dissertation, the main analysis method of technology roadmap, combined with brain storm, SWOT analysis, and questionnaire etc, are used for a comprehensive summarizing of vanadium and titanium magnetite ore in Panzhihua and compared with domestic and international related resources. The six main industries formed in the comprehensive utilization of vanadium and titanium resources in Panzhihua as well as their associated industries are comprehensively analyzed and SWOT analysis is also employed for six main industries. The development strategies are proposed and the technology roadmap of the comprehensive utilization of vanadium and titanium resources in Panzhihua is also designed, including the industrial goal, key technologies, technology importance, two levels (international and domestic) technology gaps, as well as key technologies for priority development. Meanwhile, the seven industrial scales between 2015 and 2020 are forecasted.
     Based on the systematic analysis of six main industries and their associated industries, as well as comparative analysis with domestic and international related industries, the development directions of comprehensive utilization of vanadium and titanium resources in Panzhihua are suggested as follows:
     (1)Mining and processing industry:the demand of iron ore in recent years has been continuously increasing with the steady development of economy in China; however,60% of iron ore is depended on importing. Hence, we should make full use of the advantages of vanadium and titanium magnetite ore, which has the huge reserves and is easy for mining. Although the mining and processing industry has remarkable scale, the production techniques and equipment level should be further enhanced and the development potential is huge.
     (2)Iron and Steel industry:although the global focus has shift from Europe to Asia, the downturn demand situation of steel is hard to improve in short time. Steel output will also be increasing, but the output of blast furnace pig-iron will keep stabilized. China has become a global growth focus and has the huge demand for steel. The huge demand situation of steel in China expects to continue increasing until 2020; however, it is the typical structural overcapacity at present. Panzhihua faces many problems now, such as insufficient capacity, technology problems, supplementary resources problem and transportation problem, etc.
     (3)Vanadium industry:global vanadium resources and industries are highly concentrated. The 85% of vanadium are used as additives in steel industry and the demand of vanadium may be increased significantly with the increasing application field of vanadium. Although the domestic vanadium industry is highly monopolized, it still has a huge development space as a result of outspread of vanadium industry chain.
     (4)Titanium material industry:the international titanium iron ore has formed an oligarch competitive situation and China is highly depended on import. There is still a technical bottleneck in utilization of Panzhihua titanium concentrates for large-scale producing chlorinated raw material.
     (5)Titanium white industry:the titanium white industry is highly concentrated in developed countries and the principal method for producing titanium white is chlorination process. Unfortunately, China is a production country rather than the power country for producing titanium white. The production capacity and scale of Panzhihua occupy the national first place, hence the chlorinated titanium dioxide method is expected to make great breakthrough.
     (6)Titanium metal industry:global titanium sponge and titanium production are highly monopoly and the main application fields transfer from aerospace steering to civil application fields. China's capacity and output of titanium sponge ranks the first in the world, but the disparity of technology level in titanium processing compared with the external advanced technology level is bigger. Panzhihua possesses the ability of producing titanium sponge, titanium ingot and titanium plate roll and ferrotitanium, the scale, however, is not as expected.
     (7)Associated industry:in the course of exploitation and utilization of Panzhihua vanadium and titanium magnetite ore, the associated industries, i.e., acid, chlor-alkali, mechanical processing, testing and environmental protection industries are formed and there is a large development space for these associated industries.
     SWOT analysis is employed for six main industries formed from the exploitation and utilization of Panzhihua vanadium and titanium magnetite ore. For the advantages of various industries, resource has the prominent advantage and more good policies are needed for this industry. The industrial chain has an obvious front-end advantage, but a weak back-end. For the disadvantages of various industries, most of the industries exists technical bottleneck and part of the industries is lack of auxiliary industry support. Lacking of high-tech products and inconvenience transportation have become the important restrictive factors. From the view of opportunity, there are some good factors for Panzhihua, such as the great western development, the national new industrialization industry demonstration base, strategic resources comprehensive and development experimental zone; furthermore, many key technologies are in eve of break through and most industries' market prospect is good. There are also some threats, such as strong competition of the international market, rapid developing of domestic similar resource cities and surrounding area, hardly breaking through of technology barrier in short time, difficult entry into high-end market and the lager pressure of environmental protection, energy saving and emission reduction. Many countermeasures are proposed from the perspectives of improving the comprehensive efficiency utilization of resource, strengthening technical innovation and transformation the achievements, extending the industrial chain, training the key leading enterprises, enlarging the industrial scale, and cultivating brand awareness etc.
