非线性波动方程分岔中的若干问题分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性动力学是非线性科学的一个重要分支,非线性波动方程的精确求解及其解法研究作为非线性科学中的前沿研究课题和热点问题之一,极具挑战性。由于非线性波动方程的复杂性,求解它并无统一的方法,不过针对非线性波动方程的孤立波解,人们在研究过程中,已经发展了一些有效的研究方法,比如各种求精确解的方法、数值模拟的方法及实验研究的方法,但这些方法大都针对所研究方程的特定类型的解,而无法了解非线性方程解的全局渐近行为。本论文研究几类重要的非线性波动方程的行波解,用动力系统的分岔理论对其进行定性分析,研究系统所有可能的有界行波解,分析系统参数及奇异线对系统解的结构的影响,给出各种有界解的存在条件及解的表达式,讨论各种行波解之间的演化过程及相互作用模式,探讨其动力学行为,主要内容如下:
     论文在第一章回顾了非线性波动方程研究的历史背景和研究方法。第二章讨论非线性波动方程的分岔行为,以广义KdV方程、Camassa-Holm方程和耦合Bousinesq方程为例,结合相平面分析系统的所有行波解的情况,分析参数的变化对系统解的结构的影响,讨论其在转迁集上的各种分岔模式,给出不同性质的波解及其存在条件。
     论文的第三章考虑奇异性对非线性波动方程解的结构的影响,针对相空间上出现奇异线的广义KdV方程,详细讨论了奇异线的存在对解的结构的影响,分析系统中非光滑行波解产生的原因。
     在对系统进行定性分析、了解了系统所有可能解的大致形态的基础上,论文第四章给出了WBK方程的精确有界解,应用动力系统理论,利用连接平衡点的闭轨线的特点结合轨线与行波之间的对应关系来研究非线性波方程行波解的有界性及精确的显式表达式。另外,在同一个参数区域中,当不同类型的波解相互共存时,分析这些解相互之间的演化机制。
     然后,论文考虑不同波解之间的相互作用,目前对非线性波动方程的理论研究大都集中在单模态解上,论文第五章提出了一个新的方法,设想由方程的单模态解的非线性叠加,给出非线性波动方程的复合模态解。这些单模态解可以具有不同的性质,可以具有不同的波速,也可以是不同形式的波解,论文将作理论推导并借助Maple计算工具在具体的几个非线性方程中找到了这种复合模态解。
     目前对非线性波动方程的研究一般都仅限于静态波解,即所考虑的波解的波速、振幅、波宽都是不变的,本论文考虑动态的波解,探讨非线性波动方程的动力学行为,通过能量积分式和选择适当的示性函数,将复数形式的Ginzburg-Landau方程化成为三阶常微分方程,数值模拟波解的动态行为。
     本论文丰富和发展了非线性波动方程解法研究的内容,得到了许多新的结果,论文最后对所做的研究工作进行了总结,并对今后的研究方向作了展望。
Nonlinear dynamics is one of the important branches in nonlinear science, whereas as a leading subject and hot interest in nonlinear science, study on the method for finding solutions of nonlinear partial differential equations has become more and more challenging. Because of the complicity in nonlinear evolution equations, there has no systemic and uniform method for all NLEEs. Many effective methods, such as many kinds of methods for exact solutions, numerical simulations and experimental ways, have been found, but we can only understand the solutions partly and not make sure of overall situations by all these methods. In this paper, we consider all possible bounded traveling wave solutions of some important nonlinear evolution equations. Bifurcation theories are used to analyse the parameter conditions for the existence of solitary wave solutions. The basic content of this paper are given as following:
     Chapter one is devoted to reviewing the history and development of the NLEEs.
     Bifurcations of KdV equation, Camassa-Holm equation and coupled Bousinesq equations are researched respectively in chapter two. Transition boundaries and phase portraits in different regions are given, based on which we can obtain all possible traveling wave solutions as well as the parameter conditions.
