高性能AlGaN/GaN异质结材料的MOCVD生长与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于AlN材料和GaN材料之间2.78eV的导带断续以及III族氮化物材料所具有的较强的极化效应,当AlGaN和GaN形成异质结材料时,在其界面处会出现高密度的二维电子气(2DEG)。因为2DEG远离离化电荷中心,所以它们屏蔽了离化杂质散射而具有相当高的迁移率,这使得AlGaN/GaN异质结成为研制高电子迁移率晶体管(HEMTs)的理想材料。为了提高AlGaN/GaN HEMTs的导电能力,必须提高AlGaN/GaN异质结材料的2DEG面密度和迁移率的乘积。通过增加AlGaN势垒层的Al摩尔组分可达到这一目的,但是,当Al摩尔组分过高,合金无序散射和界面粗糙度散射就会显著提高,从而造成2DEG迁移率显著减小,反而降低了2DEG面密度和迁移率的乘积。A1N插入层技术的出现打开了提高AlGaN/GaN异质结导电能力的瓶颈,有效地解决了这一问题。本文从反应室结构的设计开始,深入地研究了生长条件对GaN材料质量、电学和光学特性的影响,系统地研究了AlN插入层生长条件对GaN外延材料和AlGaN/GaN异质结材料结构、电学和光学特性的影响,获得了高质量的AlGaN/GaN异质结材料。
     采用有限元分析软件ANSYS对金属有机化合物化学气相淀积(MOCVD)系统反应室内的温度场和气流场进行了模拟仿真,以此为基础改进了MOCVD反应室的喷淋头结构,并在新的喷淋头结构下生长了多个批次的GaN材料。研究发现采用新的喷淋头生长GaN薄膜具有三个优点:(1)有效地节约了MOCVD生长所需的原材料;(2)改善了GaN外延层的表面形貌;(3)改善了GaN外延薄膜厚度的均匀性。
     深入地研究了MOCVD工艺中最重要的生长条件之一——生长压强对GaN薄膜生长速率、表面形貌和结晶质量的影响。研究结果表明,生长压强对初始高温GaN成核岛的形核生长有着重要的影响作用,采用高的生长压强降低了GaN薄膜的生长速率,并使薄膜表面粗化,但是却可以通过较少GaN材料中的线位错而显著提高材料的结晶质量。此外,对不同压强下生长的GaN样品电学特性的测量表明:提高薄膜的结晶质量是提高迁移率的关键。
     研究采用C-V法和Hall法测量AlGaN/GaN异质结材料的2DEG面密度,发现Hall法得到的2DEG面密度值大于C-V法得到的值,经分析认为,一方面,肖特基金属淀积在AlGaN/GaN异质结材料上,改变了AlGaN势垒层的表面状态,使得一部分2DEG电子被抽取到空的施主表面态中,从而减小了AlGaN/GaN异质结界面势阱中的2DEG浓度;另一方面,由于C-V测量本身精确度受到串联电阻效应的影响,使得测量电容小于实际电容,从而低估了GaN缓冲层中的背景载流子浓度。
     深入研究了AlN插入层对GaN材料结构特性和应力特性的影响。与常规GaN外延层相比,AlN插入层的引入可以减少GaN外延层表面的黑点缺陷,改善GaN外延层的表面形貌,而且随着AlN插入层生长温度的降低,GaN材料表面粗糙度逐渐减小。通过光致发光谱测量和拉曼散射测量发现AlN插入层的引入增加了GaN外延层的压应力,而且随着AlN插入层生长温度的提高,GaN层受到的压应力逐渐增加。通过X射线衍射直接测量了GaN外延层中的应力大小,并与Raman散射实验相比较,表明该应力使得Raman散射E2声子发生线性频移。
     生长了不同温度AlN插入层的GaN外延材料和AlGaN/GaN异质结材料。研究发现,采用AlN插入层的AlGaN/GaN异质结材料表面比没有插入层的常规异质结材料表面具有更少的黑点缺陷。进一步研究表明AlN插入层的采用虽然不能改变GaN外延材料和AlGaN/GaN异质结材料的结晶质量,但是却能提高AlGaN/GaN异质结材料的2DEG面密度和迁移率。这是由于AlN插入层增加了GaN层的压应力,增强了GaN层的压电极化电场,从而提高了2DEG面密度;同时AlN插入层减弱了AlGaN势垒层的驰豫度,改善了AlGaN/GaN异质结界面特性,因此,通过减弱AlGaN/GaN界面粗糙度散射从而提高了2DEG迁移率。
     研制了栅长为1μm的AlGaN/GaN HEMTs器件。研究发现,带有高温AlN插入层的AlGaN/GaN HEMTs器件比常规HEMTs器件表现出更加优越的电子器件特性,其最大漏电流和最大跨导比常规HEMTs器件的分别提高了42%和20%。
Due to a large conduction band offset of2.78eV between AlN and GaN and a strong polarization effect in the III-V nitrides, a large amount of sheet carriers called the two-dimensional electron gas (2DEG) is formed at the interface between the AlGaN and GaN heterostructure.