     Based on the analysis of market demand, national strategy, industrial situation, departments and industry planning and so on, a lot of development targets, such as improving the comprehensive utilization efficiency of resources, expanding production capacity, enhance the technical level, promoting safety and environmental friendly, efficient and low cost, extending the industrial chain, development high value-added product and expanding market, are proposed. Around these development targets,82 items of key technologies are proposed by fully analyzing and researching. Each item technique is described and the significance index (SI) distributes as follows:SI>90 is 13 items; SI between 80-90 is 39 items; SI between 70-80 is 26 items; SI between 60-40 is 4 items. Compared with the international advanced technology, the results are distributed as follows:4 items have large gap; 58 items have gap between middle and large; 18 items have gap between small and middle; 2 items have small gap. Compared with the domestic advanced technology, the results are distributed as follows:31 items have gap between middle and large; 41 items have gap between small and middle; 8 items have small gap; 3 items are leading domestic. The realization time schedule of 82 items of key technologies is forecasted. The results shows that 23 items can be realized before the year of 2015 and 56 items between the years of 2015-2020; however,3 items will be realized until the years of 2020-2025. The technologies which can be mainly depend on self-research are 17 items and 3 items must depend on technology import. Based on the analysis and comparison among industries, the technology items of each industry that should be priority development in five years are 42 items and the technology items of each industry that should be priority development at present are 13 items.
     According to the market price of seven main industries in 2010, the predicted industrial output values of 2015 and 2020 are 110.1 billion RMB and 181.27 billion RMB, respectively.
     The technology roadmap formed in this paper is the world's first one for comprehensive utilization of mineral resources technology, the first one for domestic resources comprehensive utilization technology and the first one for industry technology in Sichuan province. It is of great significance in understanding the technology route of comprehensive utilization of vanadium and titanium resources in Panzhihua, systematic knowing the characteristic of vanadium and titanium resources and market prospect as well as Promoting technological progress, industrial perfect, resource integration and university-industry cooperation.
引文
[1]汪镜亮.国外钒钛磁铁矿的开发利用[J].钒钛.1993(5):1-11
    [2]承德市人民政府.承德国家钒钛新材料高新技术产业化基地[R].2010
    [3]攀枝花市人民政府.国家新型工业化产业示范基地申报材料[R].2009
    [4]四川省矿产勘查开发局一。六地质队.攀枝花钒钛矿资源潜力评价报告[R].2009.
    [5]攀枝花市科技发展战略研究所.现有及潜在资源调查研究报告[R].2008
    [6]曾路,孙永明.技术路线图原理与制定[M].广东,华南理工大学出版社,2007年
    [7]C.H. Willyard, C.W. McClees, Motorola's technology roadmap process[J], Research Technology. Management.30(5),1987,13-19
    [8]Robert P, Clare F, Rick M, etal. Starting-up roadmapping fast[J]. Research Technology. Management.2003,3-4
    [9]C.J.Farrukh, R.Phaal, D.R.Probert. Industrial Practice in Technology Planning—Implications for a Useful Tool Catalogue for Technology Management, Proceedings of the PICMET'01, Portland,2001
    [10]ITRS Teams. International Technology Roadmap for Semiconductor(2003 Edition) [EB/OL]. http://www.itrs.net/Links/2003ITRS/Home2003.htm
    [11]科学技术部发展计划司,中国科学技术发展战略研究院.技术路线图的制定方法[Z].2009
    [14]Ronald N. Kostoff, Robert Boylan, Gene R. Simons. Disruptive technology roadmaps[J]. Technological Forecasting & Social Change.71,2004,141-159
    [15]刘细文,柯春晓.技术路线图的应用研究与及其对战略情报研究的启示[J].图书情报工作,200751(6),37-40
    [16]Robert Phaal, Clare J.P. Farrukh, David Probert. Technology roadmapping—A planning framework for evolution and revolution [J]. Technological Forecasting & Social Change 71 (2004),5-26
    [17]Robert Galvin, Science roadmaps, Science 1998(280),803.
    [18]Robert Galvin. Roadmapping-A Practitioners Update[J]. Technological Forecasting & Social Change, 2004,71:101-103.
