压缩感知技术在阵列测向中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,压缩感知理论在信息处理领域得到了广泛的关注。其利用信号的稀疏特性,从少量的信号线性变换的测量值中来恢复具有稀疏特性的目标矢量,大大减少了信号在存储和传输过程中的数据量,具有较大的工程意义。
     传统的压缩感知理论只利用了信号的稀疏特性,并没有对信号做进一步的约束。为了扩展压缩感知理论的应用范围,获得更精确的恢复结果,本文考虑了稀疏信号的非零元素有着更多先验信息情况下的恢复算法及压缩采样矩阵存在误差下的鲁棒恢复算法。之后将其应用到阵列测向中的具体领域,获得了良好的效果。本论文所研究的主要内容及其创新点如下:
     总结了当前压缩感知的基本理论和重要结论,尤其是稀疏向量中的非零元素具有分块稀疏性质时的模型、算法及恢复条件。重点介绍了分块稀疏信号具有总体稀疏局部密集特性时的恢复算法,并提出了一种基于压缩采样匹配追踪算法的改进分块稀疏信号匹配追踪算法。在最后对支撑集进行剔除,对于非零元素没有充满整个子块时表现出良好的鲁棒性。
     考虑到压缩采样矩阵存在工程误差时的影响,提出了抗压缩采样矩阵误差的恢复算法。当压缩采样矩阵受到扰动时,在已知扰动矩阵方差的情况下,推导了其对稀疏恢复中最小二乘逼近的影响。提出了一种自适应的鲁棒算法和一种迭代消减误差的恢复算法,仿真证明这两种算法相对传统算法对压缩采样矩阵受到扰动情况下有着更强的鲁棒性。该研究对压缩感知理论的实用化有着较大的推动作用。
     总结了当前主要的用于阵列测向的压缩感知理论算法,包括其发展历程、适用范围、优缺点及恢复条件。重点介绍了基于混合范数约束的压缩感知理论测向算法,详细介绍了其流程和对比了几种算法的恢复性能,在工程中应根据需要适当选取合适的恢复算法。
     针对分布源在空间上角度扩展表现出来的空间连续分布特性,本论文将分块稀疏恢复算法应用到分布源测向模型中,建立了分布源在空间过完备基下的信号接收模型,提出了基于分块稀疏模型的压缩感知理论测向算法。之后将整体稀疏局部密集的模型扩展到矩阵形式,给出了全新的稀疏模型概念和稀疏度的定义。基于矩阵的分块稀疏模型,使用凸优化算法和贪婪算法对其进行恢复。前者计算量大但恢复性能更好,后者恢复性能在低信噪比下退化严重但计算量较小。两者相对传统算法性能都有所提升,有着各自的优缺点及适用范围。
     压缩采样理论的核心思想之一是压缩采样,其表现为使用信号采样的线性变换值代替原来的采样值。这一思想在波束空间算法中有所体现——即对空间信号进行预波束形成达到减少通道数的目的。本论文详细对比了两种算法的异同,指出了两者各自的优缺点。最后将压缩采样矩阵扰动下的恢复算法进行向量到矩阵的扩展,提出了一种对波束矩阵误差具有鲁棒性的波束域测向算法,使波束域算法更具实用性。
In recent years, compressive sensing theory has received the worldwide attention inthe field of signal processing. Based on this theory, the sparse target vector can berecovered by the few linear transform results of the signals through the application ofthe sparsity of signals. Thus, the data base will be greatly decreased during the storageand transmission of the signals, which makes huge contribution to the electronicengineering domain.
     The traditional compressive sensing theory only focused on the sparsity of signalswithout making further research on the constraint of signals. For the widespreadapplication of this theory and more accurate recovery results, this dissertation proposeda new recovery method with the distribution of the non-zero elements. Another newrecovery method also is proposed to recover the sparse signal under the compressivesampling matrix uncertainty. These methods are applied to the array signal processing toobtain the satisfactory results. The main contents and innovative points of thisdissertation are as follows:
     The dissertation reviewed the most basic theories and the significant academicfruits in the field of the compressive sensing in recent years. Particularly, the model, thealgorithm and the recovery conditions of the sparse vector with the block sparsenon-zero elements are fully studied in this article. Considering the overall sparse localintensive characteristics of the situation of sparse signal, this dissertation proposed therecovery algorithm which is improved by the block matching pursuit algorithm. Theproposed method has good robustness on the condition that non-zero elements fail tofulfill the entire sub-block, since it removed some of the support set at the end of thealgorithm.
     Considering the negative effect caused by the engineering errors in thecompressive sampling matrix, the dissertation proposed a new recovery method tocorrect these engineering errors. When the compressive sampling matrix is disturbed, byknowing the variance of the disturbed matrix, the article made a conclusion on theinfluence of the least square approximation in the sparse recovery. An adaptive robust algorithm and an iterative recovery algorithm will be proposed. The simulation provesthat the two methods, compared with the traditional algorithm, are robust to thecompressive sampling under the disturbance. This research has greatly promoted theapplication of the compressive sampling theory in practice.
     The dissertation summarizes the main development for direction of arrivalestimation through the compressive sensing algorithm, including its developing process,the scope of application, the advantages and disadvantages and recovery conditions. Thecompression perception theory based on mixed norm constraint-finding algorithm willbe highlighted in the dissertation. In addition, the detailed processes and the comparisonof the recovery performance by the several algorithms will be thoroughly analyzed inthis article. In engineering practice, it is essential to select the appropriate recoveryalgorithm based on the real conditions and needs.