     The2DEG has high mobility because it is far from the ionized charge, making the AlGaN/GaN heterostructures to be the ideal material system for the fabrication of high electron mobility transistors (HEMTs). In order to improve the performance of the AlGaN/GaN HEMTs, one should enhance the product of the carrier concentration n and the mobility μ of the2DEG, which could be achieved by increasing Al composition of the AlGaN layer. However, the alloy disorder scattering and the interface roughness scattering increase greatly when the Al composition is above a certain value, resulting in the reduction of the mobility μ of the2DEG. Fortunately, the insertion of a AlN layer into the GaN buffer broke through the bottleneck of the enhancement of the conductivity of the AlGaN/GaN heterostructures. The subject of this work started from the design of the reactor of the metalorganic chemical vapor deposition (MOCVD) equipment. By optimizing the growth conditions of the GaN buffer layer and the AlN interlayer, we obtained the high quality of AlGaN/GaN heterostructures, therefore the high performance of AlGaN/GaN HEMTs.
     First of all, the finite element analysis of the temperature field and flow field in the reactor of the MOCVD system was carried out by using ANSYS simulations. The results of the simulations allowed us to improve the structure of the showerhead, showing three advantages as (1) the low consumption of raw materials required for the GaN growth;(2) the excellent surface morphology of epitaxial, and (3) the good uniformity of the GaN epilayers.
     The effect of reactor pressure which is one of the most important parameters in the MOCVD process on the growth rate, surface morphology, and crystalline quality of GaN films grown by MOCVD was investigated. It was found that the formation and the growth of initial high temperature GaN islands were associated significantly with the employed reactor pressure. Although the GaN surface became rough and the growth rate of the GaN films decreased with increasing of the reactor pressure, the crystalline quality of the GaN films improved by reducing the threading dislocations during the GaN islands growth and coalescence. Meanwhile, the measurement of electrical performance for the GaN films also proved that the utilization of high reactor pressure was valuable for the improvement of the mobility in GaN.
     Hall measurement with Van der Pauw method and the capacitance-voltage (C-V) characteristics were performed on AlGaN/GaN heterostructures. It was found that the value of sheet carrier density obtained from Hall measurement was larger than that deduced from C-V carrier density profile, which was ascribed to two reasons. On the one hand, Schottky contact deposited on AlGaN/GaN heterostructure changed the surface states of the AlGaN barrier layer, causing some electrons in2DEG to be extracted to the void surface states of the AlGaN layer. On the other hand, the accuracy of C-V measurement itself was influenced by the series resistance effect, which caused underestimation of the magnitude of the background carrier concentration.
     The influence of the AlN interlayer on the structural and stress properties of the GaN films were studied. Compared with the GaN films without an AIN interlayer, the one using an AlN interlayer reduced the dark pit density on the surface of the GaN in spite of the crystalline quality of the GaN was not markedly affected. The surface roughness of GaN decreased with the increasing growth temperature of the AIN interlayer. It was found from both the photoluminescence measurement and Raman measurement that the AlN interlayer introduced a compressive stress into the GaN film. The compressive stress in GaN increased with the increase of the growth temperature of the AlN interlayer. Furthermore, it was found that the stress in GaN has a linear relationship with the shift of E2Raman mode by using direct X-ray diffraction measurement.
