非线性波、符号积分及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以数学机械化思想和导师张鸿庆教授提出的AC=BD理论为指导,借助于符号计算软件Maple,研究了符号积分和微分方程求解中的一些问题:精确波解、有理积分、微分扩张、初等积分、Liouville定理以及Order函数及其在微分方程中的应用.
     第一章介绍数学物理机械化和符号积分相关方面的发展,重点介绍微分方程与计算机代数之间的关系.
     第二章和第三章主要考虑了非线性偏微分方程的精确解.首先介绍了AC=BD模式和C-D对理论.第三章具体研究了这一模式的应用:引入两个相互独立的且含有不同变量的辅助方程,推广了有理展开法.最后举例来展示该方法的有效性,获得了大量的complexiton解.
     第四章介绍符号积分相关的理论,无平方因子分解、Hermite约化、Rothstein-Trager算法以及微分扩张.
     第五章研究Order函数的理论及其应用.利用Order函数求偏微分方程的精确波解.同时,利用Order函数研究了常微分方程的特殊函数解.最后介绍了Liouville定理及其证明.
In this dissertation, under the guidance of mathematical mechanization and the AC=BD theory put forward by Prof. Zhang Hongqing, and by means of symbolic computation software Maple, some topics on symbolic integration and differential equations are studied, including exact solutions, rational integration, differential extension, elementary integration, Liouville Theorem, Order function and its applications to differential equations.
     Chapter 1 is to introduce the related development of mathematical physics mechanization and symbolic integration, emphasizing on the relation between differential equations and computer algebra.
     Chapter 2 and 3 are devoted to investigating exact solutions of nonlinear partial differential equations. Firstly, the basic theories of AC=BD model and C-D pairs are introduced. Then, we illustrate them in Chapter 3. We introduce two independent sub-equations with different variables, and study extended rational expansion method. Finally, illustrative examples of complexiton solutions are exhibited.
     Chapter 4 is to introduce the relative theory of the symbolic integration, including squarefree factorization, Hermite reduction, Rothstein-Trager algorithm and differential extensions.
     In the last chapter, we study basic theory of Order function and its applications. We apply Order function to nonlinear partial differential equations for obtaining many exact solutions, and study the solutions of ordinary differential equations in terms of special functions by Order function. Finally, we introduce the Liouville Theorem and its proof in the paper.
引文
[1]吴文俊.吴文俊论数学机械化.山东:山东教育出版社,1993.
    [2]高小山.数学机械化进展综述.数学进展,2001,30(5):385.
    [3]石赫.机械化数学引论.湖南:湖南教育出版社,1998.
    [4]吴文俊.几何定理机器证明的基本原理,北京,科学出版社,1984.
    [5]Wu W T.On the decision problem and the mechanization of theorem-proving in elementary geometr.Scientia Sinica,1978,21:159-172.
    [6]Wu W T.On the foundation of algebraic differential geometry.MMRP.1989.3.
    [7]Gao X S,Zhang J Z,Chou S C.Geometry Expert(in Chinese),Nine Chapters Pub.Taiwan,1998.
    [8]Chou S C,Gao X S,Zhang J Z.Machine Proofs in geometry.Singapore:World Scientific,1994.
    [9]Chou S C.Automated reasoning in differential geometry and mechanics using the characteristic set method.I.An improved version of Ritt-Wu's decomposition algorithm.J.Auto.Reasoning,1993,10:161-172.
    [10]Wu J Z,Liu Z J.On first-order theorem proving using generalized odd-superpositions Ⅱ.Science in China(Series E),1996,39(6):50-61.
    [11]Shi H.Proceeding 1992,International work Math.Mech.,International Academic,1992:79.MM-Preprints,1997:1.
    [12]张鸿庆.弹性力学方程组一般解的统一理论.大连工学院学报,1978,28(3):23-47.
    [13]张鸿庆.Maxwell方程的多余阶次与恰当解.应用数学和力学,1981,2(3):321-331.
    [14]张鸿庆.线性算子方程组一般解的代数构造.大连工学院学报,1979,3:1-16.
    [15]朝鲁.大连理工大学博士学位论文。1997.