     Considering the space continuous distribution of the angular spread out by thedistributed source, the block sparse recovery algorithm is applied to estimate thedirection of the distributed source. It proposed the direction finding algorithm of thecompressive sensing theory based on the block sparse model. The overall sparse localdense model is extended to a matrix form. A brand new concept of sparse model and thedefinition of sparsity will be introduced. Based on the block sparse matrix model, theconvex optimization and greedy algorithm will be applied to estimate the direction ofarrival. The former method has large computation with better recovery performance,while the latter has the serious degradation performance in low SNR but lesscomputation. The traditional algorithm performance has been improved both by thesetwo methods, which has its own advantages and disadvantages and scope of application.
     One of the core concepts of the compressive sampling theory is compressivesampling. The linear transformation value of the signal sampling will replace theoriginal sample values. This concept is reflected in the beam-space algorithm, it meansthat the pre-beam-forming of space signal will achieve the purpose of reducing thenumber of channels. In this dissertation, a detailed comparison of the similarities anddifferences of the two algorithms will be mentioned; both of their advantages anddisadvantages also will be pointed out. Finally, the recovery algorithm under theperturbation of the compressive sampling will be expanded from the vector to thematrix. A beam-space direction finding algorithm with the robustness to the error of beam matrix will be proposed, which makes the beam-space algorithm more practical.
引文
[1] P. Zetterberg, B. Ottersten. The spectrum efficiency of a base station antenna array for spatiallyselective transmission[J]. IEEE Trans. Vehicular Tech.,1995,44(3):651-660
    [2] J. Goldberg, J. Fonollosa. Down link beam forming for spatially distributed sources in cellularmobile communications[J]. Signal Processing,1998,65:181-197
    [3] D. Astely, B. Ottersten, A. Swindlehurst. Generalized array manifold model for wirelesscommunication channels with local scattering[J]. IET Radar Sonar Navig.,1998,145(1):51-57
    [4] Y. Meng, K. Wong, Q. Wu. Estimation of the directions of arrival of spread sources in sensorarray processing[C]. Proceedings of ICSP,1993,10:430-434
    [5] Q. Wu, K. Wong, Y. Meng. DOA Estimation of point and scattered sources Vec-MUSIC[C].IEEE Signal Processing Workshop on SSAP,1994:365-368
    [6] R. Hamza, K. Buckley. An analysis of weighted eigenspace methods in the presence of sensorerrors[J]. IEEE Trans. Signal Procesing,1995,43(5):1140-1150
    [7] F. Li, R. Vaccaro. Sensitivity analysis of DOA estimation algorithms to sensor errors[J]. IEEETrans. AES,1992,28(3):708-717
    [8] A. Swindlehurst, T. Kailath. A performance analysis of subspace based methods in the presenceof model errors, part I: the MUSIC algorithm[J]. IEEE Trans. Signal Processing,1992,40(7):1758-1773
    [9] A. Swindlehurst, T. Kailath. A performance analysis of subspace based methods in the presenceof model errors, part II: multidimensional algorithms[J]. IEEE Trans. Signal Processing,1992,41(9):2882-2890
    [10] B. Friedlander. A sensitivity analysis of the maximum likelihood direction finding algorithm[J].IEEE Trans. AES,1990,26(6):953-968
    [11] J. Paredes, G. Arce. Compressive sensing signal reconstruction by weighted median regressionestimates[J]. IEEE Trans. Signal Processing,2011,59(6):2585-2601.
    [12] S. Ji, Y. Xue, L. Carin. Bayesian compressive sensing[J]. IEEE Trans. Signal Processing,2008,56(6):2346-2356
    [13] J. Wu, F. Liu, L. Jiao, et al. Compressed sensing SAR image reconstruction based on Bayesianframework and evolutionary computation[J]. IEEE Trans. IP,2011,20(7):1904-1911
    [14] E. Candes, J. Romberg, T.Tao. Robust uncertainty principles: exact signal reconstruction fromhighly incomplete Fourier information[J]. IEEE Trans. Information Theory,2006,52(2):489-509
    [15] M. Duarte, M. Davenport, D. Takhar, et a1. Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91
    [16] M. Akcakaya, P. Jinsoo, V. Tarokh. A coding theory approach to noise compressive sensingusing low density frames[J]. IEEE Trans. Signal Processing,2011,59(11):5369-5379
    [17] M. Herman, T. Strohmer. High resolution radar via compressive sensing[J]. IEEE Trans. SignalProcessing,2009,57(6):2275-2284
    [18] D. Mackenzie. Compressed sensing makes every pixel count[J]. What's Happening in theMathematical Sciences,2009,35-56
    [19] M. Unser. Sampling:50years after Shannon[J]. Proceedings IEEE2000,88:569-587
    [20] M. Vetterli, P. Marziliano, T. Blu. Sampling signals with finite rate of innovation[J]. IEEETrans. Signal Processing,2002,50(6):1417-1428