     GaN epilayers and AlGaN/GaN heterostructures inserted by the AlN interlayers grown under different temperatures were also investigated. It was found that the surface of the AlGaN/GaN heterostructures with the AIN interlayer had less dark pits compared with the one without the AlN interlayer. The use of the AlN interlayer did not change the crystalline quality of both the GaN epilayers and the AlGaN/GaN heterostructures. However, both the carrier concentration n and the mobility μ of the2DEG in AlGaN/GaN heterostructures improved due to that the AlN interlayer enhanced the compressive strain of the GaN film. It was found that the increased compressive stress enhanced the piezoelectric polarization field in GaN, which consequently caused more accumulation of electrons at the AlGaN/GaN interface. On the other hand, the employment of the AlN interlayer reduced the lattice mismatch between the GaN and AlGaN and smoothed the AlGaN/GaN interface, and thus increased the2DEG mobility by weakening the interface roughness scattering.
     The1-μm gate-length AlGaN/GaN HEMTs based on the GaN buffer layer with the AIN interlayer were fabricated in this work. The measurements showed that the maximum drain current and transconductance were increased by42%and20%compared with the one without the AIN interlayer.
引文
[1.1]Fu Yi, Sun Yuanping, Shen Xiaoming, et al. Growth of cubic GaN by MOCVD at high temperature半导体学报,2002,23,120-123
    [1.2]Bhapkar Udayan V., Shur Michael S.. Monte Carlo calculation of velocity-field characteristics of wurtzite GaN, J. Appl. Phys.,1997,82,1649-1655
    [1.3]Redwing J. M., Tischler M. A., Flynn J. S., et al. Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H-SiC and sapphire substrates. Appl. Phys. Lett.,1996,69,963-965
    [1.4]Johnson E. O.. Physical limitations on frequency and power parameters of transistors. RCA Rev.,1965,26,163-177
    [1.5]Baliga A. J.. Power semiconductor device figure of merit for high frequency applications. IEEE Electron Device Lett.,1989,10,455-457
    [1.6]龚欣.GaN异质结双极晶体管及相关基础研究.西安电子科技大学博士学位论文,2007,2
    [1.7]张进城AlGaN/GaN异质结材料生长与HEMT器件制造研究.西安电子科技大学博士学位论文,2003,2
    [1.8]Amano Hiroshi, Kito Masahiro, Hiramatsu Kazumasa, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys.,1989,28, L2112-L2114
    [1.9]Nakamura Shuji, Mukai Takashi, Senoh Masayuki, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys.,1992,31, L139-L142
    [1.10]Chichibu S., Azuhata T., Sota T., et al. Spontaneous emission of localized excitons in InGaN single and multi-quantum well structures. Appl. Phys. Lett., 1996,69,4188-4190
    [1.11]虞丽生.半导体异质结物理.北京,科学出版社,1990,第一版,2
    [1.12]Nakamura Shuji, Senoh Masayuki, Nagahama Shin-ichi, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys.,1996,35, L74-L76
    [1.13]Bulman G. E., Doverspike K., Sheppard S. T., et al. Pulsed operation lasing in a cleaved-facet InGaN/GaN MQW SCH laser grown on 6H-SiC. Electron. Lett., 1997,33,1556-1557
    [1.14]Itaya Kazuhiko, Onomura Masaaki, Nishio Johji, et al. Room temperature pulsed operation of nitride based multi-quantum-well laser diodes with cleaved facets on conventional C-face sapphire substrates. Jpn. J. Appl. Phys.,1996,35, L1315-L1317
    [1.15]Nakamura Shuji, Senoh Masayuki, Nagahama Shin-ichi, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices. Jpn. J. Appl. Phys.,1997,36, L1568-L1571
    [1.16]Nakamura Shuji, Senoh Masayuki, Nagahama Shin-ichi, et al. Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates. Appl. Phys. Lett.,1998,72,2014-2016
