聚合物驱提高原油采收率的动态规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱作为一种重要的三次采油技术,因其技术简便,适应性好,是我国工业化应用最成功的三次采油技术。但聚合物价格昂贵,且注入时间长,见效期相对滞后,因此制定一种科学合理的聚合物注入策略,以提高经济效益,是十分必要的。本文基于动态规划方法研究了聚合物驱的注采方案的优化设计。
     在聚合物驱动态规划问题中,以原油开采获得的净现值最大为性能指标,以描述聚合物驱替动态过程的渗流力学方程为支配方程,并根据生产实际需要考虑聚合物最大用量约束和聚合物注入浓度的上下限约束。因此聚合物驱动态规划问题可具体描述为一个带有状态和控制不等式约束的聚合物驱分布参数系统动态规划问题。
     针对固定终端时间,且带有不等式约束的动态规划问题,提出了一种基于迭代动态规划的数值求解算法,将聚合物驱注采过程从时间和空间两个角度进行离散,利用迭代的方式补偿离散化带来的误差,有效地避免了复杂的伴随方程的求解。计算实例表明了迭代动态规划求解聚合物驱动态规划问题的有效性。
     针对终端时间自由,以及优化注入浓度及段塞大小的聚合物驱动态规划问题,提出了一种级长可变的迭代动态规划数值求解算法,能够同时优化控制量和分级长度,给出了最优聚合物驱注入浓度、段塞大小以及终端时间的动态规划算例。
     针对聚合物驱油过程中油价变化波动较大的问题,建立了动态规划模型。采用自回归模型对原油价格进行预测,并给出了油价变化下的二次聚合物驱方案优化的迭代动态规划数值求解算法。
     对于聚合物驱大规模动态优化问题,采用迭代动态规划计算量较大,为提高计算效率,构建了基于Windows的并行计算平台,以MPI函数的消息传递机制为基础,构建了基于PC机群的迭代动态规划粗粒度主从式并行算法。采用该平台,研究了聚合物驱迭代动态规划算法的并行化问题,计算实例表明并行求解结果与串行一致,而且可以大大提高计算效率。
     以胜利油田利21区块的聚合物驱动态规划问题为例,进行实例研究,以验证所提出的迭代动态规划方法的有效性。针对各井相同单段塞方案、各井相同三段塞方案及各井不同三段塞方案,分别采用所提出的迭代动态规划方法求解,获得了净现值、增油量及采油率,并对不同方案的优化结果进行了比较。
Polymer flooding is an important tertiary oil recovery technology. Because of its convenient and wide adaptability, it has become the most successful enhance oil recovery technology in the industrial applications of our country. But the polymer flooding technology also has drawbacks: high polymer price, long inject time, and lagged effective period. So it is necessary to formulate a reasonable polymer flooding inject strategy. In this paper, based on the dynamic programming method, the optimal polymer inject strategy is researched.
     In the polymer flooding dynamic programming problem, the maximum of net present value (NPV) is selected as the performance index. The fluid flow equations of polymer flooding act as governing equations. According to the requirement of industrial applications, the maximum polymer usage and bound constraints of polymer injecting concentrations are considered. Thus the researched problem can be described as a dynamic programming problem governed by a polymer flooding distributed parameter system with state and control constrains.
     An iterative dynamic programming based numerical algorithm is illustrated to deal with dynamic programming problems with fixed terminal time and inequality constraints. The discretization of the polymer flooding process is done from time and spaces domains. And the error of the discretization is compensated by the iterative approach, thus the solving of the complicated adjoint equations can be avoided. Several numerical examples show the effectiveness of iterative dynamic programming algorithm for solving dynamic programming problems.
     An iterative dynamic programming with variable stages based numerical algorithm is presented to deal with dynamic programming problems with free terminal time. The controlled variables and the stage lengths can be optimized at the same time. Several dynamic programming examples for polymer flooding are given, in which polymer injection concentration, slug size and terminal time are optimized simultaneously.
