基于多视图的三维景物重建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的不断发展,利用计算机视觉自动获取景物的三维信息已在社会生产、生活的各个方面显示出越来越重要的地位和作用。由于多幅图像包含更多的景物信息,扩大了视场范围,因此利用多幅图像进行三维重建可以完成单幅视图无法完成或难以完成的工作,且基于多视图的三维重建具有成本低廉、操作方便、实现简单等优点,已经成为计算机视觉研究领域热点之一。
     基于多视图的三维景物重建研究包括特征点提取与匹配、基本矩阵估计、摄像机自标定、三维景物重建、表面稠密化重建等多项技术。本文将对基本矩阵估计、摄像机自标定、三维景物重建等关键技术进行重点研究,主要研究内容如下:
     (1)基本矩阵估计
     为了提高基本矩阵估计精度,提出了一种基于改进MLESAC算法的基本矩阵估计方法。该方法首先根据对极距离值选择对极距离小的原始数据,采用RANSAC算法剔除错误匹配点,再用LM算法最小化Sampson误差来估计基本矩阵的初始值;根据获得的对极几何关系,附加约束条件检验匹配集,以便进一步提高匹配集的精度;最后,利用MLESAC算法对新的匹配集进行迭代求解,从而得到精确的基本矩阵。实验结果表明,该方法大大提高了估计精度,稳定性也比较好。
     (2)摄像机自标定
     针对传统的摄像机自标定方法精度低的问题,提出了一种基于GA-PSO算法的摄像机自标定方法。该方法首先通过对基本矩阵进行奇异值分解,得到简化的Kruppa方程,建立基于Kruppa方程的优化代价函数;然后通过利用GA-PSO算法求优化代价函数的最小值来完成摄像机自标定过程。由于GA-PSO算法将遗传算法和粒子群算法进行了融合和优势互补,所以可以提高计算精度。实验结果表明,该自标定方法可以大大提高自标定的精度。
     (3)三维景物重建
     针对传统的L。范数重建方法精度低、对局外点敏感以及效率低等问题,提出一种基于L1与空间点分类(简称‘‘L1-SPC”)的三维景物重建方法。首先采用L1方法剔除局外点。剔除局外点可以提高重建精度,且由于在后面的三维重建过程中不用对局外点的数据进行三维重建计算,因此减少了计算时间。再将空间点分为两视图可见空间点和多视图可见空间点两类。对第一类空间点采用高精度的最优三角形法进行重建,第二类空间点则采用改进的L∞范数方法进行重建。改进的L。范数方法可以不断调整二分搜索的上下界,减少了迭代次数,提高了计算效率。实验结果表明,基于L1-SPC方法的三维景物重建方法精度高,效率也较高。
     (4)三维景物中平表面重建
     针对使用传统的三维景物重建方法用于三维景物中平表面重建而出现的精度低等问题,提出了两种基于多视图的三维景物中平表面重建模型:基于最小化反投影误差的平表面重建重建模型和基于最小化转移误差的平表面重建重建模型。第一种模型利用反投影线应与空间平面相交且交于一点,从而将误差转移到空间平面上进行最小化反投影误差:第二种模型利用二维空间平面与二维图像平面之间的单应转移关系,从而将误差转移到空间平面上最小化转移误差。这两种模型都采用智能算法(GA算法)进行优化求解,从而获得平表面重建结果。实际上,两种平表面重建方法的基本原理相同,只是计算复杂度不同。实验结果表明,两种平表面重建方法的精度基本一致,而平表面重建的精度大大提高。
     论文最后作了总结,阐述了本研究课题的创新点及主要研究成果,并对课题中需要改进之处和有待提高的地方提出了展望。
As the developing of computer technologies, obtaining realistic3D scene information automatically plays more and more important role in our social production and life. Because multiple view contain more information and expand the scope of the field, so3D reconstruction based on multiple view can complete the work which a single view can not complete or complete difficultly.3D reconstruction based on multiple view is a hotspot research aspect in computer vision fields since it is inexpensive, convenient and simpler.
