高铟锌精矿非矾渣提锌铟及除铁新工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,广西来宾冶炼厂采用“热酸浸出-黄钾铁矾法”的湿法炼锌流程处理锌(46.47%)、铁(13.56%)、铟(0.07%)含量高的自产闪锌矿。近十年的生产实践表明,该流程存在诸多不足,而北京矿冶研究院所提出的“热酸浸出-还原-赤铁矿法沉铁”工艺也存在流程长、蒸汽耗量大等弊端。为解决生产中的实际困难,本论文研究了“中浸渣热酸还原浸出-中和沉铟-赤铁矿法沉铁”的湿法炼锌提铟新工艺。
     在理论分析的基础上,对中浸渣热酸还原浸出、中和沉铟、赤铁矿法沉铁等过程进行了详细研究。以中性浸出渣为原料,采用单因素试验法考察了温度、时间、始酸酸度和还原剂用量等因素对热酸还原浸出过程的影响,确定其最佳工艺条件为:浸出温度95℃,时间3h,还原剂锌精矿用量为中浸渣量的40%,始酸酸度165g·L-1。在此优化条件下进行了6个周期的综合扩大试验,三价铁的还原率93.36%,锌、铟的平均浸出率分别为78.18%和89.83%,浸出渣中锌、铟含量分别为Zn 24.63%和In 0.049%-0.054%。以还原浸出液为原料,采用碳酸锌作预中和剂,调节体系pH=l-1.5,再以碳酸锌和氧化锌作沉铟剂,在pH=4.0、温度为90℃、时间30min的条件下进行中和沉铟,铟的沉淀率达到98.5%以上,铟渣含In 0.95%-1.66%。以沉铟后液为原料,在氧分压0.2MPa、温度175℃、时间2.0h、pH值5.0的条件下进行赤铁矿法沉铁,沉铁率高达92%以上,赤铁矿渣含Fe60%。全流程试验结果表明,锌精矿还原效果好,铟富集程度高,原料中的铁以赤铁矿渣产出,铟、铁、锌的总回收率分别达到87%和95%,88%以上,锌、铟的直收率和总回收率得以大大提高。
     总体而言,该工艺实现了锌冶金过程铟铁高效分离和铁资源的综合利用,实现了无铁渣湿法炼锌,技术创新性强,环境友好,技术指标先进,为来宾冶炼厂湿法炼锌工艺技术改造提供了可行的试验研究。
Zinc concentrate ore obtained from zinc hydrometallurgical process system in Guangxi Laibin Smelter of Huaxi Group Company contains a great of sulphur, iron and indium. Currently, thermal acid leaching jarosite method is commonly adopted. After nearly ten years of production practice, it shows that the production process owns some disadvantages such as long flow sheet, low recovery of indium, high production cost, large quantity of alum slag, difficulty in acid making with sulfur dioxide volatilizing from the process of extracting indium in alum slag. To resolve the above shortcomings, different experiments in connection with zinc leaching and indium extraction were carried out by many research institutes, such as thermal acid leaching-goethite reduction method, thermal acid leaching-EZ method, thermocompression acid selective leaching process and thermal acid leaching-hematite reduction method studied by Beijing General Research Institute of Ming and Metallurgy. Compare to the respective experimental methods, the results show that thermal acid leaching-hematite reduction method successfully solves the existing problem of environmental pollution by volatilization of sulfur dioxide from alum slag. Meanwhile, the recovery of zinc and indium is higher than that of thermal acid leaching-jarosite method, especially the enhanced extent of the recovery of indium is improved by more than 15% and iron in the zinc concentrate ore can be transformed into the hematite for use. The thermal acid leaching-hematite reduction method has certain advantages of technology, but the process also exists shortcomings, such as longer flow sheet, high temperature of 95℃in the processes of thermal acid leaching and reduction, and large steam consumption. Based on the technical achievements of the full use of thermal acid leaching-hematite reduction method test research and the maintenance of the advanced technology, and grounded on the similar conditions of the thermal acid leaching and reduction which high temperature of 95℃and normal atmosphere are requested, in order to simplify the process, high acid leaching and the reduction of low acid leachate are merged into one process, namely the thermal acid reduction leaching of neutral leaching residue.