     Considering the stochastic process of the oil price, a dynamic programming model is established related to an autoregressive model for predicting the oil price in future. And an iterative dynamic programming based numerical algorithm is given to solve the optimization problem of secondary polymer flooding.
     For large-scale dynamic optimization problem of polymer flooding, when iterative dynamic programming algorithm is used, there will be a high computation cost. In order to improve the computing efficiency, a parallel computing platform based on Windows is developed. A coarse-grained master-slave parallel iterative dynamic programming algorithm based on Message Passing Interface (MPI) and Cluster of PC is realized. Using this, the parallelization of iterative dynamic programming algorithm for polymer flooding is completed. Several numerical examples show the effectiveness of parallel algorithm.
     To show the effectiveness of the dynamic programming approach, the polymer flooding optimization problem of the Li21 block of the Shengli Oil Field is studied. The dynamic programming based injection strategies are made for one same slug case, three same slugs case, and three different slugs case respectively. Corresponding to each strategy, the net price value, the cumulative oil production and the recovery ratio are also obtained. The comparisons of the results with different strategies are also given.
引文
[1] Aronofsky J S, Lee A S. A Linear Programming Model for Scheduling Crude Oil Production [J]. Petroleum Technol. 1958(1): 51-54.
    [2] Leon Lasdon et al. Optimal Hydrocarbon Reservoir Production Policies. Operat ions Research, 1986,34 (1) : 40-54.
    [3]葛家理,赵立彦.成组气田开发最优规划及决策.油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [4] James W Mcfarland, Leon Lasdon et al. Development Planning and Management of Petroleum Reservoirs Using TankModel and Nonlinear Programming. Operations Research, 1984, 32: 270-289.
    [5] Wackowski R K et al. Applying Rigorous Decision Analysis Methodology to Optimization of a Tertiary Recovery Project: Rangely Weber Sand Unit, Colorado. SPE24234, 1992.
    [6]李泽农,陈德泉等.油田开发规划优选模型研究.油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [7]齐与峰,朱国金.注水开发油田稳产规划自适应模型.油气田开发系统工程方法专辑(二).北京:石油工业出版社, 1991.
    [8] Raphael Amit. Petroleum Reservoir Exploitation: Switching from Primary to Secondary Recovery. Operations Research, 1986, 34 (4) : 534-549.
    [9]齐与峰,李力.油田开发总体设计最优控制模型.油气田开发工程方法专辑(二).北京:石油工业出版社, 1991.
    [10]戴家权,王勇,冯恩民.油气资源勘探与开发的不确定性分析及最优控制策略[J].系统工程理论与实践, 2004,(1):35-40.
    [11] [美] W.F.拉米雷.三次采用最优控制理论的应用[M].周显民,田保成译.黑龙江科学技术出版社. 1990.
    [12] W.FRED RAMIREZ. Application of optimal control to enhanced oil recovery [M]. Elsevier - Amsterdam– Oxford–New York–Tokyo, 1987.
    [13] W. Fred Ramirez, Zohreh Fathi, Jean Luc Cagnol. Optimal Injection Policies for Enhanced Oil Recovery: Part l - Theory and Computational Strategies [J]. Society of Petroleum Engineers Journal. June: 328-332, 1984 SPE (11285).
    [14] Zohreh Fathi, W. Fred Ramirez. Optimal Injection Policies for Enhanced Oil Recovery: Part 2–Surfactant Flooding [J]. Society of Petroleum Engineers Journal, June: 333-341, 1984, SPE (12814).
    [15] Fathi, Z., and Ramirez, W.F. Uses of Optimal Control Theory for ComputingOptimal Injection Policies for Enhanced Oil Recovery [J], Automatic, 1985, 22(1): 33-42.
    [16] Jeffrey H. Harwell, Robert Schechter, William H. Wade. Optimal Injection Strategies for the Propagation of Surfactant Mixtures through Porous Media [J]. Society of Petroleum Engineers Journal, Oct, 1984:545-554.