    [19]David. Probert, Michael. Radnor, Frontier experiences from industry-academia consortia, Research. Technology Management.2003,42(2):27-30
    [20]Australian Department of Industry, Science and Resources. Australian guide to developing technology roadmaps-technology planning for business competitiveness[Z], August 2001. http://industry.gov.au/library/content_library/13_technology_road_mapping.pdf
    [21]Geoff N. Industry Canada Technology Roadmapping:A Strategy for Success[EB/OL] http://www.ic.gc.ca/eic/site/trm-crt.nsf/eng/h_rm00049.html
    [22]湖南省科技信息研究所产业技术路线图研究中心,运用产业技术路线图开展我省“十二五”科技发展规划研究[EB/OL]. http://www.hninfo.gov.cn/govpublic/rkxgl/jcyj/200911/t20091127_143421.htm
    [23]李雪凤,仝允桓,谈毅.技术路线图——一种新型技术管理工具[J].科学学研究,2004(22),89-94
    [24]丁云龙,谭超.作为技术预见工具的技术路线图及其应用前景[J].公共管理学报.2006,3(4),40-45
    [25]陈家昌,技术路线图在科技管理中的应用及其前景[J].中国科技论坛,2007(8),79-83
    [26]叶继涛,基于路线图的技术预见方法探讨[J].科技与经济,2008,21(2):3-6
    [27]F.Lizaso, G.Reger. Scenario-based Roadmapping - A Conceptual View. EU-US Seminar: New Technology Foresight, Forecasting & Assessment Methods,2004(5):13-14
    [28]James J Winebrake.Technology Roadmaps as a Tool for Energy Planning and Policy Decisions.Energy Engineering;2004(4):20-36
    [29]G. Johnson, K. Scholes, Exploring Corporate Strategy,2nd ed., Prentice Hall, New York,1988.
    [30]P. Groenveld, Roadmapping integrates business and technology, Res. Technol. Manag.40 (5) (1997) 48-55.
    [31]C.K. Prahalad, G. Hamel, Corporate imagination and expeditionary marketing, Harvard Bus. Rev., Jul.-Aug.(1991) 81-92.
    [32]EIRMA, Technology roadmapping—delivering business vision, Working group report, European Industrial. Research Management Association, Paris,52,1997.
    [33]W.H. Matthews, Conceptual framework for integrating technology into business strategy, Int. J. Veh. Des.1992,13(5/6):524-532.
    [34]P. Anderson, M.L. Tushman, Technological discontinuities and dominant designs:a cyclical model technological change[J]. Adm. Sci. Q.35 (1990) 604-633.
    [35]Japanese Technology Evaluation Centre, apanese Technology Commercialization Efforts [EB/OL]. http://www.wtec.org/loyola/ep/c7s3.htm
    [36]M.L. Tushman, P.C. Anderson, C. O'Reilly, Technology cycles, innovation streams, ambidextrous organizations:organizational renewal through innovation streams and strategic change, in:M.L. Tushman, P.Anderson (Eds.), Managing Strategic Innovation and Change[M], Oxford Univ. Press, New York,1997.
    [37]刘海波,李平.技术路线图的产生和作用[J].科技潮,2004(9):8-9
    [38]Marie L. Garcia, Olin H. Bray. Fundamentals of Technology Roadmapping[EB/OL] http://www.sandia.gov/PHMCOE/pdf/Sandia'sFundamentalsofTech.pdf
    [39]R.N.Kostoff, R.R.Schaller. Science and technology roadmaps. IEEE Transactions on Engineering Management,2001,8(2):132-143
    [40]Ronald N. Kostoff, Robert Boylan, Gene R. Simons. Disruptive technology roadmaps[J]. Technological Forecasting & Social Change.71,2004,141-159
    [43]International Aluminium Institute. Alumina Technology Roadmap [EB/OL]. May.2006. http://www.world-aluminium.org/UserFiles/File/AluminaTechnologyRoadmap%20Update%20FINAL%20M ay%202006.pdf
    [44]国际铜业协会(中国).铜的应用技术路线图[EB/OL].http://www.coppertech.org/china/%CD%AD%D3%A6%D3%C3%B5%C4%BC%BC%CA%F5%C2%B7% CF%DF%CD%BC_Final.pdf
    [45]Elizabeth J. Bruce and Charles H. Fine. Technology Roadmapping—Mapping a Future for Integrated Photonics [EB/OL]. http://www.hbs.edu/units/tom/seminars/2004/fine-5-Tech_Rdmap.pdf
    [46]Robert Phaal,Clare Farrukh,David Probert,苏竣(译),技术路线图:规划成功之路[M].北京,清华大学出版社,2009
    [50]中国科学院.科技革命与中国的现代化——关于中国面向2050年科技发展战略的思考[M].北京,科学出版社,2009
    [51]中国科学院矿产资源领域战略研究组,中国至2050年矿产资源科技发展路线图[M].北京,科学出版社,2009.
    [52]中国科学院先进制造领域战略研究组,中国至2050年先进制造科技发展路线图[M].北京,科学出版社,2009.
    [53]中国科学院先进材料领域战略研究组,中国至2050年先进材料科技发展路线图[M].北京,科学出版社,2009.