    [1.17]Webb James B., Tang H., Bardwell J. A., et al. Growth of high mobility GaN and AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy. Appl. Phys. Lett.,2001,78,3845-3847
    [1.18]Bernardini F., Fiorentini V., Vanderbilt D.. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B,1997,56, R10024
    [1.19]Ambacher O., Foutz B., Smart J., et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys.,2000,87,334-344
    [1.20]Zhang Y. F., Singh J.. Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys.,1999,85,587-594
    [1.21]Bougrioua Z., Moerman I., Nistor L., et al. Engineering of an insulating buffer and use of AlN interlayers:two optimisations for AlGaN-GaN HEMT-like structures. Phys. Stat. Sol. A,2003,195,93-100
    [1.22]Jimenez A., Bougrioua Z., Tirado J. M., et al. Improved AlGaN/GaN high electron mobility transistor using AlN interlayers. Appl. Phys. Lett.,2003,82, 4827-4829
    [1.23]Yao Z. Q., Zou Y. S., Yang Y, et al. Epitaxial growth and structural analysis of AlN/GaN heterostructures. Appl. Phys. Lett.,2007,91,221912
    [1.24]Polyakov A. Y, Smirnov N. B., Govorkov A. V., et al. Electrical and structural properties of AlN/GaN and AlGaN/GaN heterojunctions. J. Appl. Phys.,2008, 104,053702
    [1.25]Dabiran A. M., Wowchak A. M., Osinsky A., et al. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures. Appl. Phys. Lett.,2008,93,082111
    [1.26]邵凯.砷化镓仍然是微波半导体的主流技术.第十五届全国化合物半导体 材料、微波器件和光电器件学术会议,2008.24-27
    [1.27]Khan M. Asif, Bhattarai A., Kuznia J. N., et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction. Appl. Phys. Lett.,1993,63, 1214-1215
    [1.28]Elhamri S., Mitchel W. C., Mitchell W. D., et al. Study of the effects of an AlN interlayer on the transport properties of AlGaN/AlN/GaN heterostructures grown on SiC. Appl. Phys. Lett.,2007,90,042112
    [1.29]Skierbiszewski C., Dybko K., Knap W., et al. High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Appl. Phys. Lett.,2005,86,102106
    [1.30]Wu Y. F., Saxler A., Moore M., et al.30W/mm GaN HEMTs by field plate optimization, IEEE Electron Device Lett.,2004,25,117-119
    [1.31]Kikkawa. T., Maniwa. T., Hayashi. H., et al. An over 200-W output power GaN HEMT push-pull amplifier with high reliability. Microwave Symposium Digest, IEEE MTT-S International,2004,3,1347-1350
    [1.32]Joshin, K., Kikkawa, T.. High-Power and High-Efficiency GaN HEMT Amplifiers. IEEE, Radio and Wireless Symposium,2008, Jan,65-68
    [1.33]冯志宏,尹甲运,刘波等.国产SiC衬底GaN HEMT外延材料研究进展.第十五届全国化合物半导体材料、微波器件和光电器件学术会议.2008.30-32
    [2.1]Grzegory Izabella. High pressure growth of bulk GaN from solutions in gallium. J. Phys.:Condens. Matter,2001,13,6875-6892
    [2.2]Usui Akira, Sunakawa Haruo, Sakai Akira, et al. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn. J. Appl. Phys., 1997,36,L899-L902
    [2.3]杨树人,丁墨元.外延生长技术.北京,国防工业出版社,1992,第一版,7
    [2.4]Lobanova A.V., Yakovlev E.V., Talalaev R.A, et al. Growth conditions and surface morphology of AlN MOVPE. J. Crystal Growth,2008,310 4935-4938
    [2.5]Polyakov A. Y., Smirnov N. B., Govorkov A. V., et al. Electrical and structural properties of AIN/GaN and AlGaN/GaN heterojunctions. J. Appl. Phys.,2008, 104,053702
    [2.6]Maruska P., Tietjen J. J.. The preparation and properties of vapor-deposited single-crystal-line GaN.Appl. Phys. Lett.,1969,15,327-329
    [2.7]Yoshida S.. Misawa S.. Gonda S.. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AIN-coated sapphire substrates. Appl. Phys. Lett.,1983,42,427-429