     There are many key techniques of3D reconstruction based on multiple view such as feature detection and matching, fundamental matrix estimation, camera self-calibration,3D scene reconstruction, dense surface reconstruction and so on. The thesis is focused on fundamental matrix estimation, camera self-calibration and3D scene reconstruction. The main research work are as follows:
     (1) Fundamental matrix estimation
     In order to improve the accuracy of fundamental matrix estimation, an improved MLESAC algorithm is proposed. Firstly, according to the distances between the matching points and the corresponding epipolar lines, the superior correspondences are chosen, random sample consensus is adopted to sample the superior correspondences, and then the initial fundamental matrix is obtained using the Levenberg-Marquardt algorithm to minimize Sampson error; Secondly, according to the epipoplar geometry and adding constraints to detect matching points set, then the accuracy of matching points set is further improved; Finally, the accurate fundamental matrix is computed iteratively by using MLESAC. Experimental results show that the accuracy of our algorithm is improved, and the stability is good too.
     (2) Camera self-calibration
     In order to improve the accuracy of camera self-calibration. We propose a camera self-calibration method based on GA-PSO Algorithm. Firstly, the simplified Kruppa equations based on the SVD of the fundamental matrix is converted into the optimized cost function. Secondly, the minimum value of the optimized cost function is calculated by GA-PSO, then the intrinsic parameters of the camera are obtained. Because the GA-PSO algorithm combines with the advantages of genetic algorithm and particle swarm optimization, the accuracy of computation is improved. The experimental results show that the accuracy of camera self-calibration is improved.
     (3)3D scene reconstruction
     In view of the problems such as low accuracy of traditional reconstruction method by minimizing L∞norm, being sensitive to outliers and low efficiency,3D scene reconstruction based on L, and space point classification(marked as" L1-SPC") is presented. Firstly, L1approach is used to remove the outliers. Because we don't need to calculate the outliers in the following3D reconstruction, the accuracy of reconstruction can be improved and the computation time is reduced. Secondly, the scene points are divided into the two classes, the first class is the scene points which are visible in two-view; the second class is the scene points which are visible in more than two-view. The optimal triangulation method is used for the first class; The improved L∞-norm method is used for the second class. The gap between the upper and lower bound of bisection is kept as small as possible in the improved L∞-norm method, so the computation time is decreased. The experimental results show that the3D reconstruction based on L1-SPC method is higher accuracy and more efficient.
     (4)3D scene plane reconstruction
     In view of the problems such as low accuracy of3D scene plane reconstruction by using tranditional3D reconstruction method,3D scene plane reconstruction of two new model based on multiple view are presented. One is the model of scene plane reconstruction based on minimizing the reverse projection error, the other is the model of scene plane reconstruction based on minimizing the transfer error. The first model considering the knowledge that the reverse projection lines not only intersect but also meet in a scene plane, so minimizing the reverse projection error in the scene plane. The second model uses the transfer relation between the image plane and the scene plane, so minimizing the transfer error in the scene plane. At last, the optimized value is computed by GA. The basic principle of two methods is same, and the difference between them is the computational complexity. The experimental results show that the accuracy of two methods is almost same and the accurancy of3D scene plane reconstruction is improved greatly.
     At the end of this dissertation, the main research is summarized. It makes out the main innovations and research achievements, and also points out the problems and issues which need to further research.