     The key of thermal acid reduction leaching technology of neutral leaching residue is the separation of Fe and Zn and effective enrichment of indium. This paper took the theoretical analysis and experimental research to validate the feasibility of the technology of thermal acid leaching-zinc concentrate reduction-neutralization and indium precipitation-iron removal with hematite. The results show that the total recovery of indium, zinc and iron in the whole process reaches more than 95%,87% and 88% respectively. It increases the recovery of indium and zinc, and zinc hydrometallurgy without iron residue is achieved. The technology has strong creativity and environmental benign. And the efficient separation of indium and iron in metallurgical process of zinc and efficient comprehensive utilization of the iron resources are realized. Therefore, a feasible experimental research technology for Laibin Smelter is provided to improve the zinc leaching technology.
引文
[1]陈邦俊.世界铅锌工业现状与展望.世界有色金属.996,(5):18-25
    [2]徐鑫坤,魏旭.锌冶金学.云南科技出版社.1994,8
    [3]王振岭.电炉炼锌.冶金工业出版社.2001,8
    [4]金顺秋.铅锌冶炼基础知识.[J].江西冶金.1997,17(5):68-71
    [5]陈志飞,沈湘黔,宁顺明,蒙在吉,罗毓湘.锌铟实用冶金.中南工业大学出版社.1996,15
    [6]株洲冶炼厂冶金读本编写小组.锌的湿法冶炼.湖南人民出版社.1974,3-6
    [7]张乐如.铅锌冶炼新技术.湖南科学技术出版社.2006,12,156-157
    [8]梅光贵,王德润,周敬元,王辉,.湿法炼锌学.中南工业大学出版社.2001,198-199
    [9]]张乐如.铅锌冶炼新技术.湖南科学技术出版社.2006,12,159-162
    [10]梅光贵,王德润,周敬元,王辉,.湿法炼锌学.中南工业大学出版社.2001,205
    [11]王忠实.中国锌冶金现状.有色冶炼.1996,(6):1-5
    [12]Seyer Sylvain,Chen Tzong T,Dutrizac John, etcl Address2ing iron disposal in the zinc industry[J]1 JOM12001,53(12):32
    [13]张思难,沈奕林.杂质在铁矾法炼锌过程中的分布规律[J].矿冶工程1988,(03):20-22
    [14]刘谟禧.谈谈我国高铟高铁锌精矿的处理途径[J].有色金属(冶炼部分)1987,(02):11-12
    [15]徐采栋,林蓉,汪大成.锌冶金物理化学.上海科技出版社.1978
    [16]Dutrizac J E. Effectiveness of jarosite species for precipitatingsodium jarosite. JOM.1999.51(12):30-32
    [17]Dutrizac J. E, Hardy D. J, Chen T. T. The behaviour of cadmium during jarosite precipitation. Hydrometallurgy,1996,41(2-3):269-285
    [18]Dirk Baron, Carl D. Palmer. Solubility of jarosite at 4-350C.Geochimica et Cosmochimica Acta,1996,60(2):185-195
    [19]Seyer Sylvain. Chen Tzong T. Dutrizac John E. Jarofix:Addressing iron disposal in the zinc industry. JOM.2001.53(12):32-35