    [17] W. Fred Ramirez, Patrick J. Shuler, Francois Friedman. Convection, Dispersion, and Adsorption of Surfactants in Porous Media [J]. Society of Petroleum Engineers Journal, Dec, 1980: 430-438.
    [18]叶继根,吴向红.油气藏三维三相组分模型软件研制与应用.计算物理. 2000, 17(5):548-552.
    [19]叶继根,齐与峰,方义生.应用最优控制理论研究凝析气田循环注气开发决策.计算物理, 1998, 15(1):71-76.
    [20]刘昌贵.注气提高石油采收率最优控制的理论、方法和实现:[博士学位论文],西南石油学院, 2002.
    [21] Brouwer D.R. and Jansen J.D.,“Dynamic optimization of water flooding with smart sells using optimal control theory,”paper SPE 78278 presented at the SPE 13th European Petroleum Conference, Aberdeen, Scotland, U.K., 29–31 October 2002.
    [22] Brouwer D.R.,Dynamic Water Flood Optimization with Smart Wells using Optimal Control Theory. Delft: Technische Universiteit Delft, 2004.
    [23] Sarma P. , Aziz K. and Durlofsky L.J.,“Implementation of adjoint solution for optimal control of smart wells,”paper SPE 92864 presented at the 2005 SPE Reservoir Simulaiton Symposium, Houston, Texas, U.S.A., 31, January 2005- 2, February 2005.
    [24] Sarma P., Chen W.H.,Durlofsky L.J. and Aziz K.,“Production optimization with adjoint models under nonlinear control-state path inequality constraints,”paper SPE 99959 presented at the 2006 SPE Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 11-13 April 2006.
    [25] S. Effati, M. Janfada, M. Esmaeili and H. Roohparvar. Solving of optimal control problem of parabolic PDEs in exploitation of oil by iterative dynamic programming. Applied Mathematics and Computation, 2006,18(2):1505-1512.
    [26]老大中.变分法基础[M].北京:国防工业出版社, 2004.
    [27] George Leitann. The Calculus of Variations and Optimal Control [M]. New York: Plenum Press, 1981.
    [28]解学书.最优控制理论与应用[M].北京:清华大学出版社, 1986.
    [29]吴沧浦.最优控制的理论与方法.第2版[M].北京:国防工业出版社, 2000.
    [30]高学东,周儒欣.最优控制的结构化理论[M].北京:冶金工业出版社, 1996
    [31]王康宁.最优控制的数学理论[M].北京:国防工业出版社, 1995.
    [32]张洪钺,王青编.最优控制理论与应用[M].北京:高等教育出版社,2006.
    [33]张光澄.最优控制计算方法[M].成都:成都科技大学出版社,1991:90-186
    [34] Canon, M.D., Cullum, C.D. & Polak,E. Theory of Optimal Control and Nonlinear Programming [M], McGraw-Hill, New York, 1970.
    [35] David Benson. A Gauss Pseudospectral Transcription for Optimal Control [D]. Massachusetts Institute of Technology, 2005.
    [36] Rosenbrock, H.H. & Storey, C. Computational Techniques for Chemical Engineers [M], Pergamon, Oxford, UK, 1966.
    [37] T. Binder, A. Cruse, C.A. Cruz Villar, W. Marquardt. Dynamic optimization using a wavelet based adaptive control vector parameterization strategy [J]. Computers & Chemical Engineering, 2000, 24: 1201-1207.
    [38] Martin Schlegel, Klaus Stockmann, Thomas Binder, Wolfgang Marquardt. Dynamic optimization using adaptive control vector parameterization [J]. Computers & Chemical Engineering, 2005, 29: 1731-1751.
    [39]高雷阜.最优化理论与方法[M].沈阳:东北大学出版社,2005.
    [40]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社, 1999.
    [41] Jorge Nocedal and Stephen J Wright. Numerical Optimization [M]. Springer-Verlag New York, 1999.
