非线性波、几何可积性与群分类
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以著名数学家吴文俊先生所倡导的数学机械化思想为指导,以构造性的变换及符号计算为辅助工具,从几何和代数的角度来研究了非线性波,可积系统和微分方程的群理论分析中的一些问题:精确波解(行波解、孤立波解、周期解、泛函分离变量解)、Darboux变换、非等谱演化方程与几何可积性、群分类、等价群,等价性变换、古典李对称约化、守恒律分类。
     第二和第三章主要考虑了非线性偏微分方程的精确解的构造。首先介绍了张鸿庆教授提出的构造非线性偏微分方程精确解的AC=BD模式和C-D对理论,并且把这一模式推广到研究(1+1)-维偏微分方程的保持形式的点变换。然后在第三章具体研究了这一模式的应用:(ⅰ)基于一类一阶带六次非线性项的常微分方程,提出了扩展的第一类椭圆方程方法,并以广义的Zakharov方程组为例来展示该方法的有效性,获得了大量新的有趣的精确解,其中包括钟型和扭结型孤波解,亮和暗孤立波解,三角周期波解等;(ⅱ)基于一类投影Riccati方程,提出了一种新的变系数投影Riccati方程展开法。利用该方法,获得(2+1)-维广义Broer-Kaup方程的许多有趣的新的类孤波解和有理解,当把解中的某些任意函数取为行波变换时,还可得到许多具有重要物理意义的行波解;(ⅲ)构造了四类(1+1)-维孤子方程的三种显式的N-重Darboux变换,利用这些变换,获得了它们以及(2+1)-维Kadomtsev-Petviashvili方程和修正的Kadomtsev-Petviashvili方程的有趣的(2N-1)和(2N)-孤子解,而且所有的变换和解都用类-Vandermonde行列式表示,使得其形式相当的简洁。
     近年来,人们对孤子和可积系统理论中的非等谱演化方程,即其相应谱问题具有时间依赖的谱参数η,越来越感兴趣。第四章给出了两类演化方程u_t=F(x,t,u,u_x,…,u_x~k)和u_(xt)=G(x,t,u,u_x,…,u_x~k)在假设η为x,t的可微函数下描述伪球曲面(几何可积)的完整刻画。因此提供了一个系统的程序确定一个非等谱线性问题,使得它是给定的非等谱演化方程的可积性条件。从而为解决可积系统理论中的核心问题之一:给定一个非线性微分方程,判断它是否Lax意义下可积,即是否可写成一对线性问题的可积性条件提供了一种重要的几何途径。上述内容形成本文的第一部分。
     微分方程的群分类,特别是完备的群分类是微分方程群理论分析领域经典而又非常困难的问题之一。第五章利用相容性方法以及附加的等价性变换,给出了一类带有变系数函数f的(1+1)-维非线性电报方程f(x)u_(tt)=(H(u)u_x)_x+K(u)u_x的完备群分类。结果获得了大量新的有趣的具有非平凡变系数函数的非线性不变模型,它们都具有非平凡的对称代数,而且这些对称代数至多是五维的。作为上述分类结果的应用,还给出了非线性电报方程u_(tt)=(H(u)u_x)_x+K(u)u_x的完备群分类。另外,还研究了所有不变模型的附加的等价性变换,并且通过利用这些附加的等价性变换,古典Lie约化方法以及一般条件对称方法,给出了某些特殊的变系数非线性不变模型与非线性电报方程的精确解和泛函分离变量解。最后还给出该类变系数非线性电报方程在等价性变换群下具有零阶特征的局部守恒律的分类。
     第六章利用古典无穷小算法,等价性变换技巧和低维抽象李代数的分类理论给出了一般KdV-类非线性演化方程u_t=F(t,x,u,u_x,u_(xx))u_(xxx)+G(t,x,u,u_x,u_(xx))在四维及四维以下李代数下不变的群分类。证明了只存在三个不等价的方程在三维单李代数下不变,而且进一步证明在所有半单李代数下不变的不等价方程只有这三个。另外,还证明了存在两个,五个,二十九个和二十六个不等价的方程分别在一维,二维,三维和四维可解李代数下不变。第五和第六章形成了本文的第二部分。
In this dissertation, under the guidance of mathematical mechanization proposed by famousmathematician Wu Wentsun and by means of many types of constructive transformations aswell as symbolic computation, some topics in nonlinear waves, integrable systems and grouptheoretical analysis of differential equations are studied from the points of view of geometry andalgebra, including exact solutions, Darboux transformations, non-isospectral evolution equationswhich describe pseudo-sphere surfaces, symmetries group classifications, additional equivalencetransformations, classical Lie reduction and classifications of conservation laws.
     Chapter 2 and 3 are devoted to investigating exact solutions of nonlinear partial differentialequations. Firstly, the basic theories of AC=BD model and C-D pair are introduced, and thenthey are extended to studying the form-preserving transformations of (1+1)-dimensional partialdifferential equations. Secondly, we choose some examples to illustrate them in Chapter 3. (ⅰ)Based on a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term,an extended first kind elliptic sub-equation method is proposed to obtain solutions of nonlineardifferential equations. Many interesting exact solutions of generalized Zakharov equations are ex-plored, including new bell and kink profile solitary wave solutions, bright and dark solitary wavesolutions, triangular periodic wave solutions and singular solutions; (ⅱ) a variable-coefficientprojective Riccati equation method is presented to obtain non-travelling wave solutions for the(2+1)-dimensional generalized Broer-Kaup system; (ⅲ) Three kinds of explicit N-fold Dar-boux transformation of four (1+1)-dimensional soliton systems are constructed. Then thesetransformations are used to derive explicit (2N-1) and (2N)-soliton solutions of these systemsand the (2+1)-dimensional Kadomtsev-Petviashvili equation as well as modified Kadomtsev-Petviashvili equation. The explicit formulas of both the Darboux transformations and solitonsolutions are expressed by Vandermonde-like determinants which are remarkable compactnessand transparency.
     Recent years there are increasing interests in non-isospectral evolution equation, i. e.,the corresponding spectral problem with a time-dependent spectral parameterη, in the the-ory of soliton and integrable system. In chapter 4, characterizations of evolution equationsu_t=F(x, t, u, u_x, ..., u_x~k) and u_(xt)=F(x, t, u, u_x, ..., u_x~k) which describe pseudo-spherical surfacesare given, under a priori assumption thatηis differential function of x, t, thus providing asystematic procedure to determine a non-isospectral linear problem for which the given non- isospectral evolution equation is the integrability condition. It also paves a way form the pointof view of geometry to solve one of the central problems of integrable systems: To determinea given nonlinear differential equation integrable or not in Lax sense, i. e., whether it can bewritten as an integrablity condition of a pair of linear problems. The aforementioned subjectsform the first part of this dissertation.
     Group classification of differential equations, especially complete group classification, isone of the classical and very tough problems in the field of group theoretical analysis of dif-ferential equation. In chapter 5, complete group classification of a class of variable coefficient(1+1)-dimensional nonlinear telegraph equations f(x)u_(tt)=(H(u)u_x)_x+K(u)u_x, is given, byusing a compatibility method and additional equivalence transformations. A number of newinteresting nonlinear invariant models which have non-trivial symmetry algebra are obtained. Itis shown that the symmetry algebra is at most five-dimensional. As an application, the groupclassification of nonlinear telegraph equations u_(tt)=(H(u)u_x)_x+K(u)u_x is also provided. Fur-thermore, the possible additional equivalence transformations between equations from the classunder consideration are investigated. Exact solutions of special forms of these equations arealso constructed via classical Lie method and generalized conditional transformations. Localconservation laws with characteristics of order 0 of the class under consideration are classifiedwith respect to the group of equivalence transformations.
     Chapter 6 deals with the group classification of general KdV-type nonlinear evolutionequations of the form u_t=F(t, x, u, u_x, u_(xx))u_(xxx)+a(t, x, u, u_x, u_(xx)) invariant under at mostfour-dimensional Lie algebra, by using the classical infinitesimal Lie method, the technique ofequivalence transformations and the theory of classification of abstract low-dimensional Lie alge-bras. It is shown that there are three equations admitting three dimensional simple Lie algebras,what's more, all the inequivalent equations admitting simple Lie algebra are nothing but them.Furthermore, we prove that there exist two, five, twenty-nine and twenty-six inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvableLie algebras, respectively. Chapter 5 and 6 form the second part of this dissertation.
引文
[1] Wu W T. On the decision problem and the mechanization of theorem-proving in elementary geometry. Scientia Sinica, 1978, 21: 159-172.
    [2] Ritt J F. Differential Algebra. New York: American mathematical Society, 1950.
    [3] Wu W T. On the foundation of algebraic differential geometry. MMRP. 1989.3.
    [4] Gao X S, Zhang J Z, Chou S C. Geometry Expert (in Chinese), Nine Chapters Pub. Taiwan, 1998.
    [5] Chou S C, Gao X S, Zhang J Z. Machine Proofs in Geometry. Singapore: World Scientific, 1994.
    [6] Chou S C. Automated reasoning in differential geometry and mechanics using the characteristic set method. Ⅰ. An improved version of Ritt-Wu's decomposition algorithm. J. Auto. Reasoning, 1993, 10: 161-172.
    [7] Wang D M, Gao X S. Geometry theorems proved mechanically using Wu's method. MM-Reseach Preprints, 1987(2).
    [8] Lin D D, Liu Z J. Some results in theorem proving in finite geometry. Proc of IWMM. Inter Academic Pub, 1992.
    [9] Wu J Z, Liu Z J. On first-order theorem proving using generalized odd-superpositions Ⅱ. Science in China(Series E), 1996, 39(6): 50-61.
    [10] Kaput D, Wan H K. Refutational proofs of geometry theorems via characteristic sets. Proc of ISSAC-90, Tokyo, Japan, 1990, 277-284.
    [11] Li H B, Cheng M T. Proving theorems in elementary geometry with Clifford algebraic method. Chinese Math Progress. 1997, 26(4): 357-371.