    [21] T. Blu, P. Dragotti, M. Vetterli, et. al. Sparse sampling of signal innovations: Theory,algorithms, and performance bounds[J]. IEEE Signal Processing Magazine,2008,25(2):31-40
    [22] V. Tan, V. Goyal. Estimating signals with finite rate of innovation from noisy samples: Astochastic algorithm[J]. IEEE Trans. Signal Processing,2008,56(10):5135-5146
    [23] P. Dragotti, M. Vetterli, T. Blu. Sampling moments and reconstructing signals of finite rate ofinnovation: Shannon meets strang fix[J]. IEEE Trans. Signal Processing,2007,55(5):1741-1757
    [24] R. Baraniuk, E. Candes, M. Elad, et al. Applications of sparse representation and compressivesensing[J]. Proceedings of the IEEE,2010,1-5
    [25] S. Kay, S. Marple. Spectrum analysis: a modern perspective[J]. Proceedings of the IEEE1981,1-4
    [26] J. Capon. High resolution frequency wavenumber spectrum analysis.[J] Proceedings of IEEE1969,57(8):1408-1418
    [27] J. Burg. Maximum entropy spectral analysis[C]. Proceedings of the37th meeting of the AnnualInt. SEG Meeting, Oklahoma City,1967,22-46
    [28] R. Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. AP1986,34(3):276-280
    [29] R. Roy, T. Kailath. ESPRIT: estimation of signal parameters via rotational invariancetechniques[J]. IEEE Trans. ASSP,1989,37(7):984-995
    [30] P. Stoica, A. Nehorai. MUSIC, Maximum likelihood, and Cramer Rao bound[C]. InProceedings ICASSP,1988,2296-2299
    [31] B. Ottersten, M. Viberg, P. Stoica. et al. Exact and large sample ML techniques for parameterestimation and detection in array processing[C]. In Haykin, Litva, and shepherd, editors, Radararray processing, Berlin,1993,99-151
    [32] J. Cadzow. A high resolution direction of arrival algorithm for narrow band coherent andincoherent sources[J]. IEEE Trans. ASSP,1988,36(7):965-979
    [33] H. Krim, M. Viberg. Two decades of array signal processing research[J]. IEEE SignalProcessing magazine,1996,13(4):67-94
    [34] I. Ziskind, M. Wax. Maximum likelihood localization of multiple sources by alternatingprojection[J]. IEEE Trans. ASSP,1988,36(10):1553-1559
    [35] J. Fuchs. On the application of the global matched filter to DOA estimation with uniformcircular arrays[J]. IEEE Trans. Signal Processing,2001,49(4):702-709
    [36] D. Malioutov, C. Mujdat, A. Willsky. A sparse signal reconstruction perspective for sourcelocalization with sensor arrays[J]. IEEE Trans. Signal Processing,2005,53(8):3010-3022
    [37] A. Gurbuz, J. McClellan. A compressive beamforming method[C]. IEEE ICASSP,2008,2617-2620
    [38] M. Hyder, K. Mahata. Direction of arrival estimation using a mixedl2,0-normapproximation[J]. IEEE Trans. Signal Processing,2010,58(9):4646-4655
    [39] Y. Wang, G. Leus, A. Pandharipande. Direction estimation using compressive sampling arrayprocessing[C]. IEEE15th Workshop on Sta. Signal Processing,2009,626-629
    [40] J. Yin, T. Chen. Direction of arrival estimation using a sparse representation of array covariancevectors[J]. IEEE Trans. Signal Processing,2011,59(9):4489-4493
    [41] X. Xu, X. Wei, Z. Ye. DOA estimation based on sparse signal recovery utilizing weighted l1norm penalty[J]. IEEE Signal Processing Letters,2012,19(3):155-158
    [42] J. Kim, O. Lee, J. Ye. Compressive MUSIC: revisiting the link between compressive sensingand array signal processing[J]. IEEE Trans. Information Theory,2012,58(1):278-301
    [43] R. Walden. Analog to digital converter survey and analysis[J]. IEEE Journal on Selected Areasin Communications,1999,17(4):539-550
    [44] D. Tse, P. Viswanath. Fundamentals of wireless communication[M]. New York: CambridgeUniversity Press,2005,1-28
    [45] S. Vorobyov, A. Gershman, Z. Lu, et al. Nonlinear estimation for linear inverse problems witherror in the operator[J]. Annals of Statistics,2008,36(1):310-336
    [46] J. Brodie, I. Daubechies, C. Mol, et al. Sparse and stable Markowitz portfolios[M]. EcoreDiscussion paper,2007,1-28
    [47] V. Goyal, A. Fletcher, S. Rangan, Compressive sampling and lossy comprehension[J]. IEEESignal Processing Magazine,2008,25(2):48-56
    [48] M. Hoffman, M. Reiss. Nonlinear estimation for linear inverse problems with error in theoperator[J]. Annals of Statistics,2008,36(1):310-336
    [49]刘翼鹏.基于凸优化的参数化稀疏估计理论及其应用[D].成都:电子科技大学,2011,36-46
    [50] M. Rosenbaum, A. Tsybakov. Sparse recovery under matrix uncertainty[J]. The Annals ofStatistics2010,38(5):2620-2651
    [51] Y. Chi, L. Scharf, A. Pezeshki, et al. Sensitivity to basis mismatch in compressed sensing[J].IEEE Trans. Signal Processing,2011,59(5):2182-2195
    [52] T. Jantti. The influence of the extended sources on the theoretical performance of MUSIC andESPRIT method: narrow-band sources[C]. Proceedings of ICASSP, San Francisco,1992,3:429-432