引文
[1]张广军.机器视觉[M].北京:科学出版社,2005
    [2]R. Hartley, F. Kahl. Optimal algorithms in multiview geometry[C]. Proceedings of Asian Conference on Computer Vision, Tokyo, Japan,2007:13-34
    [3]M. Pollefeys, R. Koch, L. V. Gool. Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters[J]. International Journal of Computer Vision,1999,32(1):7-25
    [4]M. Pollefeys, R. Koch. Visual modeling with a hand-held camera[J]. International Journal of Computer Vision,2004,59(3):207-232
    [5]R Hartley, A Zisserman. Multiple view geometry in computer vision[M]. Cambridge: Cambridge University Press,2003
    [6]N. Snavely, S. M. Seitz, R. Szeliski. Photo tourism:exploring photo collections in 3D[C]. Proceedings of SIGGRAPH Conference, NewYork, USA,2006,835-846
    [7]N. Snavely, S. M. Seitz, R. Szeliski. Modeling the world from internet photo collections[J]. Intemational Journal of Computer vision,2008,80(2):189-210
    [8]S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, New York, USA,2006,1:519-526
    [9]J. S. Franco, E. Boyer. Efficient polyhedral modeling from silhouettes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(3):414-427
    [10]K. J. Yoon, E. Prados, P. Sturm. Generic scene recovery using multiple images[C]. Proceedings of International Conference on Scale and Variational Methods in Computer Vision, Voss, Norway,2009:1-12
    [11]R. P. Horaud, M. Niskanen, G. Dewaele, et al. Human motion tracking by registering an articulated surface to 3D points and normals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(1):158-164
    [12]H. Jin, D. Cremers, D. Wang, et al.3D reconstruction of shaded objects from multiple images under unknown illumination[J]. International Journal of Computer Vision,2008,76(3):245-256
    [13]C. Olsson. Global optimization and approximation algorithms in computer vision [D]. Lund:Lund University,2007
    [14]C. Olsson. Global optimization in computer vision:convexity, cuts and approximation algorithms[D]. Lund:Lund University,2009
    [15]O. Enqvist. Robust algorithms for multiple view geometry:outliers and optimality[D]. Lund:Lund University,2011
    [16]S. M. Khan. Multi-view approaches to tracking,3D reconstruction and object class detection[D]. Florida:University of Central Florida,2008
    [17]S. M. Khan, P. Yan, M. Shah. A homographic framework for the fusion of multi-view silhouettes[C]. Proceedings of IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil,2007:1-8
    [18]S. N. Sinha, M. Pollefeys. Multi-view reconstruction using photo-consistency and exact silhouette constrains:a maximum-flow formulation[C]. Proceedings of IEEE 10th International Conference on Computer Vision, Beijing, China,2005:349-356
    [19]H. Jin, S. Soatto, A. Yezzi. Multi-view stereo reconstruction of dense shape and complex appearance[J]. International Journal of Computer Vision, 2005,63(3): 175-189
    [20]N. D. F. Campbell, G. Vogiatzis, C. Hernandez, et al. Automatic 3D object segmentation in multiple views using volumetric graph-cuts[J]. Image and Vision Computing,2010,28(1):14-25
    [21]N. D. F. Campbell, G. Vogiatzis, C. Hernandez, et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[C]. Proceedings of the 10th European Conference on Computer Vision. Marseille, France,2008:766-779
    [22]Y. Furukawa, J. Ponce. Accurate camera calibration from multi-view stereo and bundle adjustment[J]. International Journal of Computer Vision,2009,84(3): 257-268
    [23]S. Agarwal, Y. Furukawa, N. Snavely, et al. Building rome in a day [J]. Communications of the ACM,2011,54(4):105-112