    [12] Li H B, Cheng M T. Clifford algebraic reduction method for mechanical theorem proving in differential geometry. J. Auto. Reasoning, 1998, 21: 1-21.
    [13] Wang D M. Clifford algebraic calculus for geometric reasoning with applications to computer vision. In: D. Wang. Automated Deduction in geometry LNAI. 1996, 1360: 115.
    [14] Shi H. Proceeding 1992, International work Math. Mech., International Academic, 1992: 79. MM-Preprints, 1997: 1.
    [15] Sun X D, Wang K, Wu K. Solutions of Yang-Baxter equation with spectral parameters for a six-vertex model. Acta Phys. Sinica(Chinese), 1995, 44(1): 1-8.
    [16] Sun X D, Wang K, Wu K. Classification of six-vertex-type solutions of the colored Yaag-Baxter equation. J. Math. Phys. 1995, 36(10): 6043-6063.
    [17] Li Z B, Wang M L. Travelling wave solutions to the two-dimensional KdV-Burgers equation. J. Phys. A, 1993, 26: 6027-6031.
    [18] 李志斌,张善卿.非线性波方程准确孤立波解的符号计算.数学物理学报.1997,17(1):81-89.
    [19] Li Z B. Proc. Of Asian Symposition on Computer Mathematics. Lanzhou University, 1998: 153.
    [20] 李志斌.非线性数学物理方程的行波解.北京:科学出版社,2007.
    [21] Li Z B, Liu Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Compu. Phys. Commun. 2002, 148: 256-266.
    [22] Fan E G, Zhang H Q. Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water. Appl. Math. Mech. 1998, 19: 713-716.
    [23] Yan Z Y, Zhang H Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A. 2001, 285: 355-260.
    [24] 范恩贵.可积系统与计算机代数.北京:科学出版社,2004.
    [25] 闰振亚.大连理工大学博士学位论文.2002.
    [26] 朝鲁.大连理工大学博士学位论文.1997.
    [27] 陈勇.大连理工大学博士学位论文.2003.
    [28] 谢福鼎.大连理工大学博士学位论文.2003.
    [29] 李彪.大连理工大学博士学位论文.2005.
    [30] 梅建琴.大连理工大学博士论文.2006.
    [31] Cohen A M, Davenport J H, Heck A J P. An overview of computer algebra. Computer Algebra for Industry, 1994, 16: 1-25.
    [32] Russell J S. Report on waves, Fourteen meeting of the British association for the advancement of science, John Murray, London, 1844, 311-390.
    [33] Boussinesq J. Theorie des ondes et de remous qui se propagent. J. Math. Pure Appl. 1972, 17: 55-108.
    [34] Korteweg D J, deVries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 1895; 39: 422-433.
    [35] Fermi A, Pasta J, Ulam. I. Studies of Nonlinear Problems. Los Alamos Rep. LA, 1940, 1955.
    [36] Perring J K, Skyrme T H R. A model unified field equation. Nucl. Phys. 1962, 31: 550-555.
    [37] Zabusky N J, Kruskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 15: 240-243.
    [38] Ablowitz M J, Clarkson P A. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press, 1991.
    [39] Newell A C. Soliton in mathematics and physics. Philadelphia: SIAM, 1985.
    [40] Faddeev L D, Takhtajan L A. Hamiltonian method in the theory of solitons. Berlin: Springer-Verlag, 1987.
    [41] Matveev V B, Salle M A. Darboux transformation and Solitons. Berlin: Springer, 1991.
    [42] 郭柏灵,庞小峰.孤立子.北京:科学出版社,1987.
    [43] 谷超豪等.孤立子理论与应用.杭州:浙江科技出版社,1990.
    [44] 谷超豪等.孤立子理论中的Darboux变换及其几何应用.上海:上海科技出版社,1999.
    [45] 李翊神.孤子与可积系统.上海:上海科技出版社,1999.
    [46] 陈登远.孤子引论.北京:科学出版社,2006.
    [47] Hirota R. The direct method in soliton theory. New York: Cambridge University Press, 2004.
    [48] Backlund A V. Lund Universitets Arsskrift 1885, 10.
    [49] Wahlquist H D, Estabrook F B. Backlund transformations for solitons of the Korteweg-de Vries equation. Phys. Rev. Lett. 1973, 31: 1386-1390.
    [50] Weiss J, Tabor M, Carnvale G. The Painleve property for partial differential equations. J. Math. Phys. 1983, 24: 522-526.
    [51] Weiss J. The Painleve property for partial differential equations. Ⅱ. Backlund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 1983, 24: 1405-1413.
    [52] Darboux G. Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences. Pairs, 1882, 94: 1456-1459.
    [53] Wadati M et al. Simple derivation of Backlund transformation from Riccati form of inverse method. Prog. Theor. Phys. 1975, 53: 1652-1656.
    [54] Gu C H. A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations. Lett. Math. Phys. 1986, 11; 325-335.
    [55] Gu C H, Zhou Z X. On the Darboux matrices of Backlund transformations for AKNS systems. Lett. Math. Phys. 1987, 13: 179-187.
    [56] Matveev V B, Sklyanin E K. On Backlund transformations for many-body systems. J. Phys. A, 1998, 31: 2241-2251.
    [57] Liu Q P, Manas M. Darboux transformations for super-symmetric KP hierarchies. Phys. Lett. B, 2000, 485: 293-300.
    [58] Zeng Y B, Ma W X, Shao Y J. Two binary Darboux transformations for the KdV hierarchy with self-consistent sources. J. Math. Phys., 42 (2001), 2113-2128.
    [59] Fan E G. Solving Kadomtsev-Petviashvili equation via a new decomposition and Darboux transformation. Commun. Theor. Phys., 2002, 37: 145-148.
    [60] Geng X G, Tam H W. Darboux transformation and Soliton solutions for Generalized Nonlinear SchrSdinger Equations. J. Phys. Soc. Japan, 1999, 68: 1508.
    [61] Li Y S, Gu X S, Zou M R. Three kinds of Darboux transformations for the evolution equationswhich connect with AKNS eigenvalue problem. Acta Math Sinica, 1987, 3: 143.
    [62] Li Y S. The reductions of the Darboux transformation and some solutions of the soliton equations, J. Phys. A: Math. Gen., 1996, 29: 4187.
    [63] Gardner C S et al. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 1967, 19: 1095-1097.
    [64] Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21: 467-490.
    [65] Wadati M. The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 1973, 32: 1289-1296.
    [66] Ablowitz M J et al. Method for solving the sine-Gordon equation. Phys. Rev. Lett. 1973, 30: 1262-264.
    [67] Wahlquist H D, Estabrook F B. Prolongation structures of nonlinear evolution equations. J. Math. Phys. 1975, 16: 1-7.
    [68] Guo H Y et al. On the prolongation structure of Ernst equation. Commun. Theor. Phys. 1982, 1: 661-664.
    [69] Guo H Y, Wu K, Wang S K. Prolongation structure, Backlund transformation and principal homogeneous Hilbert problem in general relativity. Commun. Theor. Phys. 1983, 2: 883-898.
    [70] Guo H Y, Wu K, Wang S K. Inverse scattering transform and regular Riemann-Hilbert problem. Commun. Theor. Phys. 1983, 2: 1169-1173.
    [71] Wu K, Guo H Y, Wang S K. Prolongation structures of nonlinear systems in higher dimensions. Commun. Theor. Phys. 1983, 2: 1425-1437.
    [72] Case K M, Kac M. A discrete version of the inverse scattering problem. J. Math. Phys. 1973, 14: 594-603.
    [73] Flaschka H. On the Toda lattice. Ⅱ. Inverse-scattering solution. Prog. Theor. Phys. 1974, 51: 703- 716.
    [74] Ablowitz M J, Ladik .J F. Nonlinear differential-difference equations. J. Math. Phys. 1975, 16: 598- 603.
    [75] Fokas A S, Its A R. The Nonlinear Schrodinger Equation on the Interval. J. Phys. A: Math. Gen., 2004, 37: 6091-7114.
    [76] Hu X B. Rational solutions of integrable equat ions via nonlinear superposition formulae. J. Phys. A, 1997, 30: 8225-8240.
    [77] Hu X B, Zhu Z N. Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superposition formula. J. Math. Phys. 1998, 39: 4766-4772.
    [78] Hu X B, Wu Y T. A new integrable differential-difference system and its explicit solutions. J. Phys. A, 1999, 32: 1515-1521.
    [79] Hu X B et al. Lax pairs and Backlund transformations for a coupled Ramani equation and its related system. Appl. Math. Lett. 2000, 13: 45-48.
    [80] Boiti M et al. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inv. Probl. 1986, 2: 271-280.
    [81] Lou S Y. Generalized dromion solutions of the (2+l)-dimensional KdV equation. J. Phys. A, 1995, 28: 7227-7232.
    [82] Zhang J F. Abundant dromion-like structures to the (2+1) dimensional KdV equation. Chin. Phys. 2000, 9: 1-4.
    [83] Liu Q P, Hu X B, Zhang M X. Supersymmetric modified Korteweg-de Vries equation: bilinear approach. Nonlinearity, 2005, 18: 1597-1603.
    [84] Ning T K, Zhang D J, Chen D Y, Deng S F. Exact solutions and conservation laws for a nonisospec- tral sine-Gordon equation. Chaos, Solitons and Fractals, 2005, 25: 611-620.
    [85] Zhang D J, Chen D Y. Negatons, positons, rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms. J Phys A: Math Gen 2003; 36: 1-15.
    [86] Miura R M. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 1968, 9: 1202-1204.
    