    [53] D. Astely, B. Ottersten. The effect of local scattering on direction of arrival estimation withMUSIC and ESPRIT[C].ICASSP,1998,5:3333-3336
    [54] D. Donoho,X. Huo. Uncertainty principles and ideal atomic decomposition[J]. IEEE Trans.Information Theory,2001,47(7):2845-2862
    [55] D. Donoho, Y. Tsaig, I. Drori, et al. Sparse solutions of underdetermined linear equations bystage wise orthogonal matching pursuit.2006[OL]. Available: http://www.stat.stanford.edu/~donoho/Reports/2006/StOMP-20060403.pdf
    [56] E. Candes, T. Tao. Decoding by linear programming[J]. IEEE Trans. Information Theory,2005,51(12):4203-4215
    [57] E. Candes, J. Romberg, T. Tao. Robust uncertainty principles: Exact signal reconstruction fromhighly incomplete frequency information[J]. IEEE Trans. Information Theory,2006,52(2):489–509
    [58] E. Candes, J. Romberg. Sparsity and incoherence in compressive sampling[J]. Inverse problems,2007,23:969-969
    [59] E. Candes. The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9-10):589-592
    [60] M. Davenport, M. Wakin. Analysis of orthogonal matching pursuit using the restricted isometryproperty[J]. IEEE Trans. Information Theory,2010,56(9):4395-4401
    [61] J. Tropp, A. Gilbert. Signal recovery from random measurements via orthogonal matchingpursuit[J]. IEEE Trans. Information Theory,2007,53(12):4655-4666
    [62] R. Baraniuk, M. Davenport, R. DeVore, et al. A simple proof of the restricted isometry propertyfor random matrices[J]. Construct. Approx.,2008,28(3):253-263
    [63] M. Raginsky, R. Willett, Z. Harmany, et al. Compressed sensing performance bounds underPoisson noise[J]. IEEE Trans. Signal Processing,2010,58(8):3990-4002
    [64] J. Wang, B. Shim. Exact reconstruction of sparse signals via generalized orthogonal matchingpursuit[C]. In Proceedings Asilomar Conference Signals, Syst., Comput.,2011,1139-1142
    [65] K. Gao, S. Batalama, D. Pados, et al. Compressive sampling with generalized polygons[J].IEEE Trans. Signal Processing,2011,59(10):4759-4766
    [66] M. Khajehnejad, A. Dimakis, W. Xu, et al. Sparse recovery of nonnegative signals withminimal expansion[J]. IEEE Trans. Signal Processing,2011,59(1):196-208
    [67] S. Mallat. A wavelet tour of signal processing: the sparse way[M]. Massachusetts, United States:Academic Press,2008,113-158
    [68] J. Haupt, R. Nowak. Signal reconstruction from noisy random projections[J]. IEEE Trans.Information Theory,2006,52(9):4036-4048
    [69] E. Candes, M. Wakin. An introduction to compressive sampling. IEEE Signal ProcessingMagazine[J],2008,25(2):21-30
    [70] R. Baraniuk. Compressive sensing[J]. IEEE Signal Processing Magazine,2007,24(4):118-121
    [71] S. Chen, D. Donoho. Basis pursuit[C]. Conference Record of the Twenty-Eighth AslomarConference on Signals, Systems and Computers,1994,1:41-44
    [72] S. Chen, D. Donoho, M. Saunders. Atomic decomposition by basis pursuit[J], SIAM Journal onScientific Computing,1999,20(1):33-61
    [73] D. Donoho, M. Elad, V. Temlyakov. Stable recovery of sparse overcomplete representations inthe presence of noise[J]. IEEE Trans. Information Theory,2006,52(1):6-18
    [74] E. Candes, T. Tao. The Dantzig selector: statistical estimation when p is much larger than n[J].Annals of Statistics,2007,35(6):2313-2351
    [75] D. Needell, R.Vershynin. Signal recovery from incomplete and inaccurate measurements viaregularized orthogonal matching pursuit[J]. IEEE J. Sel. Topics Signal Processing,2010,4(2):310-316
    [76] W. Dai, O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Trans. Information Theory, vol.55, no.5, pp.2230-2249, May2009
    [77] D. Needell, J. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccuratesamples[J]. Appl. Harmon. Anal.,2009,26(3):301-321
    [78] S. Boyd, L. Vandenberghe. Convex optimization[M]. New York: Cambridge University Press,2004,56-112
    [79] M. Grant, S. Boy and Y. Ye. Cvx user’ guide for cvx version1.1[OL]. accessible at http://www.Stanford.edu/~boyd/index.html
    [80] J. Sturm. Using sedumi1.02, amatlab toolbox for optimization over symmetric cones[J].Optimization Methods and Software,1999,11(12):625-653
    [81] J. Lofberg. Yalmip: Softwave for solving convex (and nonconvex) optimization problems[C].Processdings of American Control Conference, Minneapolis, MN, USA2006
    [82] E. Candes. L1-MAGIC[OL]. accessible at http://www.acm.caltech.edu/l1magic
    [83] J. Wang, S. Kwon, B. Shim. Generalized orthogonal matching pursuit[J]. IEEE Trans. SignalProcessing,2012,60(12):1343-1357
    [84] E. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccuratemeasurements[J]. Communications on Pure and Applied Mathematics,2006,59(8):1207-1223
    [85] J. Wang, B. Shim, On recovery limit of orthogonal matching pursuit using restricted isometryproperty[J]. IEEE Trans. Signal Processing,2012,60(9):4973-4976