     In chapter three, we think about non-analytical (non-smooth) wave solutions. To a general KdV equation with singular curves on phase plane, we explain the reason why these non-smooth traveling wave solutions arise.
     Based on the bifurcation analysis, all possible traveling wave solutions have been known qualitatively. Then we find out the exact bounded wave solutions for WBK equation in chapter four. According to the theory of dynamical system, we investigate the explicit exact traveling wave solutions of nonlinear wave equations by using the characters of the closed trajectory connecting equilibrium points and the relations between obits and traveling waves. When parameters are taken in the same region, there may exist different types of solutions. Bifurcation mechanism between these solutions are revealed.
     Then we focus on interactions between different waves. A new method is proposed in chapter five. By nonlinear superposition of different single-mode waves, new types of multiple-mode waves can be derived. Several cases for the two-mode waves are obtained upon using the computer language Maple.
     Steady wave solutions with constant velocity, amplitude and width have fully been understood. Now we investigate the dynamical behavior of the cubic-quintic complex Ginzburg-Landau equation in this paper. Based on the assumption of a special trial function, a three-dimensional vector field has been derived from the infinite-dimensional dissipative system. Numerical simulations are used to reveal the complexity of the vector field.
     By making use of the approaches proposed by us, a variety of exact solutions to many significant nonlinear evolution equations are easily presented. Finally, the summary of this dissertation and the prospect of study on the nonlinear evolution equations are given.
引文
[1]美G.B.克瑟姆等著.庄峰育,岳曾元译.线性与非线性波.北京:科学出版社.1986.
    [2]冯长根,李石强,祖元刚.非线性科学的理论、方法和应用.北京:科学出版社,1997.
    [3]B.B.诺沃日洛夫.非线性弹性力学基础.北京:科学出版社,1958.
    [4]丁启财.固体中的非线性波.北京:中国友谊出版公司,1985.
    [5]廖振鹏等.工程波动理论导论.北京:科学出版社,1996.
    [6]钱祖文.非线性声学.北京:科学出版社,1992.
    [7]刘式达,刘式适.地球流体力学中的数学问题.北京:海洋出版社,1990.
    [8]DanW.Kosik propagation of a nonlinear seismic pulse in an anelastic homogeneous medium.Geophysics,1993,587.
    [9]KRMccall.Theoretical Study of nonlinear elastic wave propagation.Journal of Geophysical Research,1994,99:132.
    [10]LA1Fano.Seismic waves in An elastic non- linear media-A theoretical contribution.Geophysical prospecting,1973,21:484-525.
    [11]李翊神,汪克林等.非线性科学选讲.合肥:中国科学技术大学出版社,1994.
    [12]赵松年.非线科学-它的内容、方法和意义,北京:科学出版社,1994.
    [13]D.J.Korteweg,G.deVries,On the Change of Form of Long waves Advaneing In a ectangular Canal,and on a New TyPe of Long Stationary waves,Phil.Mag,39,(1895),422-443.
    [14]N.J.Zabusky,M.D.Kruskal,Interaction of solitons in a collisionless plasma and the ecurrence of initial states,Phys.Rev.Lett.,15(1965)240-243.
    [15]王明亮著.非线性发展方程与孤立子[M].兰州:兰州大学出版社,1990.
    [16]艾伯格著.刘元景译.孤立子[M].北京:科学出版社,1989.
    [17]F.Calogereed.Research notes in mathematies,26,1978.
    [18]屠规彰,应用数学与计算数学,1,1979.
    [19]李诩神,散射与反散射理论,南京大学学报,1987.
    [20]R.Bullorgh,P.Cardey,Soliton,Topics in current physics,17,1980.
    [21]C.Rogers,W.K.Schief,Backlund and Darboux Transformations Geometry and Modern Applications in solitons theory,Cambridge University Press,Cambridge,2002.
    [22] G. Darboux, Hermiteh.Sur la fonetion exponeniielle, C.RAead.Sei.Paris 1882.