    [87] Ablowitz M J et al. A note on Miura's transformation. J. Math. Phys. 1979, 20: 991-1003.
    [88] Wang M L. Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A, 1995, 199: 169-172.
    [89] Lou S Y, Ruan H Y, Huang G X. Exact solitary waves in a convecting fluid. J. Phys. A, 1991, 24: L587-L590.
    [90] Conte R, Musette M. Link between solitary waves and projective Riccati equations. J. Phys. A: Math. Gen. 1992, 25: 5609-5623.
    [91] Liu S K, Fu Z T, Liu S D, Zhao Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A, 2001, 289: 69-74.
    [92] Fan E G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 2000, 277: 212-218
    
    [93] Yan C T. A simple transformation for nonlinear waves. Phys. Lett. A, 1996, 224: 77-84.
    [94] Yan Z Y, Zhang H Q. New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Lett. A, 1999, 252: 291-296.
    [95] Tian B, Gao Y T. Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics. Eur. Phys. J. B, 2001, 22: 351-360.
    [96] Gao Y T, Tian B. New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces. J. Phys. A, 1996, 29: 2895-2903.
    [97] Barnett M P et al. Symbolic calculation in chemistry: Selected examples. Int. J. Quantum Chem. 2004, 100: 80-104.
    [98] 张鸿庆.弹性力学方程组一般解的统一理论.大连理工大学学报,1978,18:23-47.
    [99] 张鸿庆,王震宇.胡海昌解的完备性和逼近性.科学通报,1986,30:342-344.
    [100] 张鸿庆,吴方向.一类偏微分方程组的一般解及其在壳体理论中的应用.力学学报,1992,24:700-707.
    [101] 张鸿庆,冯红.构造弹性力学位移函数的机械化算法.应用数学和力学,1995,16:315-322.
    [102] 张鸿庆,杨光.变系数偏微分方程组一般解的构造.应用数学和力学,1991,12:135-139.
    [103] 张鸿庆,冯红.非齐次线性算子方程组一般解的代数构造.大连理工大学学报,1994,34:249-255.
    [104] 张鸿庆.偏微分方程组的一般解与完备性.现代数学与力学.1991,Ⅳ.
    [105] Zhang H Q, Chen Y F. Proceeding of the 3rd ACM, Lanzhou University Press, 1998, 147.
    [106] Zhang H Q. C-D integrable system and computer aided solver for differential equations. Proceeding of the 5rd ACM, World Scientific Press, 2001, 221-226.
    [107] Zakharov V E, Shabat A B. Integrable system of nonlinear equations in mathematical physics. Funct. Anal. Appl. 1974, 8: 43-53.
    [108] Dolye P W. Separation of variables for scalar evolution equations in one space dimension. J. Phys. A., 1996, 29: 7581-7595.
    [109] Conte R. ed, The Painleve property one century later. New York: Springer-Verlag, 1999.
    [110] Bour E. Theorie de la deformation des surfaces. J. l'Ecole Imperiale Polytech, 1862, 19(Cahier 39): 1-48.
    [111] Bianchi L. Ricerche sulle superficie a curvatura constant e sulle elicoidi, Tesi di Abilitazione. Ann. Scuola Norm. Sup. Pisa(1), 1879, 2: 285-304.
    [112] Bonnet O. Memoire sur la theorie des surfaces applicables sur une surface donnee. J. l'Ecole Polytech, 1867, 42: 1-151.
    [113] Lund F, Regge T. Unified approach to strings and vortices with soliton solutions. Phys. Rev. D., 1976, 14: 1524-1535.
    [114] Pohlmeyer K. Integrable Hamiltonian systems and iteractions through quadratic constraints. Comm. Maht. Phys., 1976, 46: 207-221.
    [115] Rogers C, Schief W K. Backlund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press, 2002.
    [116] Sym A. Soliton surfaces. Lett. Nuovo Cimento, 1982, 33: 394-400.
    [117] Sym A. Soliton surfaces Ⅱ: Geometric unification of solvable nonlinearities. Lett. Nuovo Cimento, 1983, 36: 307-312.
    [118] Sym A. Soliton surfaces Ⅴ: Geometric theory of loop soliton. Lett. Nuovo Cimento, 1984, 41: 33-40.
    [119] Sym A. Soliton surfaces and their applications. In: Martini R, ed. Geometric aspects of the Einstein equation and integrable system, Berlin: Springer, 1985.
    [120] Zakharov V E, Mikhaillov A V. Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Soviet. Phys. JETP, 1978, 47: 1017-1027.
    [121] Wood J C. The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grasmannian. J. reine angew. Math., 1988, 386: 1-31.
    [122] Uhlenbeck K. Harmonic maps into Lie groups. J. Diff. Geor, 1989, 30: 1-50.
    [123] Wente H. Counterexample to a conjecture of H. Hopf. Pacific. J. Math., 1986, 121: 193-243.
    [124] Fordy A, Wood J C, ed. Harmonic maps and integrable systems, Aspects of Mathematics E23, Vieweg, 1994.
    [125] Walter R. Explicit examples to the H-problem of Heinz Hopf. Geometriae Dedicata, 1987, 23: 187-213.
    [126] Helein F. Constant mean curvature surfaces, harmonic maps and integrable systems. Basel: Birkhauser, 2001.
    [127] Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys. Rev. Lett., 1991, 67: 3203-3206.
    