    [86] M. Mishali, Y. Eldar. Blind multi-band signal reconstruction: compressed sensing for analogsignals[J]. IEEE Trans. Signal Processing,2009,57(3):993-1009
    [87] M. Mishali, Y. Eldar. From theory to practice: Sub-Nyquist sampling of sparse widebandanalog signals[J]. IEEE J. Sel. Topics Signal Processing,2009,4(2):375-391
    [88] Y. Eldar, M. Mishali. Robust recovery of signals from a structured union of subspaces[J]. IEEETrans. Information Theory,2009,55(11):5302-5316
    [89] S. Cotter, B. Rao, K. Engan, et al. Sparse solutions to linear inverse problems with multiplemeasurement vectors[J]. IEEE Trans. Signal Processing,2005,53(7):2477-2488
    [90] J. Chen, X. Huo. Theoretical results on sparse representations of multiple measurementvectors[J]. IEEE Trans. Signal Processing,2006,54(12):4634-4643
    [91] M. Mishali, Y. Eldar. Reduce and boost: rcovering arbitrary sets of jointly sparse vectors[J].IEEE Trans. Signal Processing,2008,56(10):4692-4702
    [92] Y. Eldar, H. Rauhut. Average case analysis of multichannel sparse recovery using convexrelaxation[J]. IEEE Trans. Information Theory,2010,56(1):505-519
    [93] Y. Eldar, M. Mishali. Block sparsity and sampling over a union of subspaces[C]. Proceedings16th Int. Conference Digital Signal Processing, Jul.2009,1-8
    [94] Y. Eldar, P. Kuppinger, H. Bolcskei. Block sparse signals: uncertainty relations and efficientrecovery[J]. IEEE Trans. Signal Processing,2010,58(6):435-448
    [95] S. Meier, P. Bhlmann. The group lasso for logistic regression[J]. Journal of the Royal StatisticalSociety: Series B,2008,70:53-71
    [96] Y. Nardi, A. Rinaldo. On the asymptotic properties of the group lasso estimator for linearmodels[J]. Electronic Journal of Statistics,2008,2:605-633
    [97] H. Liu, J. Zhang. On the estimation consistency of the group lasso and its applications[C].Twelfth International Conference on Artificial Intelligence and Statistics,2009,3:476-481
    [98] X. Lv, G. Bi, C. Wan. The group lasso for stable recovery of block-sparse signalrepresentations[J]. IEEE Trans. Signal Processing,2011,59(4):1371-1382
    [99] R. Gribonval, M. Nielsen. Sparse representations in unions of bases[J]. IEEE Trans.Information Theory,2003,49(12):3320-3325
    [100] X. Lv, C. Wan, G. Bi. Block orthogonal greedy algorithm for stable recovery of block-sparsesignal representations[J]. Signal Processing,2010,90(12):3265-3277
    [101] R. Baraniuk, V. Cevher, M. Duarte, et al. Model based compressive sensing[J]. IEEE Trans.Information Theory,2010,56(4):1982-2001
    [102] M. Mishali, Y. Eldar. Blind multi-band signal reconstruction: compressed sensing for analogsignals[J]. IEEE Trans. Signal Processing,2009,57(3):993-1009
    [103] M. Mishali, Y. Eldar. From theory to practice: Sub-Nyquist sampling of sparse widebandanalog signals[J]. IEEE J. Sel. Topics Signal Processing,2009,4(2):375-391
    [104] H. Landau. Necessary density conditions for sampling and interpolation of certain entirefunctions[J]. Acta Math.,1967,117(1):37-52
    [105] G. Sprechmann, I. Ramirez, Y. Eldar. Collaborative hierarchical sparse modeling[C].44thAnnual Conference on Information Sciences and Systems.2010,1:1-6
    [106] Z. Tian, G, Giannakis. Compressed sensing for wideband cognitive radios[C]. InternationalConference on Acoustics, Speech, and Signal Processing,2007,4:1357-1360
    [107] Z. Tian, E. Blasch, W. Li, et al. Performance evaluation of distributed compressed widebandsensing for cognitive radio networks[C]. Proceedings of the ISIF/IEEE InternationalConference on Information Fusion,2008,1:1-8
    [108] J. Elsner, M. Braun, H. Jakel, et al. Compressed spectrum estimation for cognitive radios[J].Proceedings of19th Virginia Tech Symposium on Wireless Communications, Blacksburg,2009,1:1-4
    [109] Y. Wang, A. Pandharipande, Y. Polo, et al. Distributed compressive wide band spectrumsensing[J]. IEEE Proceedings of Information Theory Application.2009,1:1-4
    [110] Y. Polo, Y. Wang, A. Pandharipande, et al. Compressive wideband spectrum sensing[C].International Conference on Acoustics, Speech, and Signal Processing,2009,00:2337-2340
    [111] J. Friedmann,R. Raieh, J. Goldberg. Bearing estimation for a distributed source of noncontactmodulus bounds and analysis[J]. IEEE Trans. Signal Processing,2003,51(12):5413-5425
    [112] Y. Meng, K. Wong, Q. Wu. Direction finding for point and spread sources: Vec-MUSIC andits performance[C]. ICASSP,1996,5:2908-2911
    [113] A. Samadi, S. Gazor. Parametric estimation of ocean waves using distributed sourcemodeling[C]. OCEANS98Conference Proceedings,1998,1:162-166
    [114] A. Chambolle, P. Lions. Image recovery via total variation minimization and relatedproblems[J], Numerische Mathematic,1997,76:167-188
    [115] R. Horn, C. Johnson. Matrix analysis[M]. New York, NY: Cambridge Press,1985,1-35