    [24]G. Zeng, S. Paris, L. Quan, et al. Progressive surface reconstruction from images using a local prior[C]. Proceedings of IEEE 10th International Conference on Computer Vision, Beijing, China,2005,2:1230-1237
    [25]R. Deng, G. Zeng, R. Gan. Image-based building reconstruction with manhattan-world assumption[C]. Proceedings of Asian Conference on Pattern Recognition, Beijing, China,2011:1-11
    [26]祝海江.三维重建和摄像机标定技术研究[D].北京:中国科学院自动化研究所,2004
    [27]王光辉.基于图像的测量及三维重建研究[D].北京:中国科学院自动化研究所,2004
    [28]陈付幸.基于非定标图像序列的三维重建关键技术研究[D].长沙:国防科学技术大学,2005
    [29]方磊.基于特征的图像序列三维场景重建技术研究[D].武汉:华中科技大学,2007
    [30]徐帆.无组织多视图图像的自动三维场景重建[D].武汉:华中科技大学,2007
    [31]田文.多视图图像的快速三维场景重建[D].武汉:华中科技大学,2010
    [32]朱清波.序列图像三维重建方法研究[D].武汉:华中科技大学,2010
    [33]张柳新.多摄像机三维重建技术与应用[D].北京:北京理工大学,2010
    [34]赵颜利.计算机视觉三维重建若干技术研究[D].南京:南京理工大学,2007
    [35]栾广宇.基于多幅图像的建筑物三维重建关键技术研究[D].哈尔滨:哈尔滨工业大学,2009
    [36]程邦胜,唐孝威.Harris尺度不变性关键点检测子的研究[J].浙江大学学报(工学版),2009,43(5):855-859
    [37]D. G. Lowe. Object recognition from local scale-invariant features[C]. Proceedings of International Conference on Computer Vision, Washington, USA,1999: 1150-1157
    [38]D. G. Lowe. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110
    [39]张洁玉.图像局部不变特征提取与匹配及应用研究[D].南京:南京理工大学,2010
    [40]陈梦婷,闫冬梅,王刚.基于Harris角点和SIFT描述符的高分辨率遥感影像匹配算法[J].中国图象图形学报,2012,17(11):1453-1459
    [41]曾丹,史浩,张琦.多相似内容图像的特征匹配[J].计算机辅助设计与图形学学报,2011,23(10):1725-1733
    [42]熊英,马惠敏.3维物体SIFT特征的提取与应用[J].中国图象图形学报,2010,15(5):814-819
    [43]R. Hartley. In defense of the eight-point algorithm[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(6):580-593
    [44]P. H. S. Torr, D. W. Murroy. The development and comparison of robust methods for estimating the fundamental matrix[J]. International Journal of Computer Vision, 1997,24(3):271-300
    [45]S. Brandt. Maximum likelihood robust regression by mixture models[J]. Journal of Mathematical Imaging and Vision,2006,25(1):25-48
    [46]X. Armangue, J. Salvi. Overall view regarding fundamental matrix estimation [J]. Image and Vision Computing,2003,21:205-220
    [47]W. Chojnacki, M. J. Brooks, A. V. D. Hengel, et al. On the fitting of surfaces to data with co variances [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1-10
    [48]陈泽志,吴成柯.一种高精度估计的基础矩阵的线性算法[J].软件学报,2002,13(4):840-845
    [49]陈付幸,王润生.基础矩阵估计的聚类分析算法[J].计算机辅助设计与图形报,2005,17(10):2251-2256
    [50]段春梅.基于多视图的三维模型重建方法研究[D].山东:山东大学,2009
    [51]向长波,刘太辉,宋建中.基本矩阵的鲁棒贪心估计算法[J].计算机辅助设计与图形学学报,2007,19(5):651-655
    [52]姚达,周军,薛质.计算机视觉中强鲁棒性的遗传一致性估计[J].计算机工程,2011,37(20):183-185
    [53]徐玮,张茂军,王炜等.基于群体智能的基础矩阵估计算法[J].系统仿真学报,2008,20(22):6205-6208
    [54]刘坤,葛俊锋,罗予频等.概率引导的随机采样一致性算法[J].计算机辅助设 计与图形学学报,2009,21(5):657-662
    [55]K. Kanatani, Y. Sugaya. Compact fundamental matrix computation[J]. IPSJ Transactions on Computer Vision and Applications,2010,2:59-70
    [56]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,29(1):110-124
    [57]黄凤荣,孙凤梅,胡占义.基于条件数的摄像机自标定方法的鲁棒性分析[J].自动化学报,2006,32(3):337-344
    [58]M. Agrawal, L. S. Davis. Camera calibration using spheres:a semi-definite programming approach[C]. Proceedings of IEEE 9th International Conference on Computer Vision, Nice, France,2003,2:782-789
    [59]I. Ihrke, L. Ahrenberg, M. Magnor. External camera calibration for synchronized multi-video systems[J]. Journal of WSCG,2004:537-544
    [60]X. Chen, J. Davis, P. Slusallek. Wide area camera calibration using virtual calibration objects[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA,2000,2:520-527