    [128] Langer J, Perline R. Poisson geometry of the filament equation. J. Nonlinear Sci., 1991, 1: 71-93.
    [129] Doliwa A, Santini P M. An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A, 1994, 185: 373-384.
    [130] Nakayama K, Segur H, Wadati M. Integrability and the motion of curves. Phys. Rev. Lett., 1992, 69: 2603-2606.
    [131] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves. Phys. D, 2002, 162: 9-33
    [132] Chou K S, Qu C Z. Integrable motions of space curves in affine geometry. Chaos, Soliton and Fractals, 2002, 14: 29-44.
    [133] Chou K S, Qu C Z. Geometric motions of surfaces and 2+1-dimensional integrable equations. J. Phys Society of Japan, 2002, 71: 1039-1043.
    [134] Gu C H, Hu H S. On the determination of nonlinear PDE admitting integrable system. Science in Chian Series A., 1986, XXIX: 704-719.
    [135] Bobenko A, Pinkall U. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Diff. Geom., 1996, 43: 527-611.
    [136] Bobenko A, Suris Y. Discrete differential geometry, consistency as integrability. arXiv: math.DG/0504358.
    [137] Dubrovin B, Novikov S P. Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Uspekhi Mat. Nauk, 1989, 44: 29- 98. English translation in Russ. Math. Surveys, 1989, 44: 35-124.
    [138] Tsarev S. The geometry of Hamiltonian systems of hydrodynamic type, The generalized hodograph method. Math. USSR Izv., 1991, 37: 397-419.
    [139] Dubrovin B. Geometry of 2D topological field theories, in: Integrable Systems and Quantum Groups, Montecatini Terme, 1993. Editors: M. Francaviglia, S. Greco. Springer Lecture Notes in Math. 1996, 1620: 120-348.
    [140] Dubrovin B, Zhang Y. Normal forms of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. arXiv: math.DG/0108160.
    [141] Dubrovin B, Liu S Q, Zhang Y. On Hamiltonian perturbations of hyperbolic systems of conservation laws. Commu. Pure. Appl. Math., 2006, LIX: 559-615
    [142] Liu S Q, Zhang Y. Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys., 2005, 54: 427-453.
    [143] Novikov S P, The periodic problem for the Korteweg-de Vries equation. Func. Anal. Appl., 1974, 8: 236-246.
    [144] Lax P D, Periodic solutions of the Korteweg-de Vries equation. Comm. pure. Appl. Math., 1975, 28: 141-188.
    
    [145] Marchenko V A. A periodic Korteweg-de Vries problem. Soviet Math. Dokl., 1974, 15: 1052-1056.
    [146] Dubrovin B A. Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials. Functional Anal. Appl., 1975, 9: 215-223.
    [147] Its A R, Matveev V B. Hill's operator with finitely many gaps. Functional Anal. Appl, 1975, 9: 65-6.
    [148] Novikov S P, Manakov S V, Pitaevskij L P, Zakharov V E. Theory of solitons, The inverse scattering method. Moscow: Nauka, 1983.
    [149] Belokolos E, Bobenko A, Enol'skij V, Its A, Matveev V. Algebro-geometrical approach to nonlinear integrable equations. Berlin: Springer-Verlag, 1994.
    [150] Gesztesy F, Ratnaseelan R. An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys., 1998, 10: 345-391.
    [151] Gesztesy F, Holden H. Soliton Equations and their Algebro-Geometric Solutions, Volume 1, (1+1)- Dimensional Continuous Models. Cambridge: Cambridge University Press, 2003.
    [152] Zhou R G. The finite-band solution of the Jaulent-Miodek equation. J. Math. Phys., 1997, 38: 2535-2546.
    [153] Geng X G, Wu Y T. Finite-band solutions of the classical Boussinesq- Burgers equations. J. Math. Phys., 1999, 40: 2971-2982.
    [154] Geng X G, Wu Y T and Cao C W, Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation, J. Phys. A, 32 (1999), 3733-3742.
    [155] Qiao Z J. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Commun. Math. Phys., 2003, 239: 309-341.
    [156] Geng X G, Dai H H, Cao C W. Algebro-geometric constructions of the discrete Ablowitz-Ladik flows and applications. J. Math. Phys., 2003, 44: 4573-4588.
    [157] Hon Y C, Fan E G. An algebro-geometric solution for a Hamiltonian system with application to dispersive long wave equation. J. Math. Phys., 2005, 46: 032701.
    [158] Adler M, van Moerbeke P. Completely integrable systems, Euclidean Lie algebras, and curves. Adv. in Math., 1980, 38(3): 267-317.
    [159] Adler M, van Moerbeke P. Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math., 1980, 38(3): 318-379.
    
    [160] Adler M, van Moerbeke P. Kowalewski's asymptotic method, Kac-Moody Lie algebras and regularization. Comm. Math. Phys., 1982, 83(1): 83-106.
    [161] Adler M, van Moerbeke P. The algebraic integrability of geodesic flow on S0(4). Invent. Math., 1982, 67(2), 297-331.
    
    [162] Adler, M, van Moerbeke P, Vanhaecke, P. Algebraic integrability, Painleve geometry and Lie algebras. Berlin: Springer-Verlag, 2004.
    
    [163] Dubrovin B A, Krichever I M, Novikov S P. in Dynamical Systems, Vol 4. Editors: Arnold V I, Novikov S P. Berlin: Springer, 1989.
    
    [164] Krichever I M, Novikov S P. Virasoro-type algebras, Riemann surfaces and structures of the soliton theory. Func. Anal. Appl., 1987, 21(2): 46-63.
    
    [165] Novikov S P. Solitons and Geometry. NewYork: Accademia Nazionale dei Lincei, 1992?.
    
    [166] Temg C L, Uhlenbeck K, ed. Surveys in differential geometry: Integral systems. Boston: International press, 1998.
    
    [167] Saito M H, Shimizu Y, Ueno K, ed. Integrable systems and algebraic geometry. Singapore: World Scientific Publishing Co. Pte. Ltd, 1998.
    
    [168] Lie S., On integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals, CRC Handbook of Lie Group Analysis of Differential Equations, V.2, 473-508. (Translation by N.H. Ibragimov of Arch, for Math., Bd. VI, Heft 3, 328-368, Kristiania 1881).
    
    [169] Lie S. Classification und Integration von gewohnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Fruhling 1883 im norwegischen Archiv. Math. Ann. 1908, 32: 213-281.
    
    [170] Van der Put M, Singer M F. Galois theory of linear differential equations. Berlin: Springer, 2003.
    