    [116] H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis[J]. Journal ofComputational and Graphical Statistics,2006,15:265-286
    [117] B. Moghaddam, Y. Weiss, S. Avidan, Spectral bounds for sparse PCA: exact and greedyalgorithms[J]. Advances in Neural Information Processing Systems,2006,18:915-922
    [118] E. Candes, T. Tao. Decoding by linear programming[J]. IEEE Trans. Information Theory,2005,51(12):4203-4215
    [119] M. Duarte, M. Davenport, M. Wakin, et al. Sparse signal detection from incoherentprojections[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2006,44(1):33-37
    [120] J. Haupt, R. Castro, R. Nowak, et. al. Compressive sampling for signal classification[C].Asilomar Conference on Signals, Systems, and Computers,2006,57(4):1247-1252
    [121] M. Davenport, P. Boufounos, M. Wakin, et al. Signal processing with compressivemeasurements[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):445-460
    [122] D. Wipf, B. Rao. Sparse bayesian learning for basis selection[J]. IEEE Trans. SignalProcessing,2004,52:2153-2164
    [123] S. Babacan, R. Molina, A. Katsaggelos. Bayesian compressive sensing using Laplace priors[J].IEEE Trans. IP,2010,19(1):53-64
    [124] M. Lustig, D. Donoho, J. Pauly. Sparse MRI: The application of compressed sensing for rapidMR imaging[J]. Magnetic Resonance in Medicine,2007,58(6):1182-1195
    [125] M. Sheikh, S. Sarvotham, O. Milenkovic, et al. DNA array decoding from nonlinearmeasurements by belief propagation[C]. IEEE Workshop on Statistical Signal Processing,2007,4:15-22
    [126] T. Lin, F. Herrmann. Compressed wave field extrapolation[J]. Geophysics2007,72(5):77-93
    [127] R. Baraniuk, P. Steeghs. Compressive radar imaging[C]. IEEE Radar Conference, Waltham,Massachusetts,2007,44:453-458
    [128] W. Bajwa, J. Haupt, A. Ayeed, et al. Compressive wireless sensing[C]. InternationalConference on Information Processing in Sensor Networks,2006,38:2138-2143
    [129] W. Bajwa, J. Haupt, A. Sayeed, et al. Compressed channel sensing: A new approach toestimating sparse multipath channels[J]. Proceedings of IEEE,2010,98(6):1058-10765
    [130] T. Wang, R. Tao, P. Wei, A robust sparse signal recovery method with matrix uncertain byusingl2-norm[J]. Accepted
    [131] T. Wang, R. Tao, P. Wei. Sparse signal recovery with measurement matrix uncertainty[J].Journal of Information and Computational Science,2012,9(10):2731-27388
    [132] J. Kraus, R. Marhefka. Antenna: for all applications[M]. McGraw-Hill,2002,36-64
    [133] R. Gray, L. Davisson. An introduction to statistical signal processing[M]. CambridgeUniversity Press,2004,24-56
    [134] T. Song. Fundamentals of probability and statistics for engineers[M]. John Wiley&Sons Ltd,New York,2004,1-65
    [135] S. Kay. Modern spectral estimation: theory and application, Englewood Cliffs[M] NJ: PrenticeHall,1988,1-23
    [136] P. Stoica. R. Moses, Introduction to spectral analysis. Englewood Cliffs[M] NJ: Prentice-Hall,1997.22-26
    [137] R. Ash. Information Theory[M]. John Wiley&Sons,1965,1-13
    [138] S. Haykin. Adaptive Filter Theory. Englewood Cliffs[M] NJ: Prentice Hall,2002,1-15
    [139] G. Casella, R. Berger. Statistical inference[M]. Pacific Grove, CA: Wadsworth/brooks Cole,1990,22-35
    [140] P. Pedregal. Introduction to optimization[M]. Springer Verlag, New York,2004,22-35
    [141] J. Hamilton. Time series analysis[M]. Princeton University Press,1994,25-96
    [142] T. Anderson. An introduction to multivariate statistical analysis[M]. John Wiley&Sons,1984,1-25
    [143] B. Y. University, Methods of multivariate analysis[M]. John Wiley&Sons,2002,1-18
    [144] C. Meyer, Matrix analysis and applied linear algebra[M]. SIAM,2000,1-13
    [145] T. Jantti. The influence of the extended sources on the theoretical Performance of MUSIC andESPRIT method: narrow-band sources[C]. Proceedings of ICASSP, San Francisco,1992,3:429-432
    [146] S. Haykin. Adaptive radar signal processing[M]. John Wiley&Sons,2007,1-28
    [147] Special issue on underwater acoustic signal processing[J]. IEEE J. Oceanic Eng.,1987,10-14
    [148] L. Godara. Application of antenna arrays to mobile communications, part II: beam-formingand direction-of-arrival considerations[J]. Proceedings IEEE,1997,85(8):1195-1245
    [149] L. Godara. Smart antennas[M]. CRC Press, Boca Raton, Florida,2004,1-22
    [150] F. Gross. Smart antenna for wireless communications[M]. McGraw-Hill Companies, Inc.2005,1-16
    [151] A. Mileant, S. Hinedi. Overview of arraying techniques in the deep space network[R]. TDAProgress Report, March1991,42-104
    [152] T. Yamazaki, B. Dijk, H. Spekreijse. The accuracy of localizing equivalent dipoles and thespatio temporal correlations of background EEG[J]. IEEE Trans. Biomed. Eng.,1998,45:1114-1121
    [153] J. Capon. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings IEEE,1969:1408-1418.