    [2.8]Amano H., Sawaki N., Akasaki I., et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett., 1986,48,353-355
    [2.9]Nakamura S.. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys.,1991,30, L1705-L1707
    [2.10]Van Nostrand J. E., Solomon J., Saxler A., et al. Look Dissociation of Al2O3(0001) substrates and the roles of silicon and oxygen in n-type GaN thin solid films grown by gas-source molecular beam epitaxy. J. Appl. Phys.,2000, 87,8766-8772
    [2.11]Zhao D. G., Xu S. J., Xie M. H., et al. Stress and its effect on optical properties of GaN epilayers grown on Si(111),6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett.,2003,83,677
    [2.12]Wan J., Venugopal R., Melloch M. R, et al. Growth of crack-free hexagonal GaN films on Si (100). Appl. Phys. Lett.,2001,79,1459-1461
    [2.13]Raghavan S., Weng X. J., Dickey E., et al. Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si. Appl. Phys. Lett.,2005,87,142101
    [2.14]Zhao D. G, Zhu J. J., Jiang D. S., et al. Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition. J. Crystal Growth,2006,289,72-75
    [2.15]Huang G. S., Yao H. H., Lu T. C., et al. Aluminum incorporation into AlGaN grown by low-pressure metal organic vapor phase epitaxy. J. Appl. Phys.,2006, 99,104901
    [2.16]张进城,郝跃,李培咸,范隆,冯倩.基于透射谱的GaN薄膜厚度测量.物理学报,2004,53,1243-1246
    [2.17]Jinyu Ni, Yue Hao, et al. Influence of the size and distribution of the inlet of showerhead on the uniformity of GaN epilayer grown by MOCVD. J. Crystal Growth (Under review)
    [3.1]Amano H., Sawaki N., Akasaki I., et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett., 1986,48,353-355
    [3.2]Nakamura S.. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys.,1991,30, L1705-L1707
    [3.3]Gao H. Y., Yan F. W., Zhang Y., et al. Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale. J. Appl. Phys.,2008,103,014314
    [3.4]Peng D. S., Feng Y. C., Wang W. X., et al. High-quality GaN films grown on surface treated sapphire substrate. J. Phys. D:Appl. Phys.,2007,40,1108-1112
    [3.5]Lorenz K., Gonsalves M., Kim W., et al. Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition. Appl. Phys. Lett.,2000,77,3391-3393
    [3.6]Kuznia J. N., Khan M. A., Olson D. T., et al. Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates. J. Appl. Phys.,1993,73,4700-4702
    [3.7]Chen J., Zhang S. M., Zhang B. S., et al. Effects of reactor pressure on GaN nucleation layers and subsequent GaN epilayers grown on sapphire substrate. J. Crystal Growth,2003,254,348-352
    [3.8]Sugiura L., Itaya K., Nishio J., et al. Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers. J. Appl. Phys.,1997,82,4877-4882
    [3.9]Fini P., Wu X., Tarsa E. J., et al. The effect of growth environment on the morphological and extended defect evolution in GaN grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys.,1998,37,4460-4466
    [3.10]Akasaki I., Amano H., Koide Y, et al. Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0    [3.11]Tokunaga H., Ubukata A., Yano Y, et al. Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system. J. Crystal Growth,2004,272,348-352
    [3.12]Heying B., Wu X. H., Keller S., et al. Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett.,1996, 68,643-645
    [3.13]孙以材,张林在.用改进的Van der Pauw法测定方形微区的方块电阻.物理学报,1994,43,530-539
    [3.14]陈治明.王建农.半导体器件的材料物理学基础.北京,科学出版社,1999,第一版.282