    [171] Bateman H. The conformal transformations of a spsce of four dimensions and their applications to geometrical optics. Proc. London Math. Soc. 1909, 7: 70-92.
    
    [172] Cunningham E. The principle of relativity in electrodynamics and an extension thereof. Proc. London Math. Soc. 1909, 8: 77-97.
    
    [173] Nother E. Invariant variations problem. Nachr Koning. Gesell. Wissen. Gottingen, Meth. Phys, kl, 1918, 235-257. fluids and gases in long pipelines. Dokl. Akad. Nauk. USRR, 1967, 175: 781-784.
    
    [174] Olver P J. Evolution equations possessing infinitely many symmetries. J. Math. Phys. 1977, 18: 1212-1215.
    
    [175] Mikhailov A V, Shabat A B, Yamilov R I. The symmetry approach to classification of nonlinear equations, Complete lists of integrable systems. Russian Math. Surveys 1987, 42(4): 1-63.
    
    [176] Mikhailov A V, Shabat A B, Sokolov V V. The symmetry approach to classification of integrable equations. In: What is Integrability?, V.E. Zakharov, ed., New York: Springer Verlag, 1990, pp. 115-184.
    
    [177] Olver P J, Sokolov V V. Integrable evolution equations on associative algebras. Comm. Math. Phys., 1998, 193 (2):245-268.
    
    [178] Sanders J A, Wang J P. On the integrability of homogeneous scalar evolution equations. J. Differential Equations, 1998, 147(2): 410-434.
    
    [179] Krasil'hchik I S, Vinogradov A M. Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws and Baklund transformations.Acta Appl. Math., 1989, 15: 161-209.
    
    [180] Krasil'hchik J, Verbovetsky A. Homological Methods in Equations of Mathematical Physics. Opava: Open Education, 1998. Also: Diffiety Inst. Preprint DIPS 7/98 and math. DG/9808130.
    [181] Anco S C, Bluman G. Direct Construction of Conservation Laws from Field Equations. Phys. Rev. Lett., 1997, 78: 2869-2873.
    [182] Bluman G, Cheviakovb A F. Framework for potential systems and nonlocal symmetries Algorithmic approach. J. Math. Phys., 2005, 46: 123506.
    [183] Anco S C, Bluman G. Direct construction method for conservation laws of partial differential equations I: Examples of conservation law classifications. Eur. J. Appl. Math., 2002, 13: 545-566.
    [184] Anco S C, Bluman G. Direct construction method for conservation laws of partial differential equations II: General treatment. Eur. J. Appl. Math., 2002, 13: 567-585.
    [185] Lie S. Die theorie der integral invarianten 136 ein korolar der differential invariant, Gesammelte Abhand lungen, 1927, 6: 649-663
    [186] Birkhof G. Hydrodynamics-A study in logic, fact and simitude. Princeton: Princeton University press, 1950.
    [187] Ovsiannikov L V. Groups and group-invariant solutions of differential equations, Dokl. Akad. Nauk. USRR, 1958, 118: 439-442.
    
    [188] Ovsiannikov L V. Group properties of differential equations. Novosibirsl, 1962.
    [189] Ovsiannikov L V. Group analysis of differential equations. New York: Academic Press, 1982.
    [190] Warner F W. Foundations of differential Manifolds and Lie groups. Foresman, Glenview: Scott, 1971.
    
    [191] Miller W. Symmetry groups and their applications. New York: Academic press, 1972.
    [192] Ames W F. Some exact solutions for wave propagation in viscoelastic and electrical transmission. Int. J. Nonlinear Mech. 1982, 17: 223-230.
    [193] Kumi S, Bluman G. When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math., 1982, 42:1157-1173.
    [194] Zhaanov R Z, Fuschchych W I. Conditional symmetry and new classical solutions of the Yang-Mills equations. J. Phys. A: Math. Gen, 1995, 28: 6253-6264.
    
    [195] Olver P J. Application of Lie groups to differential equations. New York: Springer-Verlag, 1986.
    [196] Bluman G W, Kumei S. Symmetries and differential equations. New York: Springer-Verlag, 1989.
    [197] Weber R O, Barry S I. Finite-time blow-up in reaction-dificsion equations. Math. Compu. Model, 1993,18(10): 163-168.
    [198] Bluman G W, Cole J D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18: 1025-1042.
    [199] Bluman G W, Kumei S. On invariance properties of the wave equation. J. Math. Phys., 1987, 28: 307-318.
    
    [200] Gandarias M L. New symmetries for a model of fast diffusion. Phys. Lett. A, 2001, 286: 153-160.
    [201] Vinogradov A M, Krasil'shchik I S. A method of calculating higher symmetries of nonlinear evolutionary equations, and nonlocal symmetries. Dokl. Akad. Nauk SSSR, 1980, 253: 1289-1293.
    [202] Oiver P J, Rosenau P. The construction of special solutions to partial differential equations. Phys. Lett. A, 1986, 114: 107-112.
    