    [54]中国科学院生态与环境领域战略研究组,中国至2050年生态与环境科技发展路线图[M].北京,科学出版社,2009.
    [55]中国科学院能源领域战略研究组,中国至2050年能源科技发展路线图[M].北京,科学出版社,2009.
    [56]李兴华,叶景图,刘庆茂.广东科技管理创新实践—产业技术路线图[M].广东,广东科技出版社,2008
    [57]卢希鹏,马振基.奈米材料技术地图[M].台湾,行政院国家科学委员会科学技术资料中心,2003
    [58]谈毅,李雪凤.基于技术路线图的产业创新模式初探[J].中国科技论坛,2005(6):22-26.
    [59]河北省商务厅进出口公平贸易和产业损害调查局.铁矿石进口依存度加大考验钢铁行业——2009年河北省铁矿石预警监测报告[DB/OL]. http://www.acs.gov.cn/sites/aqzn/cyjzlnr.jsp?contentId=2533574866556
    [60]中华商务网.2007-2008年中国铁矿石行业市场调查与投资前景展望预测分析报告[DB/OL]. http://www.chinaccm.com/48/4811/481101/news/20070522/161550.asp.
    [61]朱俊士.钒钛磁铁矿选矿及综合利用[J].金属矿山.2000(1),1-5
    [62]国际钢铁协会.全球钢铁产量统计[DB/OL]. http://www.mysteel.com/
    [63]杨灵潇.2010年钢铁产业面临的几大挑战[J].今日财富,2010(3):224
    [64]中国钢铁工业协会.中国钢铁工业年鉴(1998-2009)[M].中国钢铁工业协会
    [65]攀枝花统计局.攀枝花统计年鉴2000-2009[M].中国统计出版社
    [66]彭毅.攀钢高炉渣提钛技术进展[J].钛工业进展,2005,22(3):44-48.
    [67]廖荣华,陈德明,周玉昌.攀钢高炉渣综合利用研究进展及产业化建议[J].攀枝花科技与信息,2006,31(4):1-9
    [68]都兴红,付念新,娄太平等.攀钢含钛高炉渣综合利用现状[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,100-114
    [69]王明玉,张林楠,张力等.含钛炉渣中Ti02的选择性析出和钙钛矿相的沉积行为[J].中国有色金属学报(英文版),6(2006),421-425
    [70]娄太平,李玉海,李辽沙等.含Ti高炉渣的氧化与钙钛矿结晶研究[J].金属学报,2000,36(2):141-144
    [71]马俊伟,隋智通,陈炳辰.改性高炉渣中钛的赋存状态及分离可能性的研究[J].矿产综合利用,2000,(2):22-26
    [72]夏玉虎,娄太平,隋智通.钙钛矿结晶形貌的研究[J].东北大学学报(自然科学 版),2001,22(3):307-310
    [73]隋智通,郭振中,张力等.含钛高炉渣中钛组分的绿色分离技术[J].材料与冶金学报,2006,5(2):93-97
    [74]赵青娥,周玉昌,杨仰军等.热态高炉渣碳化还原热力学分析[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,144-153
    [75]周玉昌.攀钢高炉渣热装制备TiCl4技术分析及产业化建议[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,115-129
    [76]彭毅.碳化攀钢高炉渣低温选择氯化的热力学分析[J].钛工业进展,2005,22(6):45-49
    [77]彭毅,敖进清,夏清荣.攀钢高炉渣氯化残渣无水化活性原因分析及对策[J].矿产综合利用,2005,22(6),40-46
    [78]攀钢集团攀枝花钢铁研究院有限公司.攀钢高钛型高炉渣碳化工艺研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,1-10
    [79]攀钢集团攀枝花钢铁研究院有限公司.碳化渣低温选择性氯化制备TiCl4工艺及装备研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,11-23
    [80]攀钢集团攀枝花钢铁研究院有限公司.氯化残渣综合利用工艺技术研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,24-38
    [81]侯世喜,柯昌明,李有奇等.金属热还原含钛高炉渣制取合金及残渣的研究[J].铁合金,2007,196(5),20-23
    [82]汪朋,韩兵强,韩彦蕾等.攀钢高炉渣提钛后尾渣水化性能研究[J].硅酸盐通报,2008,27(6):1208-1211
    [83]李有奇,柯昌明,甘霖等.基于攀钢含钛高炉渣提钛尾渣的精炼脱硫剂研究[J].钢铁钒钛,2008,29(4):26-31
    [84]柯昌明,韩兵强,魏耀武等.高钛型高炉渣等离子熔融还原法提钛研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,43-48
    [85]柯昌明.武汉科技大学.利用含钛炉渣制备钛及钛合金的方法[P],中国专利,专利号:1757772
    [86]殷志勇,张文彬,成海芳.选冶联合回收冶金废渣中的有价元素[J].矿业快报,2007(1),29-31
    [87]昆明理工大学.高钛型高炉渣直接选钛技术升级试验研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,41-42
    [88]昆明理工大学.高钛型高炉渣直接选钛技术升级及扩大试验研究[Z].技术报告
    [89]余韵,敖进清,杨志远等.高钛型高炉渣制取新型钛矿棉技术研究[C].2010年攀枝花高钛型高炉渣综合利用学术研讨会论文集,54-58
    [90]游天才,余韵,娄元涛等.攀枝花环业冶金渣开发有限责任公司[P].高钛型高炉渣矿渣棉.专利号: 1931763
    [91]J. Landis Martin. World Titanium Market Outlook[R].15th Annual International Titanium Conference, October 12-15,1999, Las Colinas
    [92]United States Geological Survey. Titanium Mineral Concentrates [DB/OL]. http://minerals.usgs.gov/minerals/pubs/commodity/titanium/mcs-2010-timin.pdf.