    [61]M. Branislav, P. Tomas. Para-catadioptric camera auto-calibration from epipolar geometry[C]. Proceedings of Asian Conference on Computer Vision, Paris, France 2004,2:748-753
    [62]Y. Guo, F. Zheng, X. H. Xu. An analytic solution of a linear camera self-calibration[C]. Proceedings of the 6th world Congress on Intelligent Control and Automation, Dalian, China,2006,2:9930-9934
    [63]W. Anthony, R Gerhard. Estimating intrinsic camera parameters from the fundamental matrix using an evolutionary approach[J]. EURASIP Journal on Applied Signal Processing,2004,8:1113-1124
    [64]郭秋艳,刘鹏飞,安平等.基于遗传算法的摄像机自标定方法[J].中国图象图形学报,2006,11(11):1712-1715
    [65]D. Nister. Untwisting a projective reconstruction[J]. International Journal of Computer Vision,2004,60(2):165-183
    [66]M. Chandraker, S. Agarwal, F. Kahl. Autocalibration via rank-constrained estimation of the absolute quadric[C]. Proceedigns of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA,2007:1-8
    [67]S. B. Heinrich, W. E. Snyder, J-M. Frahm. Maximum likelihood autocalibration[J]. Image and Vision Computing,2011,29:653-665
    [68]R. Gherardi, A. Fusiello. Practical autocalibration[C]. Proceedings of the 11th European Conference on Computer vision, Berlin Heidelberg, Germany,2010: 790-801
    [69]W. Triggs, P. F. McLauchlan, R. Hartley, et al. Bundle adjustment for structure from motion [J]. In Vision Algorithms:Theory and Practice,2000:298-372
    [70]R. Hartley, P. Sturm. Triangulation[J].Computer Vision and Image Understanding. 1997,68(2):146-157
    [71]K. Kanatani, Y. Sugaya, H. Niitsuma. Triangulation from two views revisited: Hartley-Sturm vs. optimal correction[C]. Proceedings of 19th British Machine Vision Conference, Leeds, UK,2008:173-182
    [72]P. Lindstrom. Triangulation made easy[C]. Proceedings of IEEE Conference Computer Vision Pattern Recognition, San Fransico, USA,2010:1554-1561
    [73]T. Tossavainen. Approximate and SQP two view triangulation[C]. Proceedings of 10th Asian Conference Computer Vision, Queenstown, New Zealand,2010,3: 1303-1316
    [74]H. Stewenius, F. Scha□alitzky, D.Nister. How hard is three-view triangulation really?[C]. Proceedings of IEEE 10th International Conference on Computer Vision, Washington, USA,2005:686-693
    [75]C. Olsson, F. Kahl, R. Hartley. Projective least-squares:global solutions with local optimization[C]. Proceedings of IEEE Conference on Computer Vision a nd Pattern Recognition. Miami, USA,2009:1216-1223
    [76]R. Hartley, F. Kahl, C. Olsson, et al. Verifying globle minima for L2 minimization problems in multiple view geometry[J]. International Journal of Computer Vision, 2013,101(2):288-304
    [77]F. Kahl. Multiple view geometry and the L-infinity norm[C]. Proceedings of IEEE 10th International Conference on Computer Vision, Beijing, China,2005: 1002-1009
    [78]S. Agarwal, N. Snavely, S. M. Seitz. Fast algorithms for L-infinity problems in multiview geometry[C]. Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA,2008:24-26
    [79]C. Olsson, A. P. Eriksson, F. Kahl. Efficient optimization for L-infinity problems using pseudoconvexity[C]. Proceedings of IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil,2007:1-8
    [80]K. Kanatani, H. Niitsuma. Optimal two-view planar scene triangulation[J]. Transactions on Computer Vision and Applications,2011,3:67-69
    [81]E. Mouragnon, M. Lhuillier, M. Dhome. Generic and real-time structure from motion using local bundle adjustment[J]. Image and Vision Computing,2009,27(8): 1178-1193