    [154] D. Adamy. EW102: a second course in electronic warfare[M]. Horizon house publications, Inc.2004,1-36
    [155] R. Schmidt. A signal subspace approach to multiple emitter location and spectralestimation[D]. Ph.D. Dissertation, Stanford University,1982,36-52
    [156] M. Duarte, S. Sarvotham, D. Baron, et al. Distributed compressed sensing of jointly sparsesingals[C]. In Asilomar Conference Signals, Sys., Comput.,2005,1537-1541
    [157] H. Krim, M. Viberg, Two decades of array signal processing research: the parametricapproach[J]. IEEE Signal Processing Magazine,1996,13(4):67-94
    [158] K. Pruessmann, M. Weiger, M. Scheidegger, et al. SENSE: sensitivity encoding for fastMRI[J]. Magn. Res. in Med.,1999,42(5):952-962
    [159] A. Joshi, W. Bangerth, K. Hwang, et al. Fully adaptive FEM based fluorescence opticaltomography from time dependent measurements with area illumination and detection[J]. Med.Phys.,2006,33:1299-1304
    [160] O. Lee, J. Kim, Y. Bresler, et al. Compressive diffuse optical tomography: non-iterative exactreconstruction using joint sparsity[J]. IEEE Trans. Med. Imag.,2011,30(5):1129-1142
    [161] J. Tropp, A. Gilbert, M. Strauss. Algorithms for simultaneous sparse approximation. Part I:Greedy pursuit[J]. Signal Processing,2006,86(3):572-588
    [162] D. Malioutov, M. Cetin, A. Willsky. A sparse signal reconstruction perspective for sourcelocalization with sensor arrays[J]. IEEE Trans. Signal Processing,2005,53(8):3010-3022
    [163] J. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation[J].Signal Processing,2006,86(3):589-602
    [164] S. Cotter, B. Rao, K. Engan, et al. Sparse solutions to linear inverse problems with multiplemeasurement vectors[J]. IEEE Trans. Signal Processing,2005,53(7):2477-2489
    [165] D. Wipf. Bayesian methods for finding sparse representations[D]. PhD. dissertation, Univ. ofCalifornia, San Diego,2006,63-78
    [166] J. Chen, X. Huo. Theoretical results on sparse representations of multiple measurementvectors[J]. IEEE Trans. Signal Processing,2006,54(12):4634-4643
    [167] P. Feng. Universal minimum rate sampling and spectrum blind reconstruction for MultibandSignals[D]. Ph.D. dissertation, Univ. of Illinois, Urbana-Champaign,1997,49-61
    [168] B. Ottersten, P. Stoica, R. Roy. Covariance matching estimation techniques for array signalprocessing applications[J]. Digit. Signal Processing,1998,8:185-210
    [169] S. Boyd. Lecture notes for EE364B: convex optimization II2007[OL]. Available:http://www.stanford.edu/class/ee364b/
    [170] E. Candes, M. Wakin, S. Boyd. Enhancing sparsity by reweightedl1minimization[J]. J.Fourier Anal. Applicat.,2008,14(5-6):877-9056
    [171] D. Harvill. Matrix algebra from a statistician’s perspective. Springer Verlag New York,1997
    [172] S. Valaee, B. Champagne, P. Kabal. Parametric localization of distributed sources[J]. IEEETrans. Signal Processing,1995,43(9):2144-2153
    [173] Y. Lee, J. Choi, I. Song, et al. Distributed sources modeling and direction of arrival estimationtechniques[J]. IEEE Trans. Signal Processing,1997,4(45):960-969
    [174] D. Astely, B. Ottersten. The effects of local scattering on direction of arrival estimation withMUSIC[J]. IEEE Trans. Signal Processing,1999,47(12):3220-3234
    [175] R. Raich, J. Goldberg, H. Messer. Localization of a distributed source which is partiallycoherent modeling and Cramer-Rao bounds[C]. ICASSP,1999,5:2941-2944
    [176] R. Raich, J. Goldberg, H. Messer. Bearing estimation for a distributed source: Modeling,inherent accuracy limitations and algorithms[J]. IEEE Trans. Signal Processing,2000,48(2):429-441
    [177] M. Bengtsson, B. Ottersten. Low complexity estimation for distributed sources[R]. SignalProcessing Technical Report IR-S3-9721, Signal, Sensors, Systems Department, RoyalInstitute of Technology, Stockholm, Sweden, October,1997
    [178] M. Bengtsson, B. Ottersten. Rooting techniques for estimation of angular spread with anantenna array[C]. Vehicular Technology Conference,1997,2:1158-1162
    [179] M. Bengtsson, B. Ottersten. Low complexity estimation for distributed sources[J]. IEEE Trans.Signal Processing,2000,48(8):2185-2194