    [16]Fan E G,Zhang H Q.B(a|¨)cklund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water.Appl.Math.Mech.1998,19:713-716.
    [17]Yah Z Y,Zhang H Q.New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equations in shallow water.Phys.Lett.A.2001,285:355-360.
    [18]闫振亚.大连理工大学博士学位论文.2002.
    [19]陈勇.大连理工大学博士学位论文.2003.
    [20]谢福鼎.大连理工大学博士学位论文.2003.
    [21]李彪.大连理工大学博士学位论文.2005.
    [22]梅建琴.大连理工大学博士学位论文.2006.
    [23]焦小玉.大连理工大学硕士学位论文.2005.
    [24]王丹.大连理工大学硕士学位论文.2007.
    [25]孔翠翠.大连理工大学硕士学位论文.2007.
    [26]Russell J S.Report on waves,Fourteen meeting of the British association for the advancement of science,John Murray,London,1844,311-390.
    [27]Boussinesq J.Th(?)orie des ondes et de remous qui se propagent.J.Math.Pure Appl.1972,17:55-108.
    [28]Korteweg D J,deVries G.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves.Phil.Mag.1895,39:422-433.
    [29]Fermi A,Pasta J,Ulam.I.Studies of Nonlinear Problems.Los Alamos Rep.LA,1940,1955.
    [30]Perring J K,Skyrme T H R.A model unified field equation.Nucl.Phys.1962,31:550-555.
    [31]Zabusky N J,Kruskal M D.Interaction of solitons in a collisionless plasma and the recurrence of initial states.Phys.Rev.Lett.,1965,15:240-243.
    [32]B(a|¨)cklund A V.Lund Universitets Arsskrift,1885,10.
    [33]Darboux G.Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences.Pairs,1882,94:1456-1459.
    [34]Wadati M et al.Simple derivation of B(a|¨)cklund transformation from Riccati form of inverse method.Prog.Theor.Phys.,1975,53:1652-1656.
    [35]谷超豪等,孤立子理论中的Darboux变换及其几何应用.上海:上海科技出版社,1999.
    [36]Gu C H.A unified explicit form of B(a|¨)cklund transformations for generalized hierarchies of KdV equations.Lett.Math.Phys.,1986,11:325-335.
    [37]Gu C H,Zhou Z X.On the Darboux matrices of B(a|¨)cklund transformations for AKNS systems.Left.Math.Phys.,1987,13:179-187.
    [38]谷超豪等.孤立子理论与应用.杭州:浙江科技出版社,1990.
    [39]Wahlquist H D,Estabrook F B.B(a|¨)cklund transformations for solitons of the Korteweg-de Vries equation.Phys.Rev.Lett.,1973,31:1386-1390.
    [40]Hu X B,Clarkson P A.B(a|¨)cklund transformations and nonlinear superposition formulae of a differential-difference KdV equation.J.Phys.A.Math.Gen.,1998,31:1405-1414.
    [41]Lou S Yet al.Vortices,circumfluence,symmetry groups and Darboux transformations of the Euler equations,arXiv:nlin.PS/0509039.
    [42]Li Z B,Wang M L.Travelling wave solutions to the two-dimensional KdV-Burgers equation.J.Phys.A,1993,26:6027-6031.
    [43]李志斌,张善卿.非线性波方程准确孤立波解的符号计算.数学物理学报.1997,17(1):81-89.
    [44]范恩贵.可积系统与计算机代数.北京:科技出版社,2004.
    [45]Hirota R.The direct method in soliton theory.New York:Cambridge University Press,2004.
    [46]Hu X B.Rational solutions of integrable equations via nonliear superposition formula.J.Phys.A,1997,30:8225-8240.
    [47]Hu X B,Wu Y T.A new integrable differential-difference system and its explicit solutions.J.Phys.A,1999,32:1515-1521.
    [48]Hu X B,et al.Lax pairs and B(a|¨)cklund transformations for a coupled Ramani equation and its related system.Appl.Math.Lett.,2000,13:45-48.
    [49] Boiti M, et al. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensionals. Inv. Probl., 1986, 2: 271-280.