    [3.15]Wiley J. D., Miller G. L.. Series resistance effects in semiconductor CV profiling. IEEE Trans. Electron. Dev.,1975,22,265-272
    [3.16]倪金玉,张进成,郝跃,杨燕,陈海峰,高志远AlGaN/GaN异质结载流子面密度测量的比较与分析.物埋学报,2007,56,6629-6633
    [4.1]Khan M. A., Kuznia J. N., Olson D.T., et al Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett., 1994,65,1121-1123
    [4.2]Lee J. W., Kumar V., Adesida I.. High-power-density 0.25 μm gate-length AlGaN/GaN high-electron-mobility transistors on semi-insulating 6H-SiC substrates. Jpn. J. Appl. Phys.,2006,45,13-17
    [4.3]Moon J. S., Wong D., Hu M., et al.55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+GaN source contact ledge. IEEE Electron Device Lett.,2008,29,834-837
    [4.4]Yagi S., Shimizu M., Okumura H., et al.1.8 kV AlGaN/GaN HEMTs with High-k/Oxide/SiN MIS Structure. IEEE Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs, Jeju, Korea,2007, May, 261-264
    [4.5]Ibbetson J. P., Fini P. T., Ness K. D., et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett.,2000,77,250-252
    [4.6]刘恩科,朱秉生,罗晋生,等.半导体物理.北京,国防工业出版社,1994,第四版,228
    [4.7]Martin G., Strite S., Botchkarev A., et al. Valence-band discontinuity between GaN and AlN measured by x-ray photoemission spectroscopy. Appl. Phys. Lett., 1994,65,610-612
    [4.8]Martin G., Botchkarev A., Rockett A., et al. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy. Appl. Phys. Lett.,1996,68,2541-2543
    [4.9]Brunner D., Angerer H., Bustarret E., et al. Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys.,1997,82,5090
    [4.10]Li Dongsheng, Sumiy M., Fuke S., et al. Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. J. Appl. Phys.,2001,90,4219-4223
    [4.11]Ambacher O., Smart J., Shealy J. R., et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys.,1999,85,3222-3233
    [4.12]Yu E. T., Sullivan G. J., Asbeck P. M., et al. Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett.,1997,71,2794-2796
    [4.13]Koley G, Spencer M. G. On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface. Appl. Phys. Lett.,2005,86,042107
    [4.14]Darakchieva V., Monemar B. Usui A.. On the lattice parameters of GaN. Appl. Phys. Lett,2007,91,031911
    [4.15]周玉刚,沈波,刘杰,等.肖特基C-V法研究AIXGa1-XN/GaN异质结界面二维电子气.半导体学报,2001,22,1420-1424
    [4.16]Lin Z. J., Lu W.. Influence of Ni Schottky contact area on two-dimensional electron-gas sheet carrier concentration of strained AlGaN/GaN heterostructures. J. Appl. Phys.,2006,99,014504
    [4.17]Davidsson S. K., Gurusinghe M., Andersson T. G, et al. The influence of composition and unintentional doping on the two-dimensional electron gas density in AlGaN/GaN heterostructures. J. Electron. Mater.,2004,33,440-444
    [4.18]Hsu L., Walukiewicz W.. Effect of polarization fields on transport properties in AlGaNGaN heterostructures. J. Appl. Phys.,2001,89,1783-1789
    [4.19]Smorchkova I. P., Chen L., Mates T., et al. AIN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys.,2001,90,5196-5201
    [4.20]Miyoshi Makoto, Egawa Takashi, Ishikawa Hiroyasu, et al. Nanostructural characterization and two-dimensional electron-gas properties in high-mobility AlGaN/AlN/GaN heterostructures grown on epitaxial AIN/sapphire templates. J. Appl. Phys.,2005,98,063713
    [4.21]Wang Xiaoliang, Wang Cuimei, Hu Guoxin, et al. MOCVD-grown high-mobility Alo.3Gao.7N/AlN/GaN HEMT structure on sapphire substrate. J. Crystal Growth,2007,298,791-793
    [4.22]张进城,王冲,杨燕,等.A1N阻挡层对AlGaN/GaN HEMT器件的影响.半导体学报,2005,26,2396-2400