    [180] M. Bengtsson. Antenna array processing for high rank data models[D]. Ph.D. dissertation,Royal Institute of Technology, Stockholm, Sweden,1999,24-36
    [181] S. Liu, Q. Wan, Y. Peng. A robust bearing estimator based on Jacobi-Anger expansion forlarge angular spread source[C]. IEEE Sensor Array and Multichannel Signal ProcessingWorkshop, August,2002:499-502
    [182]刘申建.空间分布源波达方向估计及其性能分析研究[D].北京:清华大学,2003,23-36
    [183] S. Kikuchi, H. Tsuji, A. Sano. Direction of arrival estimation for spatially non-symmetricdistributed sources[C]. IEEE Sensor Array and Multichannel Signal Processing Workshop,2004:589-593
    [184]李强,李志舜.一种新的非相干分布源模型及方位估计方法[J].声学技术,2007,26(5):910-914
    [185]李强.分布源目标方位估计研究[D].西安:西北工业大学,2007,22-34
    [186] S. Lee, I. Song, Y. Lee, et al. Estimation of distributed elevation and azimuth angles usinglinear arrays[J]. MILCOM, Virginia, USA,1996:868-872
    [187] S. Lee, I. Song, Y. Lee, et al. Estimation of two dimensional DOA under a distributed modeland some simulations results[J]. IEICE Trans. Fundamentals,1996,79(9):1475-1485
    [188] J. Lee, C. Lee, J. Chun, et al. Joint estimation of the space time distributed signalsparameters[J]. Processing of IEEE VTC,2000:822-828
    [189] J. Lee, P. Wilkinson, A. Manikas. Blind multiuser vector channel estimation for space timedistributed signals[C]. Processing of IEEE ICASSP,2000,5:3061-3064
    [190] M. Ghogho, T. Durrani. Broadband direction of arrival estimation in presence of angularspread[J]. Electronics Letters,2001,37(15):986-987
    [191] G. Fuks, J. Goldberg, H. Messor. Bearing estimation in a Ricean channel Part1: inherentaccuracy limitations[J]. IEEE Trans. Signal Processing,2001,49(5):925-937
    [192]熊维族,叶中付.极化分布源模型及角度估计[J].数据采集与处理,2003,18(3):243-248
    [193] Y. Lee, S. Lee, T. Chang, et al. An analysis of DOA estimation method under a dispersivesignal model[C]. ICCSP,1995:351-354
    [194] J. Tabrikian, H. Messer. Robust localization of scattered sources[C]. IEEE Workshop onStatistical Signal and Array Processing,2000:453-457
    [195] T. Wang, Lu Gan, Ping Wei, et al. DOA estimation of coherently distributed sources based onblock sparse constraint with measurement matrix uncertainty[J]. IEICE ELEX. Accepted
    [196] P. Stoica, P. Babu, J. Li, SPICE: a sparse covariance-based estimation method for arrayprocessing[J]. IEEE Trans. Signal Processing,2011,59(2):629-638
    [197] L. GAN, X.Q. WANG, H.S. LIAO, DOA estimation of coherently distributed sources basedon block sparse constraint[J]. IEICE Trans. Commun.,2012,95(7):34-40
    [198] Q. Wu, K. M. Wong. DOA estimation of point and scattered sources Vec-MUSIC[C].IEEE/SP7th Workshop on,2004,5:356-360
    [199] E. Fishler, A. Haimovich, R. Blum, et al. Spatial diversity in radars models and detectionperformance[J]. IEEE Trans. Signal Processing,2006,54(3):823-837
    [200] W. Gabriel. Using spectral estimation technique in adaptive processing antenna system[J].IEEE Trans. AP,1986,34(3):291-300
    [201] J. Mayhan. Spatial spectral estimation using multiple beam antennas[J]. IEEE Trans. AP,1987,35(8):897-906
    [202] H. Lee, M. Wengrovitz. Resolution threshold of beamspace MUSIC for two closely spacedemitters[J]. IEEE Trans. ASSP,1990,38(9):1545-1559
    [203] S. Silverstein, M. Zoltowski. The mathematical basis for element and fourier beam spaceMUSIC and Root MUSIC algorithms[J]. Digital Signal Processing,1991,1(4):1-15
    [204] P. Stoica, A. Nehorai. Comparative performance study of the element space and beam spaceMUSIC estimators[J]. Circuits Signal Processing,1991,10(3):285-292
    [205] M. Zoltowski. G. Kautz. S. Silverstein. Beamspace root-MUSIC[J]. IEEE trans. on SignalProcessing,1993,41(1):344-364
    [206] X. Xu, K. Buckley. An analysis of beam space source localization[J]. IEEE Trans. SignalProcessing,1993,41(1):501-504
    [207] F. Li, H. Liu. Statistical analysis of beam space estimation for direction of arrivals[J]. IEEETrans. Signal Processing,1994,42(3):604-610
    [208] A. Weiss, B. Friedlander. Effects of modeling errors on the resolution threshold of the MUSICalgorithm[J]. IEEE Trans. Signal Processing,1994,42(6):1519-1526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700