    [82]F. C. Wu, Q. Zhang, Z. Y. Hu. Efficient suboptimal solutions to the optimal triangulation[J]. International Journal of Computer Vision,2011,91(1):77-106
    [83]G. Graber, T. Pock, H. Bischof. Online 3D reconstruction using convex optimization[C]. Proceedings of IEEE 13th International Conference on Computer Vision Workshops,2011:708-711
    [84]J-D. Durou, M. Falcone, M. Sagona. Numerical methods for shape-from-shading:a new survey with benchmarks[J]. Computer Vision and Image Understanding,2008, 109(1):22-43
    [85]E, Boyer, J.S. Franco. A hybrid approach for computing visual hulls of complex objects[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, USA,2003,1:695-701
    [86]R. Koch, M. Pollefeys, L. V. Gool. Realisitic surface reconstruction of 3D scenes from uncalibrated image sequences[J]. Journal of Visualization and Computer Animation,2000,11(3):115-127
    [87]R. Koch, J. F. Evers-Senne, J. M. Frahm, et al.3D reconstruction and rendering from image sequences[C]. Proceedings of Workshop on Image Analysis for Multimedia Interactive Services, Montreux, Switzerland,2005:593-600
    [88]C. Zach, M. Sorman, K Karner. High-performance multi-view reconstruction[C]. Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, North Carolina, USA,2006:113-120
    [89]M. Sormann, C. Zach, J. Bauer. Watertight multi-view reconstruction based on volumetric graph-cuts[C]. Proceedings of Scandinavian Conference on Image Analysis, Aalborg, Demark,2007:393-402
    [90]M. Lhuillier, L. Quan. A quasi-dense approach to surface reconstruction from uncalibrated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):1-16
    [91]M. Goesele, B. Curless, S. M. Seitz. Multi-view stereo revisited[C]. Proceedings of IEEE Computer Vision and Pattern Recognition, New York, USA,2006,2: 2402-2409
    [92]Y. Furukawa, J. Ponce. Dense 3D motion capture for human faces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Florida, USA, 2009:1674-1681
    [93]C. Olsson, Y. Boykov. Curvature-based regularization for surface approximation[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA,2012:1576-1583
    [94]马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京:科学出版社,2003
    [95]J. Salvi, C. Matabosch, D. Fofi, et al. A review of recent registration methods with accuracy evalution[J]. Image and Vision Computing,2007,25(5):578-596
    [96]B. Zitova, J. Flusser. Image registration methods:a survey[J]. Image and Vision Computing,2003,21(11):977-1000
    [97]A. Rav-Acha, Y. Pritch, D. Lischinski, et al. Dynamosaicing mosaicing of dynamic scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007, 29(10):1789-1801
    [98]张鸿燕,李托拓,耿征.彩色图像的单应矩阵估计算法[J].中国图象图形学报,2011,16(2):287-292
    [99]K. Kanatani, H. Niitsuma. High accuracy homography computation without iterations[J]. Memoirs of The Faculty of Engineering,2010,44:50-59
    [100]孙凤梅,胡占义.平面单应矩阵对摄像机内参数约束的一些性质[J].计算机辅 助设计与图形学学报,2007,19(5):647-650
    [101]K. Nordberg. The key to three-view geometry[J]. International Journal of Computer Vision,2011,94:282-294
    [102]K. Nordberg. A minimal parameterization of the trifocal tensor[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA,2009: 1224-1230
    [103]Y. Ma, J. Kosecka, K. Huang. Rank deficiency condition of the multiple view matrix for mixed point and line features[C]. Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, Australia,2002:338-341
    [104]方磊,王宏远,徐帆等.可并行迭代式图像序列射影重建策略[J].计算机工程,2008,34(9):16-21
    [105]P. H. S. Torr, A. Zisserman. MLESAC:a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding,2000, 78(1):138-156