    [23] C. H. Gu, H. S. Hu, The unified explicit form of Backlund transfonnations for Generalized hierarchies of the KdV equation, Lett.Math.Phys.11 1986 325.
    [24] V. E. Zaklzarov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one- dimensional self-modulation of manes in nonlinear media, JETP 34 1972 62-69.
    
    [25] R. Hirota, Exact solution of the KdV equation for multiple collisions of solitons,Phys.Rev.Lett.27 19711192-1194.
    [26] R. Hirota, Exact envelope-soliton of a nolilinear wave equation, J.Math.Phys.14 1973 805-809.
    
    [27] Y. S. Li, J. E. Zhang, Darboux Transformation of Classical Boussinesq System and its Multi-Solition Solutions, Phys.LettA 284 2001 253—258.
    [28]X. B. Hu, Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation, J.PhysA 27 1994 201.
    [29]P. J. Olver, Applications of Lie Groups to Differential Equations, 107 Springer New York 1993.
    [30] Y. Cheng, Y.S.Li,The constraint of the Kadomtse-Petviashvili equation and its special solutions, Phys.Lett.A.1571991 22-26.
    [31] Y. B. Zeng, etc.Canonical Explicit Backlund Transformation with Spectrality for Constrained Flows of the Soliton Hierarchies, Phys. A 303 2002 321-338.
    [32]H. A. Abdusalam: On an improved complex tanh-function method. Inter. J. Non.Sci. Numer. Simu 6 (2), 99-106 (2005).
    [33] S. A. Elwakil, S. K. El-labany, M. A. Zahran, R. Sabry: Modified extended tanh-function method and its applications to nonlinear equations. Appl. Math.Comput. 161(2), 403-412 (2005).
    [34] T. Alagesan, Y. Chung, K. Nakkeeran.: Backlund transformation and soliton solutions for the coupled dispersionless equations. Chaos, Solitons and Fractals 21,63-67 (2004).
    [35]Abdul-Majid Wazwaz.: The tanh-coth method for new compactons and solitons solutions for the K(n,n) and the K(n+1,n+1) equations. Appl. Math. Comput. 188,1930-1940 (2007).
    [36]A. M. Wazwaz, M. A. Helal: Nonlinear variants of the bbm equation with compact and noncompact physical structures. Chaos Solitons & Fractal 26 (3), 767-776(2005).
    [37]范恩贵,张鸿庆,非线性波动方程的孤波解,物理学报,46(7)1997 1254-1258.
    [38]C.S.Gardner,J.M.Greene,M.D.Kruskal etc,Method for solving the KdV equation,Phys.Rev.Lett 1967 19 1095-1097.
    [39]P.D.Lax,Integrals of nonlinear equations of evolution and solitary waves,Commun.Pure Appl.Math.21 1968,467-490.
    [40]V.E.Zakharvo,A.B.Shabat,A Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,Sov.Phys.JETP.34 1972 62-69.
    [41]M.J.Ablowit,Z.D.J.Kaup,A.C.Newell,H.Segur,Method for solving the sineGordon equation,Phys.Rev.Lett.30 1973 1262-1264.
    [42]M.J.Ablowit,Z.D.J.Kaup,A.C.Newell,H.Segur,Nonlinear evolution equations of Physical significance,Phys.Rev.Lett.31 1973 125-127.
    [43]李诩神,一类发展方程和谱的变形,中国科学A辑,5 1985 385-390.
    [44]屠规彰.非线性方程的逆散射方法.应用数学与计算数学,1979,1:21-42
    [45]H.D.Wahlquist,F.B.Estabrook,Prolongation structurres of nonlinear evolution equations 1,J.Math.Phys.,16(1975)1-7.
    [46]Wbdati Metal.Simple derivation of Backlund transformation from Ri ccati form of inverse method.Prog.Theor.Phys.,1975,53:1652-1656.
    [47]谷超蒙,胡和生,周子翔.孤立子理论中的Darboux变换及其几何应用.上海:上海科技出版社,1999.