    [20]Elgersma F.Witkamp G J. Van Rosmalen G. Simultaneous dissolutionof zinc ferrite and precipitation of ammonium jarosite.hydrometal lurgy.1993.34(1):23-27
    [21]于淑秋.黄钾铁矾法除铁新发展[J].有色金属(冶炼部分),1987,(04):3-5
    [22]刘志宏.国内外锌冶炼技术的现状及发展方向.世界有色金属.2000,(1):23-25
    [23]包晓波.世界锌技术经济.世界有色金属.[M].冶金工业出版社,1996
    [24]赵天从.重金属冶金学(下册).冶金工业出版社,1981
    [25]Durcovic et al. Technika,1974; 29(2):268
    [26]金忠.浸出热酸黄钾铁矾工艺的改进与实践.有色冶炼,2002,(1):9-11
    [27]李铁柱.关于影响电解铟产品因素的研究.有色矿冶,18(3):21-22
    [28]A T HIIwm3K. Aoxii. AHCCCP.1971; 137(2):366
    [29]张文山,石朝军,梅光贵.湿法冶金(包括Zn、Mn、Cu、Ni、Co等)除铁的几种主要方法[J].中国锰业,2006,(02)
    [30]Vakil Singh.Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption. Hydrometallurgy,1996,40(1-2):247-262
    [31]石玲.粗铟提纯的研究.昆明理工大学学报,2002,27(6):41
    [32]傅崇说.有色冶金原理.冶金工业出版社,1996
    [33]陈松,安然,李继洲,等.镍精矿氯气浸出液净化除铁工艺.中南工业大学学报,2000,31(5):419-421
    [34]铅锌冶金学编委会.铅锌冶金学.科学出版社,2003.3
    [35]来宾冶炼厂质量体系文件.锌中浸渣热酸还原浸出小型试验试LY/QMS3.J-冶03-2009-03
    [36]邵建华.钦白副产品硫酸亚铁生产氧化铁黄研究广西化工,1991,(1):32-35
    [37]Anselm Omoike, Jon Chorover. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta,70 (4):827-838
    [38]赵永,蒋开喜,王德全,等.用针铁矿从锌焙烧烟尘的热酸浸出液中除铁.有色金属(冶炼部分),2005,(5):13-15
    [39]J. L. Limpo, Rev. Metal. Madrid X21(1984) 26-27.
    [40]蒋开喜,王海北,张邦胜.华锡集团来宾冶炼厂锌冶炼除铁新工艺及综合回收铟技术半工业试验研究报告.北京矿冶研究总院,柳州华锡集团有限责任公司.2007,1
    [41]邱电云,马荣骏.热酸浸出湿法炼锌中铁矾渣的处理方法.湖南有色金属,1994.(3):158-162
    [42]李夏湘,何醒民.论常规法与热酸浸出黄钾铁矾法炼锌工艺流程的选择.湖南有色金属,2000,(6):15-16
    [43]邱竹贤.有色金属冶金学.冶金工业出版社,1996
    [44]李军旗,江声扬.高铁锌矿的湿法处理.贵州工学院学报,1996,25(1):48-52
    [45]章燕萍.锌高温焙砂热酸浸出—锌精矿还原—针铁矿法沉铁的湿法炼锌工艺研究.湖南有色金属,1990,(5):38-42
    [46]W A. Zinc pressure leaching at Cominco. Hydrometallurgy,1995.39(U-3):63-70
    [47]朱世成,《重有色冶炼)X210979)24-28.
    [48]李生元.首创“锌热酸浸出-喷淋沉淀除铁”新工艺应用于湿法炼锌工业生产中[J].江苏冶金,1985,(01):7-8
    [49]李良友,张富琴,张台明,樊远鑑.锌热酸浸出喷淋沉淀法除铁实验报告[J].江苏冶金,1988,(S1):10-11
    [50]谭洎曾,封木开.低污染铁矾法炼锌工艺的研究[J].矿冶工程,1989,(02):5
    [51]刘斌,王伟涛.浅谈湿法炼锌工艺的浸出渣问题[J].四川环境,2007,(02):1-5
    [52]付运康.锌浸出渣不同处理工艺浅析[J]四川有色金属,2003,(01):24-25
    [53]于淑秋.黄钾铁矾法除铁新发展[J].有色金属(冶炼部分),1987,(04):4-5
    [54]Elgerma f,Witkamp G J,Van Rosmalen G. Simultaneous dissolution of zine ferrite ang precipition of ammonium jarosite[J].hydrometallurgy,1993,34(1):23-27
    [55]Dutrizac J E.Effectiveness of jarosite species for precipitating sodium jarosite[J]JOM,1999,51(12):30-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700