    [50] Radha R, Lakshmanan M. Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys., 1994, 35:4746-4756.
    [51] Lou S Y. Generalized dromion solutions of the (2+1)-dimensional KdV equation. J. Phys.A, 1995, 28: 7227-7232.
    [52] Zhang JF. Abundant dromion-1 ike structures to the (2+1)-dimensional KdV equation. China.Phys. 2000, 9: 1-4.
    [53] Liu Q P, Hu X B, Zhang M X. Supersymmetric modified Korteweg-de Vries equation: bilinear approach. Nonliearity, 2005, 18: 1579-1603.
    [54] Ning T K, Zhang D J, Chen D Y, Deng S F. Exact solutions and conservation laws for a nonisospectral sine-Gordon equation. Chaos, Solitons and Fractals, 2005, 25: 611-620.
    [55] Zhang D J, Chen D Y. Negatons, positons, rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terras. J. Phys. A: Math Gen 2003, 36: 1-15.
    
    [56] 陈登远.孤子引论.北京:科学出版社, 2006.
    [57] Gardner C S et al. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. ,1967, 19: 1095-1097.
    [58] Lax P D. Integrals of nonliear equations of evolution and solitary waves. Commun. Pure Appl. Math., 1968, 21: 467-490.
    [59] Wadati M. The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn., 1973, 32:1289-1296.
    
    [60] Ablowitz M J, et al. Method for solving the sine-Gordon equation. Phys. Rev. Lett. 1973,30: 1262-1264.
    [61] Wahlquist H D, Estabrook F B. Prolongation structures of nonliear evolution equations.J. Math. Phys., 1975, 16: 1-7.
    [62] Guo H Y, et al. On the prolongation structure of Ernst equation. Commun. Theor. Phys. ,1982, 1: 661-664.
    [63] Guo H Y, Wu K, Wang S K. Prolongation structure, Backlund transformation and principal homogeneous Hilbert problem in general relativity. Commn. Theor. Phys., 1983, 2:883-898.
    [64] Guo H Y, Wu K, Wang S K. Inverse scattering transform and regular Riemann-Hilbert problem.Commun. Theor. Phys., 1983, 2: 1169-1173.
    [65] Wu K, Guo H Y, Wang S K. Prolongation structures of nonliear systems in higher dimensions.Commun. Theor. Phys., 1983, 2: 1425-1437.
    [66]Case K M,Kac M.A discrete version of the inverse scattering problem.J.Math.Phys.,1973,14:594-603.
    [67]Flaschka H.On the Toda lattice.Ⅱ.Inverse-scattering solution.Prog.Theor.Phys.,1974,51:703-716.
    [68]Ablowitz M J,Ladik J F.Nonlinear differential-difference equations.J.Math.Phys.,1975.16:598-603.
    [69]Miura R M.Korteweg-de Vries equation and generalizations.I.A remarkable explicit nonliear transformation.J.Math.Phys.,1968,9:1202-1204.
    [70]Ablowitz M J,et al.A note on Miura's transformation.J.Math.Phys.,1979,20:991-1000.
    [71]Wang M L.Solitary wave solutions for variant Boussinesq equations.Phys.Lett.A,1995,199:169-172.
    [72]hou S Y,Ruan H Y,Huang G X.Exact solitary waves.in a convecting fluid.J.Phys.A,1991,24:L587-L590.
    [73]Conte R,Musette M.Link between solitary waves and projective Riccati equations.J.Phys.A:Math.Gen.,1992,25:5609-5623.
    [74]Liu S K,Fu Z T,Liu S D,Zhao Q.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations.Phys.Lett.A,2001,289:69-74.
    [75]Fan E G.Extended tanh-function method and its applications to nonlinear equations.Phys.Lett.A,.2000,277:212-218.
    [76]Yan C T.A simple transformation for nonliear waves.Phys.Lett.A,1996,224:77-84.
    [77]Yah Z Y,Zhang H Q.New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics.Phys.Lett.A,1999,252:291-296.
    [78]Tian B,Gao Y T.Variable-coefficient balancing-act method and Variable-coefficient KdV equation from fluid dynamics and plasma physics.Eur.Phys.J.B,2001,22:351-360.