    [203] Pucci E. Similarity reductions of partial differential equations. J. Phys. A. 1992, 25: 2631-2640.
    [204] 李翊神,朱国诚.可积方程新的对称,李代数及谱可变演化方程.中国科学A,1987,30: 1243-1250.
    [205] 田畴.Burgers方程的新的强对称,对称和李代数.中国科学A,1987,31:141-151.
    [206] Zhu G C, Chen H H. Symmetries and integrability of the cylindrical Korteweg-de Vries equation. J. Math. Phys. 1986, 27: 100-103.
    [207] Li Y S, Zhu G C. New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations. Ⅱ. AKNS system. J. Phys. A, 1986, 19: 3713-3725.
    [208] Clarkson P A, Kruskal M D. New similarity reductions of the Boussinesq equation. J. Math. Phys, 1989, 30: 2201-2213.
    [209] Lou S Y. A note on the new similarity reductions of the Boussinesq equation. Phys. lett. A, 1990, 151: 133-135.
    [210] Nucci M C, Clarkson P A. The nonclassical method is more general than the direct method for symmetry reductions. An example of the FitzHugh-Nagumo equation. Phys. Lett. A, 1992, 164: 49-56.
    [211] Olver P J. Direct reduction and differential constraints. Proc. R. Soc. Lond. A, 1994, 444: 509-523.
    [212] Lou S Y. Symmetries of the Kadomtsev-Petviashvili equation. J. Phys. A: Math. Gen. 1993, 26: 4387-4394.
    [213] Lou S Y et al. Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method. J. Math. Phys. 2000, 41: 8286-9303.
    [214] 楼森岳,唐晓艳.非线性数学物理方法.北京:科学出版社,2006.
    [215] Hereman W. Review of symbolic software for Lie symmetry analysis. Math. Comput. Modelling, 1997, 25: 115-132.
    [216] 吕卓生.大连理工大学博士学位论文.2004.
    [217] Schwarz F. Algorithmic Lie Theory for Solving Ordinary Differential Equations. In press.
    [218] 范恩贵.大连理工大学博士论文.1998.
    [219] 陈玉福.大连理工大学博士论文.1999.
    [220] 李德生.大连理工大学博士论文.2004.
    [221] Lou S Y, Ruan H Y, Huang G X. Exact solitary waves in a convecting fluid. J. Phys. A, 1991, 24: L587-L590.
    [222] Huang D J and Zhang H Q. The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model. Phys. Lett. A., 2005, 344: 229-237.
    [223] Zhang G X, Li Z B and Duan Y S. Science in China(Series A) 2000; 30: 1103(in Chinese)
    [224] Yan Z Y. Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres. Chao, Solitons Fractals 2003; 16: 759.
    [225] Ma W X, Fuchssteiner B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Internat. J. Non-Linear Mech., 1996, 31: 329-338.
    [226] Huang D J and Zhang H Q. Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degrees nonlinear term. Chaos, Soliton & Fractal, 2006, 29: 928-941.
    [227] Huang D J and Zhang H Q. New exact travelling waves solutions to the combined KdV-MKdV and generalized Zakharov equations. Reports on Mathmatical Physics., 2006, 57: 257-269.
    [228] Fan E G. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A, 2002, 35: 6853-6872.
    [229] Yomba E. The extended Fan's sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations. Phys. Lett. A, 2005, 336: 463-476.
    [230] Zakharov V E. Collapse of Langmuir waves. Sov Phys JETP 35 (1972) 908-914.
    [231] Zakharov V E, Synakh V S. The theory of resonance spectraof wave packets in nonlinear media. Sov Phys JETP 41 (1976)
    [232] Pu Z T, Liu S D, Liu S K. New kinds of solutions to Gardner equation. Chaos Solitons Fractals, 2004, 20: 301-309.
    [233] Huang D J and Zhang H Q. Exact travelling wave solutions for the Boiti-Leon-Pempinelli equation. Chaos, Solitons & Fractals, 2004, 22: 243-247.
    [234] Zhang S L, Wu B, Lou S Y. Painleve analysis and special solutions of generalized Broer-Kaup equations. Phys. Lett. A, 2002, 300: 40-48.
    [235] Huang D J and Zhang H Q. New Explicit Exact Solutions to the (2+l)-dimensional Generalized Broer-Kaup System , Commun. Theor Phys., 2005, 43: 397-400.
    [236] Neugebauer G and Meinel R. General N-soliton solution of the AKNS arbitary background. Phys. Lett. A, 1984, 100: 467-470.
    [237] Levi D, Neugebauer G and Meinel R. A new nonlinear Schrodinger equation, its hierarchy and N-soliton solutions. Phys. Lett. A 1984, 102: 1-8.
    [238] Steudel H, Meinel R, Neugebauer G. Vandermonde-like determinants and N-fold Darboux/Backlund transformations. J. Math. Phys. 1997; 38: 4692-4695.
    [239] Steudel H. in Backlund and Darboux Transformations, The Geometry of Solitons, edited by Alan Coley et al. American Mathematical Society, 2001, pp. 411-418.
    [240] Konopelchenko B, Sidorenko J, Strampp W. (1+1)-dimensional integrable systems as symmetry constraints of (2+l)-dimensional systems. Phys. Lett. A, 1991, 157: 17.
    [241] Cheng Y, Li Y S. The constraint of the Kadomtsev-Petviashvili equation and its special solutions. Phys. Lett. A, 1991, 157: 22-26.
    [242] Konopelchenko B, Strampp W. New reductions of the KP and 2DTL hierarchies via symmetry constraints. J. Math. Phys, 1992, 33: 3676-3686.
    [243] Zeng Y B, Li Y S. Integrable Hamiltonian systems related to the polynomial eigenvalue problem. J. Math. Phys, 1990, 31: 2835-2839.
    [244] Dai H H, Geng X G. On the decomposition of the modified Kadomtsev-Petviashvili equation and explicit solutions. J. Math. Phys, 2000, 41: 7051-7509.
    [245] Lou S Y, Hu X B. Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys, 1997, 38: 6401-6427.
    
    [246] Broer L J F. Approximate equations for surfaces waves. Appl. Sci. Res., 1975, 31: 377-395.
    
    [247] Kaup D J. Prog. A higher-order water wave equation and method for solving it. Theor. Phys., 1975, 54: 396-408.
    
    [248] Geng X G. A Bargmann system and a Neumann system. Acta Math. Sci., 1993, 13: 80-84.
    [249] Akhatov I Sh, Gazizov R K, Ibragimov N Kh. Group classification of equation of nonlinear filtration. Dokl. AN SSSR, 1987, 293: 1033-1035.
    [250] Akhatov I Sh, Gazizov R K, Ibragimov N Kh. Nonlocal symmetries. A heuristic approach. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, 1989, 34, 3-83 (Russian, translated in J. Soviet Math., 1991, 55, 1401-1450).
    [251] Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math., 1974, 53: 249-315.
    [252] Ames W F. Nonlinear partial differential equations in engineering V.1. New York: Academic, 1965; V.2, New York: Academic, 1972.
    [253] Ames W F, Adams E, Lohner R J. Group properties of u_(tt)= [f{u)u_x]_x. Int. J. Non-Linear Mech., 1981, 16: 439-447.
    
    [254] Arrigo D J. Group properties of u_(xx)-u_y~mu_(yy) = f(u). Int. J. Non-Linear Mech., 1991, 26: 619-629.
    
    [255] Barone A, Esposito F, Magee C G, Scott A C. Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento, 1971, 1: 227-267.
    [256] Barut A O, Raczka R. Theory of Group Representations and Applications. Warszawa: PWN-Polish Scientific, 1977.
    [257] Basarab-Horwath P, Lahno V, Zhdanov R. The structure of Lie algebras and the classification problem for partial differential equations. Acta Applicandae Mathematicae, 2001, 69: 43-94.
    [258] Beals R, Rabelo M, Tenenblat K. Backhmd transformations and inverse scattering solutions for some pseudospherical surfaces equations. Stud. Appl. Math. 1989, 81: 125-152.
    [259] Bluman G, Anco S C. Symmetry and integration methods for differential equations. New-York: Springer-Verlag, 2002.
    [260] Bluman G, Cheviakov A F, Ivanova N M. Framework for nonlocally related PDE systems and nonlocal symmetries: Extension, simplification, and examples. J. Math. Phys., 2006, 47: 113505.
    [261] Bluman G, Temuerchaolu. Comparing symmetries and conservation laws of nonlinear telegraph equations. J. Math. Phys., 2005, 46: 073513.
    [262] Bluman G, Temuerchaolu. Conservation laws for nonlinear telegraph equations. J. Math. Anal. Appl., 2005, 310: 459-476.
    [263] Bluman G, Temuerchaolu, Sahadevan R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys., 2005, 46: 023505.
    
    [264] Calogero F, Degasperis A. Exact solution via the spectral transform of a nonlinear evolution equation with linearly x-dependent coefficients. Lett. Nuovo Cimento, 1978, 22(4): 138-141.
    [265] Calogero F, Degasperis A. The spectral transform and solitons. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1982.
    [266] Cavalcaute J A, Tenenblat K. Conservation laws for nonlinear evolution equations. J. Math. Phys., 1988, 29: 1044-1049.
    [267] Chan W L, Li K S. Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg-de Vires equation. J. Math. Phys, 1989, 30: 2521-2526.
    [268] Chen D Y, Zhang D J. Lie algebraic structures of (1+1)-dimensional lax integrable systems . J. Math. Phys., 1996, 37: 5524-5538.
    
    [269] Chen H H, Liu C S. Solitons in nonuniform media. Phys Rev Lett 1976, 37: 693-696.
    [270] Chem S S, Tenenblat K. Foliations on a surface of constant curvature and modified Korteweg-de Vries equation. J. Differential Geom., 1981, 16: 347-350.
    [271] Chem S S, Tenenblat K. Pseudo-spherical surfaces and evolution equations. Stud. Appl. Math., 1986, 74: 55-83.
    [272] Chikwendu S C. Non-linear wave propagation solutions by Fourier transform perturbation. Int. J. Non-Linear Mech., 1981, 16: 117-128.
    