    [93]周林,雷霆.世界钛渣研发现状与发展趋势[J].钛工业进展.2009,(1):26-29.
    [94]胡克俊,锡淦.国外钛渣生产技术现状[J].稀有金属快报。2006,(11):1-7.
    [95]J. M. Gambogi. Ilmenite and Rutile[Z]. Mineral Commodity Summaries 1999, U.S. Geological Survey (1999),82-83,142-143.
    [96]邓国珠.钛冶金[M].北京,冶金工业出版社,2010
    [97]张云,管永诗,田玉珍.我国金红石矿资源开发利用现状[J].矿产保护与利用.2000(5):27-30
    [98]Thomas P. Battle, Dat Nguyen, James W. Reeves. The Processing of Titanium-Containing Ores[J]. Extractive Metallurgy of Copper, Nickel, and Cobalt 1993,1(1):925-943.
    [99]Fathi Habashi. Handbook of Extractive Metallurgy vol. Ⅱ, New York, Wiley.1997
    [100]W. W. Minkler. The Manufacture of Titanium Metal[R]. Transition Metals Association,Sewickley, 1982,56.
    [101]Peter Lewis. Pigment Handbook, vol. I, New York, Wiley-Interscience,1988
    [102]J. E. Hall. TiO2 Whitening and Brightening the World[J]. Paint & Coatings Industry,1997,13(5): 48-54
    [103]毕胜.2009年中国钛白粉工业复苏状况及前景[J].中国涂料.2010,25(4):40-44
    [104]毕胜.中国钛白工业发展方向评述之二——产品品种和品牌战略[EB/OL]. http://www.asiacoat.com/pigment/body2-1-023.asp
    [105]A. D. Hartman, S. J. Gerdemann, J. S. Hansen. Producing Lower-Cost Titanium for Automotive Applications[J]. the Journal of the Minerals, Metals & Materials Society.1998(9):16-19
    [106]Vladimir S. Moxon, Oleg N. Senkov etal. Production and Applications of Low Cost Titanium Powder Products[J]. The International Journal of Powder Metallurgy,1998(5):45-53
    [107]莫畏.钛[M].北京,冶金工业出版社,2008
    [108]Firoze E. Katrak. Potential Growth in Non-Aerospace Usage of Titanium:and Implications for Titanium Process and Product R&D[C]," Final Report from Titanium Industry Workshop, Welches OR, July 30-31,1997, ASME, Washington, D. C.,71-90.
    [109]R. P. Pawlek and F. H. Froes. Titanium 1999: Annual Review Light Metal Age,1999 57(9):55-59.
    [110]J.A. Davidson, A.K. Mishra, P. Kovasc, R.A. Poggie, New surfacehardened low-modulus corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty[J] Bio-Medical Materials and Engineering 1994(4)231-243.
    [111]M. Niinomi, Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering A 243 (1998) 231-236.
    [112]H.M. Silvaa, S.G. Schneiderb, C. Moura Neto. Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications[J]. Materials Science and Engineering.2004(24):679-682
    [113]C.N. Elias, J.H.C. Lima, R. Valiev, etal. Biomedical Applications of Titanium and its Alloys[J]. the Journal of the Minerals, Metals & Materials Society.2008(3):46-49
    [114]王向东,逯福生,贾翊等.2008年中国钛工业发展报告[J].钛工业进展,2009(4),26(2):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700