    [79]Tian B,Gao Y T.Extension of generalized tanh method and soliton-like solutions for a set of nonliear evolution equations.Chaos,Solitons & Fractals,1997,8:1651-1653.
    [801Gao Y T,Tian B.New families of exact solutions to the integrable dispersive long wave equations in(2+1)-dimensional spaces.J.Phys.A,1996,29:2895-2903.
    [81]Barnett M P,et al.Symbolic calculation in chemistry:Selected examples.Int.J.Quantum Chem.2004,100:80-104.
    [82]张鸿庆.弹性力学方程组一般解的统一理论.大连理工大学学报,1978,18:23-47.
    [83]张鸿庆.解的完备性和逼近性.科学通报,1986,30:342-344.
    [84]张鸿庆,吴方向.一类偏微分方程组的一般解及其在壳体理论中的应用.力学学报,1992,24:700-707.
    [85]张鸿庆,冯红.构造弹性力学位移函数的机械化算法.应用数学和力学,1995,16:315-322.
    [86]张鸿庆.偏微分方程组的一般解与完备性.现代数学与力学.1991,Ⅳ.
    [87]Zhang H Q,Chen Y F.Proceeding of the 3rd ACM,Lanzhou University Press,1998,147.
    [88]Zhang H Q.C-D integrable system and computer aided solver for differential equations.Proceeding of the 5rd ACM,World Scientific Press,2001,221-226.
    [89]Liouville J.Premier m(?)moire sur la d(?)termination des int(?)grations don't la valeur est algebrique.Journal de l'Ecole polytechnique,1883,14:124-148.
    [90]Liouville J.Second m(?)moire sur la d(?)termination des int(?)grations don't la valeur est algebrique.Journal de l'Ecole polytechnique,1883,14:149-193.
    [91]Bronstein M.Symbolic Integration Ⅰ:Transcendental Funcions.Springer-Verlag Berlin Heidelberg,1997,36-38.
    [92]Ostrograsky M W.De l'int(?)gration des fractions rationelles.Bulletin de la Class Physico-Math(?)matiques de l'Acad(?)mie Imp(?)riale des Sciences de St.p(?)tersbourg Ⅳ,1845,145-167,286-300.
    [93]Yun D Y Y.On Square-free Decomposition Algorithms.Proceedings of SYMSAC'76,1976,26-35.
    [94]Hermite E.Sur l'int(?)gration des fractions rationelles,Nouvelles Annales de Math(?)matiques,1872,11:145-148.
    [95]Mack D.On Rational Integration.UCP-38,Dpt.Of Computer Science,University of Utah,1975.
    [96]Horowitz E.Algorithms for partial fraction decompisition and rational function integration.Proceedings of SYMSAC'71,ACM press,1971,441-457.
    [97]Rothstein M.A New Algorithm for the Integration of Exponential and Logarithmic Functions.Proceedings of the 1977 MACSYMA Users Conference,NASA Pub.CP-2012,1977,263-274.
    [98]Trager B M.Algebra Factoring and Rational Function Integration.Proceedings of SYMSAC'76,1976,219-226.
    [99]Lazard D,Rioboo R.Integration of Rational Functions:Rational Computation of the Logarithmic Part.J.Symb.Comput.,1990,9:113-116.
    [100]Ritt J F.Integration in Finite Terms.Columbia University Press,New York,1948.
    [101]Rish R.Further Results on Elementary Functions.Research Report RC-2402,IBM Research,Yorktown Heights,1969.
    [102]Risch R.The Problem of Integration in Finite Terms.Transactions of the American Mathematics Society,1969,139:167-189.
    [103]Risch R.The Solution of Problem of integration in Finite Terms.Bulletin of the American Mathematics Society,1970,76:605-608.
    [104]Davenport J H.The Risch Differential Equation Problems.SIAM Journal on Computing,1986,15:903-918.
    [105]Trager B M.Algebraic Factoring and Rational Function Integration.Proceedings of SYMSAC'76,1976,219-226.