    [273] Ding Q, Tenenblat K. On Differential Systems Describing Surfaces of Constant Curvature. J. Differential Equations, 2002, 184: 185-214.
    [274] Donato A. Similarity analysis and nonlinear wave propagation. Int. J. Non-Linear Mech., 1987, 22: 307-314.
    [275] Fokas A S, Liu Q M. Nonlinear interaction of travelling wave of nonintegrable equation. Phys. Rev. Lett., 1994, 72: 3293-3296.
    [276] Foursov M V, Olver P J, Reyes E G. On formal integrability of evolution equations and local geometry of surfaces. Differential Geometry and its Applications, 2001, 15: 183-199.
    [277] Fushchych W I, Nikitin A G. Symmetry of Equations of Quantum Mechanics. New York: Allerton Press, 1994.
    [278] Fushchych W I, Lahno V I. On new nonlinear equations invariant under Poincare group in two-dimentional space-times. Proc. Acad. Sci. Ukraine, 1996, 11: 60-65.
    [279] Fushchych W I, Shtelen W M, Serov N I. Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics, Dordrecht: Kluwer, (English transl.) 1993.
    [280] Fushchych W I, Zhdanov R Z. Symmetries and Exact Solutions of Nonlinear Dirac Equations (Kyiv: Naukova Ukraina) 1997.
    [281] Gandarias M L, Torrisi M, Valenti A. Symmetry classification and optimal systems of a non-linear wave equation. Int. J. Non-Linear Mech., 2004, 39: 389-398.
    [282] Gagnon L, Winternitz P. Exact solutions of the cubic and quintic non-linear Schrodinger equation for a cylindrical geometry. Phys. Rev. A, 1989, 39: 296-306.
    [283] Gagnon L, Winternitz P. Symmetry classes of variable coefficient nonlinear Schroinger equations. J. Phys. A: Math. Gen., 1993, 26: 7061-076.
    [284] Gazeau J P, Winternitza P. Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys., 1992, 33: 4087-4102.
    [285] Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the KdV equation. Phys. Rev. Lett, 1967, 19: 1095.
    
    [286] Gonz'alez-L'opez A, Kamran N, Olver P J. Quasi-exactly solvable Lie algebras of first order differential operators in two complex variables. J. Phys. A: Math. Gen., 1991, 24: 3995-4008.
    [287] Gonz'alez-L'opez A, Kamran N, Olver P J. Quasi-exact solvability. Commun. Math. Phys., 1994, 159: 503-537.
    [288] Gordoa P R, Pickering A. Nonisospectral scattering problems: a key to integrable hierarchies. J. Math. Phys, 1999, 40: 5749-5786.
    
    [289] Gordoa P R, Pickering A. Non-isospectral scattering problems: Painlev 6 truncation for hierarchies. Phys. Lett. A, 2003, 317: 223-227.
    [290] Giingo ra F, Lahno V I, Zhdanov R Z. Symmetry classification of KdV-type nonlinear evolution equations. J. Math. Phys., 2004, 45: 2280-2313.
    [291] Gupta M R. Exact inverse scattering solution of a nonlinear evolution equation in a nonuniform medium. Phys. Lett. A, 1979, 72: 420-422.
    [292] Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York: Academic Press, 1978.
    
    [293] Hirota R, Satsuma J. N-soliton solution of the KdV equation with loss and nonunifprmity terms. J Phys Soc Jpn, 1976, 41: 2141-2142.
    
    [294] Huang D J, Ivanova N M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J Math Phys, 2007, to appear, 23 pages. arXiv: math-ph/0702072.
    
    [295] Huang D J, Ivanova N M. Nonlocal symmetry classification of a class of variable coefficient nonlinear telegraph equations, (in preparation)
    
    [296] Huang D J, Mei J Q, Zhang H Q. On the group classification of variable coefficient nonlinear telegraph equations, (in preparation)
    
    [297] Huang D J, Mei J Q, Zhang H Q. Nonisospectral evolution equation and geometrical integrability. (finished)
    
    [298] Huang D J, Zhang H Q. Group classifications of general KdV-type nonlinear evolution equation, (finished)
    
    [299] Ibragimov N H. Transformation groups applied to mathematical physics, Mathematics and its Applications (Soviet Series). Dordrecht: D. Reidel Publishing Co., 1985.
    
    [300] Ibragimov N H (Editor). Lie group analysis of differential equations-symmetries, exact solutions and conservation laws, V.I. Boca Raton, FL: CRC Press, 1994.
    
    [301] Ibragimov N H, Torrisi M, Valenti A. Preliminary group classification of equations v_(tt)= f(x,v_x)v_(xx)+g(x,v_x). J. Math. Phys., 1991, 32: 2988-2995.
    
    [302] Ibragimov N H, Torrisi M. A simple method for group analysis and its applications to a model of detonation. J. Math. Phys., 1992, 33: 3931-3937.
    
    [303] Ivanova N M, Popovych R O, Eshraghi H. On symmetry properties of nonlinear Schrodinger equations with potentials. Proc, of Third Summer School on Mathematical Physics (Zlatibor, Serbia and Montenegro, 2004), in Sveske Fiz. Nauka, 2005, 18(A1): 451-456.
    
    [304] Ivanova N M, Popovych R O, Sophocleous C. Conservation laws of variable coefficient diffusion- convection equations. Proceedings of Tenth International Conference in Modern Group Analysis, (Larnaca, Cyprus, 2004), 107-113.
    
    [305] Ivanova N M, Sophocleous C. On the group classification of variable coefficient nonlinear diffusion-convection equations. J. Comp, and Appl. Math., 2006, 197: 322-344.
    
    [306] Jorge L P, Tenenblat K. Linear problems associated to evolution equations of type u_(tt)= F(u,u_x,u_(xx),u_t). Stud. Appl. Math., 1987, 77: 103-17.
    
    [307] Kamran N, Tenenblat K. On differential equations describing pseudospherical surfaces. J. Differential Equations, 1995, 115: 75-98.
    
    [308] Kingston J G, Sophocleous C. On form-preserving point transformations of partial differential equations. J. Phys. A: Math. Gen., 1998, 31: 1597-1619.
    
    [309] Kingston J G, Sophocleous C. Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Lin. Mech., 2001, 36: 987-997.
    
    [310] Kumei S. Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equations: J. Math. Phys., 1975, 16: 2461-2468.
    
    [311] Lahno V I, Spichak S V, Stognii V I. Symmetry analysis of evolution type equations. Kyiv: Institute of Mathematics of NAS of Ukraine, 2002.
    [312] Lahno V I, Zhdanov R Z. Group classification of nonlinear wave equations. J. Math. Phys., 2005, 46: 053301.
    
    [313] Lie S. Gesammelte Abhandlungen, vol 5. Leipzig: Teubner, 1924, pp 767-73.
    [314] Li Y S. A class of evolution equations and the spectral deformation. Sci. Sinica Ser. A, 1982; 25: 911-917.
    [315] Ma W X. An approach for constructing nonisospectral hierarchies of evolution equations. J Phys A: Math Gen, 1992, 25: L719-L726.
    
    [316] Malfliet W. Solitary wave solutions of nonlinear wave equations. Am J Phys. 1992, 60: 650-654.
    [317] Meleshko S V. Group classification of equations of two-dimensional gas motions. Prikl. Mat. Mekh., 1994, 58: 56-62 (in Russian); translation in J. Appl. Math. Mech., 1994, 58: 629-635.
    [318] Morozov V V. Classification of six-dimensional nilpotent Lie algebras. Izv. Vys. Ucheb. Zaved., 1958, 5(5): 161-171 (in Russian).
    [323] Mubarakzyanov G M. On solvable Lie algebras. Izv. Vys. Ucheb. Zaved. Matematika, 1963, N1(32): 114-123.
    [320] Mubarakzyanov G M. The classification of the real structure of five-dimensional Lie algebras. Izv. Vys. Ucheb. Zaved., 1963, 3(34): 99-105.(in Russian)
    [321] Mubarakzyanov G M. The classification of six-dimensional Lie algebras with one nilpotent basis element. Izv Vys Ucheb Zaved. 1963, 4(35): 104-116. (in Russian)
    [322] Mubarakzyanov G M. Some theorems on solvable Lie algebras. Izv. Vys. Ucheb. Zaved., 1966, 3(55): 95-98. (in Russian)
    [323] Mubarakzyanov G M. On solvable Lie algebras, Izv. Vys. Ucheb. Zaved. Matematika, 1963, N1(32): 114-123 (in Russian).
    [324] Nikitin A G, Popovych R O. Group classification of nonlinear Schrodinger equations. Ukr. Math. J., 2001 53: 1053-1060.
    [325] Olver P J, Heredero R H. Classification of invariant wave equations. J. Math. Phys., 1996, 37: 6419-38.
    [326] Oron A, Rosenau P. Some symmetries of the nonlinear heat and wave equations. Phys. Lett. A, 1986, 118: 172-176.
    [327] Patera J, Winternitz P. Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys., 1977, 18: 1449-1455.
    [328] Popovych R O. Classification of admissible transformations of differential equations. Collection of Works of Institute of Mathematics, Kyiv, 2006, 3(N2): 239-254.
    