    [106]B. J. Tordoff, D. W. Murray. Guided-MLESAC:faster image transform estimation by using matching priors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1523-1535
    [107]李静,杨宜民,张学习.一种改进的MLESAC基本矩阵估计算法[J].计算机工程,2012,38(19):214-217
    [108]J. Matas, O. Chum. Randomized RANSAC with Td,d test[J]. Image and Vision Computing,2004,22(10):837-842
    [109]O. Chum, J. Matas. Optimal randomized RANSAC[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(8):1472-1482
    [110]W. Zhang, J Kosecka. Generalized RANSAC framework for relaxed correspondence problems[C]. Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, North Carolina, USA, 2006:854-860
    [111]P. Chen. Why not use the Levenberg-Marquardt method for fundamental matrix estimation[J]. IET Computer Vision,2010,4(4):286-294
    [112]J. Li, Y. M. Yang, G. P. Fu. Camera self-calibration method based on GA-PSO algorithm[C].2011 IEEE International Conference on Cloud Computing and Intelligence Systems, Beijing, China,2011:149-152
    [113]吴福朝.计算机视觉中的数学方法[M].北京:科学出版社,2011
    [114]杨淑莹,张桦.群体智能与仿生计算——Matlab技术实现[M].北京:电子工业出版社,2012
    [115]曾建潮,介婧,崔志华.微粒子群算法[M].北京:科学出版社,2004
    [116]C. Olsson, F. Kahl, M. Oskarsson. Branch and bound methods for euclidean registration problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(5):783-794
    [117]F. F. Lu, R. Hartley. A fast optimal algorithm for L2 triangulation[C]. Proceedings of Asian Conference on Computer Vision, Berlin Heidelberg, Germany,2007: 279-288
    [118]F. Kahl, S. Agarwal, M. K. Chandraker, et al. Practical global optimization for multiview geometry[J]. International Journal of Computer Vision,2008,79(3): 271-284
    [119]F. Kahl, R. Hartley. Multiple-view geometry under the L-infinity norm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(9):1603-1617
    [120]Y. Seo, R. Hartley. Sequential L-infinity norm minimization for triangulation[C]. Proceedings of Asian Conference on Computer Vision, Tokyo, Japan,2007,4844: 322-331
    [121]李静,杨宜民,付根平等.基于L1与空间点分类的三维场景重建[J].中国图象图形学报,2013,18(3):227-282
    [122]R. Hartley, F. Schaffalitzky. L-infinity minimization in geometric reconstruction problems[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, USA,2004:504-509
    [123]Q. Ke, T. Kanada. Quasiconvex optimization for robust geometric reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10): 1834-1847
    [124]H. Lee, Y. Seo, S. W. Lee. Removing outliers by minimizing the sum of infeasibilities[J]. Image and Vision Computing,2010,28:881-889
    [125]Y. Seo, H. Lee, S. W. Lee. Outlier removal by convex optimization for L-infinity approaches[C]. Proceedings of the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, Berlin Heidelberg, Germany,2009:203-214
    [126]C. Olsson, A. Eriksson, R. Hartley. Outlier removal using duality[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA,2010:1450-1457
    [127]K. Sim, R Hartley. Removing outliers using the L-infinity norm[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, NewYork, USA, 2006:485-494
    [128]J. Yu, A. Eriksson, T. J. Chin, et al. An adversarial optimization approach to efficient outlier removal[C]. Proceedings of IEEE 13th International Conference on Computer Vision, Barcelona, Spain,2011:399-406
    [129]O. Chum, T. Pajdla, P. Sturm. The geometric error for homographies[J]. Computer Vision and Image Understanding,2002,97(1):86-102
    [130]C. Olsson, A. Eriksson. Triangulating a plane[C]. Proceedings of Scandinavian Conference on Image Analysis, Berlin Heidelberg, Germany,2011:13-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700