    [106]Bronstein M.A unification of Liouvillian extensions.Applicable Algebra in Engineering,Communication and Computing,1990,1:5-24.
    [107]Bronstein M.The transcendental Risch differential equation.J.Symb.Comput.,1990,9:49-60.
    [108]Bronstein M.On the integration of elementary functions.J.Symb.Comput.,1990,9:117-173.
    [109]Bronstein M.The algebraic Risch differential equation.Proceedings of ISSAC' 91,ACM Press,1991,241-246.
    [110]Singer M F,Saunders B D,Caviness B F.An extension of Liouville's Theorem on Integration in Finite terms.SIAM Journal on Computing,1985,14:965-990.
    [111]Baddoura J.Integration in finite terms with elementary functions and dilogarithms.J.Symb.Comput.,2006,41:909-942.
    [112]Cohen A M,Davenport J H,Heck A J P.An overview of computer algebra.Computer Algebra for Industry.1994,16:1-25.
    [113]Buchberger B,Collins G E,Loos R.Computer Algebra-Symbolic and Algebraic Computation.World Publishing Corporation,Beijing,1988.
    [114]Berlekamp E R.Factoring polynomials over large finite fields.Math.Comput.,1970,24:713-735.
    [115]Lenstra A K.Factoring multivariate polynomials over algebraic number fields.SIAM J.Comput.,1987,16:591-598.
    [116]Lenstra A K,Lenstra H W J,Lovasz L.Factoring polynomials with rational coefficients.Math.Ann.,1982,261:515-534.
    [117]Kaltonfen E.Challenges of Symbolic Computation:My Favorite Open Problemsy.J.Symb.Comput.,2000,29:891-919.
    [118]Shoup V.A new polynomial factorization algorithm and its implementation.J.Symb.Comput.,1995,20:363-397.
    [119]Dyke M V.Computer-extended series.Ann.Rev.Fluid.Mech,1984,16:287-309.
    [120]Zhang H Q.Proceedings of 5th Asian Symposium on Computer Mathematics.World Scientific,Singapore,2001.
    [121]张鸿庆,杨光.变系数偏微分方程组一般解的构造.现代数学与力学,1991,12:135-139.
    [122]范恩贵.大连理工大学博士学位论文.1998.
    [123]张鸿庆.Maxwell方程多余阶次与恰当解.应用数学与力学,1981,2(3):321-331.
    [124]Rosenau P,Hyman M.Compactons:Solitons with finite wavelength.Phys.Rev.Lett.,1993,70:564-567.
    [125]Fan E G.Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled mKdV equation.Phys.Lett.A,2001,282:18-22.
    [126]Wu H Y.On B(a|¨)cklund Transformations for Nonlinear Partial Differential Equations.Math.Anal.Appl.,1995,192:151-179.
    [127]Wu H X,Zeng Y B,Fan T Y.Complexito ns of the modified KdV equation by Darboux transformation.Appl.Math.Comput.,2008,196:501-510.
    [128]Zhang Y,Lv Y N,Ye L Y,Zhao H Q.The exact solutions to the complex KdV equation.Phys.Lett.A,200?,367:465-472.
    [129]Fan E G.Two new application of the homogeneous balance method.Phys.Lett.A,2000,265:353-357.
    [130]Yah Z Y.Approximate Jacobi elliptic function solutions of the modified KdV equation via the decomposition method.Appl.Math.Comput.,2005,166:571-583.
    [131]He J H,Wu X H.Exp-function method for nonliear wave equations.Chaos,Solitons &Fractals,2006,30:700-708.
    [132]Ma W X.Complexiton solutions to the Korteweg-de Vries equation.Phys.Lett.A,2002,301:35-44.
    [133]Wang Z.Many new kinds exact solutions to(2+1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation.Appl.Math.Comput.,2007,186:693-704.
    [134]黄定江.大连理工大学博士学位论文.2007.
    [135]KaYa D.Method for the Two-Dimensional KdV-Burgers Equation.Comput.Math.Appl.,2004,48:1659-1665.
    [136]Bronstein M.Solutions of linear ordinary differential equations in terms of special functions.Proced.Of ISSAC 2002,25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700