    [48]Cu C.H.A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations.Lett.Math.Phys.,1986,11:325-335.
    [49]Wang M L.Solitary wave solutions for variant Boussinesq equations.Phys.Lett.A,1995,199:169-172.
    [50]Wang M L.,Zhou Y B,Li Z B.Applications of homogeneous balance method to exact solutions of nonlinear evolution equations in mathematical physics.Phys.Lett.A,1996,216:67-73.
    [51]范恩贵,张鸿庆.获得非线性演化方程的Backlund变换的一种新途径.应用数学和力学,1998,19(6):603-608.
    [52]范恩贵,张鸿庆.齐次平衡法若干新的应用.数学物理学报,1999,19:286-292.
    [53]Gao Y T,Tian B.Variable-coefficient balancing-act method and variable coefficient KdV equation from fliud dynamics and plasma physics.Euro.Phys.J.B,2001,22:351-360.
    [54]J.F.Zhang,G.P.Guo,F.M.Wu,New multi-soliton solutions and traveling wave solutions of disperse long-wave equations.Chin.Phys.,2002,11(6):533-536.
    [55]J.L.Zhang,Y.M.Wang,New applications of the homogeneous balance principle.Chin.Phys.,2003,12(3):245-250.
    [56]Z.B.Li,Y.P.Liu,RAEEM:A Maple package for finding a series of exact traveling wave solutions for nonlinear evolution equations,Computer Physics Conununications 163(2004)191-201.
    [57]C.Z.Qu,S.L.Zhang,R.C.Liu,Physica D144(2000)97.
    [58]S.L.Zhang,S.Y.Lou,Commun.Theor.Phys.40(2003)401.
    [59]Feng,Z.S.,On explicit exact solutions to the compound Burgers-KdV equation,Physies Letters A 293(2002)57-66.
    [60]王明新著,非线性抛物型方程.北京:科学出版社,1993.
    [61]李庆杨等.非线性方程的数值解法.北京:科学出版社,1987.
    [62]Patera A T A spectral element method for fluid dynamics laminar flow in a channel expansion,J.Comput Phys.,1984,54(3):468-488.
    [63]Kline M.古今数学思想(第三册)(北京大学数学系数学史翻译组译).上海:上海科学技术出版社,1980.
    [64]Temam R.Infinite Dimensional Dynamical System in Mechanics and Physics.Springer Verlag,New York,1988.
    [65]Babin A V,Vishik M I.Attractor for the Navier-Stokes system and for parabolic equations and Estimates of their Dimension.J Soviet Math,1983,28:619-627.
    [66]Ladyzhenskaya O A.Attractors for Semi-group and Evolutions Equations.Lezioni Lincee,Cambridge University Press,1991.
    [67]李开泰,马逸尘.数理方程HILBERT空间方法(下).西安:西安交通大学出版社,1992.
    [68]郭柏灵.非线性演化方程.上海:上海科学出版社,1995.
    [69]H.Ikeda,M.Mimura,Y.Nishiura,Global bifurcation phenomena of travelling wave solutions for some bistable reaction-diffusion systems,Nonlinear Analysis,13(5),1989:507-526.
    [70]S.D.Taliaferro,Stability and bifurcation of traveling wave solutions of nerve axon type equations,Journal of Mathematical Analysis and Applications,137(2),1989:396-416.
    [71]Hiroshi Kokubu,Yasumasa Nishiura,Hiroe Oka,Heteroclinic and homoclinic bifurcations in bistable reaction diffusion systems, Journal of Differential Equations, 86(2), 1990:260-341.
    [72] Yu. Ya. Trifonov, Two-periodical and quasi-periodical wave solutions of the Kuramoto-Sivashinsky equation and their stability and bifurcations. Physica D:Nonlinear Phenomena, 54(4) 1992, 311-330.
    [73]David C. Dankworth, S. Sundaresan, Ioannis G. Kevrekidis, Infinite-wavelength analysis for two-phase flow: A three-parameter computer-assisted study of global bifurcations, Physica D: Nonlinear Phenomena, 55,1992,197-220.