    [329] Popovych R O, Cherniha R M. Complete classification of Lie symmetries of systems of two-dimensional Laplace equations. Proceedings of Institute of Mathematics of NAS of Ukraine, 2001 36: 212-221.
    [330] Popovych R O, Eshraghi H. Admissible point transformations of nonlinear Schrodinger equations. Proc, of 10th International Conference MOGRAN (Larnaca, Cyprus, 2004), 167-174.
    [331] Popovych R O, Ivanova N M. New results on group classification of nonlinear diffusion-convection equations. J. Phys. A: Math. Gen., 2004, 37: 7547-7565 (math-ph/0306035).
    [332] Popovych R O, Ivanova N M. Hierarchy of conservation laws of diffusion-convection equations. J. Math. Phys., 2005, 46:043502 (math-ph/0407008).
    [333] Popovych R O, Ivanova N M, Eshraghi H. Lie Symmetries of (1+1)-dimensional cubic SchrSdinger equation with potential. Proc. of Inst. of Math. of NAS of Ukraine, 2004, 50:219-224 (mathph/0310039).
    [334] Popovych R O, Ivanova N M, Eshraghi H. Croup classification of (1+1)-dimensional Schrodinger equations with potentials and power nonlinearities. J. Math. Phys., 2004, 45:3049-3057 (mathph/0311039).
    [335] Pucci E. Group analysis of the equation u_(tt)+λu_(xx)=g(u, u_x). Riv. Mat. Univ. Parma, 1987, 12(N4): 71-87.
    [336] Pucci E, Salvatori M C. Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech., 1986, 21: 147-155.
    [337] Qu C Z. Allowed transformations and symmetry class of variable-coefficient Burgers equations. IMA J. Appl. Math., 1995, 54 (3): 203-225.
    [338] Qu C Z. Preliminary group classification of equation u_t=f(x, u_x)u_(xx)+g (x, u_x). Acta Mathematica Scientia, 1997, 17(3): 255-261.
    [339] Qu C Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math., 1997, 99: 107-136.
    [340] Qu C Z, He W L, Dou J H. Separation of variables and exact solutions to generalized nonlinear Klein-Gordon equations. Prog. Theor. Phys, 2001, 105: 379-398.
    [341] Qu C Z, Zhang S L, Liu R C. Separation of variables and exact solutions to quasilinear diffusion equations with the nonlinear source. Phys. D, 2000, 44: 97-123.
    [342] Estevez P G, Qu C Z. Separation of variables in a nonlinear wave equation with a variable wave speed. Theor. Math. Phys, 2002, 133(2): 1490-1497.
    [343] Rabelo M L. On evolution equations which describe pseudo-spherical surfaces. Stud. Appl. Math., 1989, 81: 221-248.
    [344] Rabelo M L, Tenenblat K. On equations of type u_(xt)=F(u, u_x) which describe pseudospherical surfaces. J. Math. Phys. 1990, 31: 1400-407.
    [345] Rabelo M L, Tenenblat K. A classification of p.s.s, equations of type u_t=u_(xxx)+G(u, u_x, u_(xx)). J. Math. Phys., 1992, 33: 537-49.
    [346] Reyes E G. Pseudo-spherical surfaces and integrability Of evolution equations. J. Diff. Eq., 1998, 147(1): 195-230; Erratum: J. Diff. Eq., 1999, 153(1): 223-224.
    [347] Reyes E G. Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces. J. Math. Phys., 2000, 41(5): 2968-2989.
    [348] Reyes E G. Some geometric aspects of integrability of differential equations in two independent variables. Acta Appl. Math., 2000, 64(2-3): 75-109.
    [349] Reyes E G. Integrability of evolution equations and pseudo-spherical surfaces, in: A. Coley, D. Levi, R. Milson, C. Rogers, P. Winternitz (Eds.), Centre de Recherches Math e matiques Proceedings and Lecture Notes, AMS, Providence, 2001.
    [350] Reyes E G. On generalized Backlund transformations for equations describing pseudo-spherical surfaces. Journal of Geometry and Physics, 2003, 45: 368-392.
    [351] Reyes E G. Geometric Integrability of the Camassa-Holm Equation. Letters in Mathematical Physics, 2002, 59: 117-131.
    [352] Rideau G, Winternitz P. Evolution equations invariant under two-dimensional space-time Schrodinger group. J. Math.Phys., 1993, 34: 558-570.
    [353] Rideau G, Winternitz P. Nonlinear equations invariant under the Poincar, similitude and conformal groups in two-dimensional space-time. J. Math.Phys., 1990, 31: 1095-1105.
    
    [354] Sasaki R. Soliton equations and pseudospherical surfaces. Nucl. Phys. B, 1979, 154: 343-357.
    [355] Sophocleous C, Kingston J G. Cyclic symmetries of one-dimensional non-linear wave equations. Int. J. Non-Linear Mech., 1999, 34: 531-543.
    [356] Suhubi E S, Bakkaloglu A. Group properties and similarity solutions for a quasi-linear wave equation in the plane. Int. J. Non-Linear Mech., 1991, 26: 567-584.
    
    [357] Tenenblat K. Transformations of manifolds and applications to differential equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 93. England: Addison-Wesley/Longman, 1998.
    [358] Tian C, Zhang Y J. Backhand transformations for the isospectal and non-isospectral kdV hierarchies. In: C. H. Gu , Y. S. Li, G. Z. Tu, editors. Nonlinear Physics (Reseach Reports in Physics). Berlin, Heidelberg: Springer-Verlag; 1990. p. 35-41.
    [359] Torrisi M, Valenti A. Group properties and invariant solutions for infinitesimal transformations of a nonlinear wave equation. Int. J. Non-Linear Mech., 1985, 20: 135-144.
    [360] Torrisi M and Tracina R. Equivalence transformations and symmetries for a heat conduction model. Int. J. of Non-Linear Mechanics, 1998, 33: 473-87.
    [361] Torrisi M, Tracina R, Valenti A. A group analysis approach for a nonlinear differential system arising in diffusion phenomena. J. Math. Phys., 1996, 37: 4758-67.
    
    [362] Turkowski P. Low-dimensional real Lie algebras, J. Math. Phys., 1988, 29: 2139-2144.
    [363] Turkowski P. Solvable Lie algebras of dimensional six. J. Math. Phys., 1990, 31: 1344-1350.
    [364] Vasilenko O F, Yehorchenko I A. Group classification of multidimensional nonlinear wave equations. Proceedings of Institute of Mathematics of NAS of Ukraine, 2001, 36: 63-66.
    [365] Zhdanov R Z. Conditional Lie-Backlund symmetry and reduction of evolution equation. J. Phys. A., 1995, 28: 3841-3850.
    [366] Zhdanov R Z, Lahno V I. Group classification of heat conductivity equations with a nonlinear source. J. Phys. A.: Math. Gen., 1999, 32: 7405-7418.
    [367] Zhdanov R Z, Fushchych W I. On new representations of Galilei groups. J. Non. Math. Phys., 1997, 4: 426-435.
    
    [368] Zhdanov R Z, Lahno V I. Group classification of the general evolution equation: Local and quasilocal symmetries. SIGMA, 2005, V.1, 009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700