    [5.1]Amano H., Iwaya M., Kashima T., et al. Stress and defect control in GaN using low temperature interlayers. Jpn. J. Appl. Phys.,1998,37, L1540-L1542
    [5.2]Uehara K., Aota Y., Kameda S., et al. Growth of atomically flat-surface aluminum nitride epitaxial film by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys.,2005,44,2987-2992
    [5.3]Lobanova A. V., Yakovlev E. V., Talalaev R. A, et al. Growth conditions and surface morphology of AlN MOVPE. J. Crystal Growth,2008,310,4935-4938
    [5.4]Iwaya M, Takeuchi T, Yamaguchi S, et al. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN. Jpn. J. Appl. Phys.,1998,37, L316-L318
    [5.5]Kozawa T., Kachi T., Kano H., et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys.,1995,77,4389-4392
    [5.6]Rieger W., Metzger T., Angerer H., et al. Influence of substrate-induced biaxial compressive stress on the optical properties of thin GaN films. Appl. Phys. Lett., 1996,68,970-972
    [5.7]Kozodoy Peter, Hansen Monica, DenBaars Steven P., et al. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett.,1999,74, 3681-3683
    [5.8]Takeuchi Tetsuya, Wetzel Christian, Yamaguchi Shigeo, et al. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect. Appl. Phys. Lett.,1998,73,1691-1693
    [5.9]Hwang C. Y, Schurman M. J., Mayo W. E., et al. Effect of structural defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN. J. Electron. Mater.,1997,26,243-251
    [5.10]Kaufmann U., Kunzer M., Obloh H., et al. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys. Rev. B, 1999,59,5561-5567
    [5.11]Kisielowski C., Kruger J., Ruvimov S., et al. Strain-related phenomena in GaN thin films. Phys. Rev. B,1996,54,17745-17753
    [5.12]Monemar B., Bergman J. P., Buyanova I. A., et al. Free Excitons in GaN. MRS Internet Journal of Nitride Semiconductor Research,1997,1, Article 2
    [5.13]许振嘉.半导体的检测与分析.北京,科学出版社,2007,第二版,290
    [5.14]Lee In-Hwan. Choi In-Hoon, Lee Cheul-Ro. et al. Stress relaxation in Si-doped GaN studied by Raman spectroscopy. J. Appl. Phys.,1998,83.5787-5791
    [5.15]Holtz M., Seon M., Prokofyeva T., et al. Micro-Raman imaging of GaN hexagonal island structures.Appl. Phys. Lett.,1999,75,1757-1759
    [5.16]Kirillov Dimitry, Lee Heon, Harris, Jr James S.. Raman scattering study of GaN films. J. Appl. Phys.,1996,80,4058-4062
    [6.1]Kumar V., Lu W., Schwindt R., et al. AlGaN/GaN HEMTs on SiC with fT of over 120 GHz. IEEE Electron Device Lett.,2002,23,455-457
    [6.2]J. Blasing, A. Reiher, A. Dadgar, et al. The origin of stress reduction by low-temperature AlN interlayers. Appl. Phys. Lett.,2002,81,2722-2724
    [6.3]Han J., Waldrip K. E., Lee S. R., et al. Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett.,2001,78, 67-69
    [6.4]Sasaki T., Matsuoka T.. Analysis of two-step-growth conditions for GaN on an AIN buffer layer. J. Appl. Phys.,1995,77,192-200
    [6.5]Zheng X. H., Wang Y. T., Feng Z. H., et al. Method for measurement of lattice parameter of cubic GaN layers on GaAs (001). J. Crystal Growth,2003,250, 345-348
    [6.6]Polian A., Grimsditch M., Grzegory I.. Elastic constants of gallium nitride. J. Appl. Phys.,1996,79,3343-3344
    [6.7]Shur M., Gelmont B., Khan M. A.. Electron mobility in two-dimensional electron gas in AlGaN/GaN Heterostructures and in bulk GaN. J. Electron. Mater,1996,25,777-785
    [6.8]Maeda Narihiko, Tsubaki Kotaro, Saitoh Tadashi, et al. High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett., 2001,79,1634-1636

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700