    [74]G. Unal, E. S. S uhubi. Travelling waves and chaos in the Kolmogorov-Spiegel-Sivashinsky model, International Journal of Engineering Science, 30(5), 1992,593-610.
    [75]G. Unal, E. S. Suhubi .A local analysis of the Kolmogorov-Spiegel-Sivashinsky equation, International Journal of Engineering Science, 30(5), 1992,579-592.
    [76] Mariana Haragus-Courcelle, Andrej H'ichev. Three-dimensional solitary waves in the presence of additional surface effects, European Journal of Mechanics -B/Fluids, 17(5), 1998, 739-768.
    [77] Manfred F. Goz, Bifurcation of plane voidage waves in fluidized beds, Physica D:Nonlinear Phenomena, 65(4), 15,1993, 319-351.
    [78] J. Li, Z. Liu, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 25(1), 2000,41-56.
    [79] S. Liu, S. k. Liu, Z. Fu, Q. Zhao, The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation, Chaos, Solitons & Fractals, 13(7), 2002,1377-1381.
    [80] Dmitry E. Pelinovsky, Vassilis M. Rothos. Bifurcations of travelling wave solutions in the discrete NLS equations, Physica D: Nonlinear Phenomena, 202(1-2), 2005,16-36.
    [81] Stefan C. Mancas, S. Roy Choudhury. Traveling wavetrains in the complex cubic-quintic Ginzburg-Landau equation, Chaos, Solitons &Fractals, 28(3), 2006, 834-843.
    [82] Z. D. Zhang, Q. S. Bi, Bifurcations of traveling wave solutions for two coupled variant Boussinesq equations in Shallow water. Chaos, Solitons & Fractals, 2005;24:631-643.
    [83]Q. S. Bi, Bounded wave solutions of a generalized BBM equation with positive exponents. Phys Lett A, 2007; 360:574-581.
    [84]陆启韶,常微分方程的定性方法和分叉,北京:北京航空航天大学出版社,1989.
    [85]Y.A.Li,P.J.Olver,Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system 11:Complex analytic behaviour and convergence to and convergence to non-analytic solutions,Discrete and Continuous Dynamical Systems 4(1998),159-191.
    [86]H.H.Dai.Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods,Wave Motion 28(1998)367-381.
    [87]H.H.Dai,Y.Huo,Solitary shock waves and other traveling waves in a general compressible hyperelastic rod,Proc.R.Soc.Lond.A 456(2000) 331-363.
    [88]Q.Bi.Wave patterns associated with a singular line for a bi-Hamiltonian system.Physics Letters A,369(5-6),(2007),407-417.
    [89]Q.Bi.Peaked singular wave solutions associated with singular curves.Chaos,Solitons & Fractals,31(2),(2007),417-423.
    [90]J.B.Li,Z.R.Liu,Smooth and non-smooth traveling waves in a nonlinearly dispersive equation,Appl.Math.Modelling 25(2000)41-56.
    [91]J.B Li,J.W.Shen,Travelling solutions in a model of the Helix Polypeptide chains,Chaos,Solitons and Fractal,20(2004) 827-841.
    [92]Q.Bi.Singular solitary waves associated with homoclinic orbits.Physics Letters A,352,2006,227-232.
    [93]M.Hecke.Coherent and incoherent structures in systems described by the 1D CGLE:experiments and identification.Physica D,174(2003) 134-151.
    [94]L.Brusch,A.Torcini,M.Hecke,etc..Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation.Physica D,160(2001) 127-148.
    [95]A.Fujita.Numerical study for vortex lattice transition with extended Ginzburg-Landau model.Physica C,309(1998) 65-70.
    [96]H.Moon.Subcritical modulational instability and transition to chaos from periodicity,Physics Letters A,325(2004) 324-328.
    [97]A.I.Maimistov.On coherent amplification of optical solitons,J.Exp.Theor.Phys.,77(1993) 727-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700