    [42] MOKHTAR S. BAZARRA, HANIF D.SHERALI AND C.M. SHETTY. Nonlinear Programming-Theory and Algorithms 3rd [M]. 2005. John Wiley & Sons, Inc, 2006.
    [43]王英勋,陈宗基.基于遗传算法(GA)的具有约束的飞行轨迹规划[J].北京航空航天大学学报. 1999, 25(3): 355-358.
    [44] Mangesh D. Kapadi, Ravindra D.Gudi. Optimal control of fed-batch fermentation involving multiple feeds using Differential Evolution [J]. Process Biochemistry, vol. 39, pp. 1709-1721, 2004.
    [45]曾进,任庆生.基于改进遗传算法的时间最优控制问题求解[J].控制与决策. 2002, 17(1): 41-44.
    [46] Inge Spangelo. Trajectory Optimization for Vehicles Using Control Vector Parameterization and Nonlinear Programming [D]. Department of Engineering Cybernetics The Norwegian Institute of Technology, Trondheim, Norway, 1994.
    [47] Philip E. Gill, Laurent O. Jay, Michael W. Leonard, et al. An SQP method forthe optimal control of large-scale dynamical systems [J]. Journal of Computational and Applied Mathematics. 2000, 120: 197-213.
    [48]林卫东.无约束离散最优控制问题分段序列二次规划方法[J].纯粹数学与应用数学. 1998, 14(1): 66-73.
    [49]叶峰,邵之江,梁昔明,钱积新.四种无约束优化算法的比较研究[J].数学的实践与认识, 2004,34(5): 108-112.
    [50] Conn A R, Gould N I M, Toint P L. Numerical experiments with LANCELOT package (release A) for large-scale nonlinear optimization [J]. Math Prog, 1996, 73(1): 73-110.
    [51] C. Zhu, RH. Byrd, P. Lu, J. Nocedal, L-BFGS-B Fortran subroutines for large-scale bound constrained optimization [J], Report NAM-11, EECS Department, Northwestern University, 1994.
    [52]倪勤,袁亚湘. SLMQN:一个解大规模边界约束非线性规划子空间有限存储拟牛顿方法的FORTRAN优化软件[J].数值计算与计算机应用, 1997, 3: 173-179.
    [53]梁昔明,蔡自兴.大规模界约束极小化问题的有效集截断牛顿法[J].中南工业大学学报, 2002,33(1): 82-86.
    [54]梁昔明,钱积新.大规模界约束优化的子空间截断牛顿法[J].浙江大学学报(理学版), 2002, 29(1): 494-499.
    [55] Ismail Kucuk, Ibrahim Sadek. An efficient computational method for the optimal control problem for the Burgers equation [J]. Mathematical and Computer Modeling, 44 (2006) 973-982.
    [56]吴惕华,李双虎,李华.工业分布参数系统的最优控制[J].河北省科学院学报, 1998, 2: 1-8.
    [57] Speyer, J.L., Kelley, H.J., Levine, H.J. & Denham, W.F. Accelerated gradient projection technique with application to rocket trajectory optimization [J]. Automatica, 1971, 7: 37-43.
    [58] Hsieh, C.C. & Arora, J.S. Design sensitivity analysis and optimization of dynamic response. Computer Methods in Applied Mechanics and Engineering, 1984,43: 195-219.
    [59] Brusch, R.G. A nonlinear programming approach to space shuttle trajectory optimization [J]. Optimization Theory and Applications, 1974, 13: 94-118.
    [60] Brusch, R.G. & Peltier, J.P. Parametric control models and gradient generation by impulsive response [J]. Proceedings IAF Congress, Baku, 1973.
    [61] Athans. M, Falb. P. L. Optimal Control. An introduction to the theory and itsapplication [J], McGraw-Hill Book Company, New York, 1966.
    [62] YANG CAO, SHENGTAI LI, LINDA PETZOLD and RADU SERBAN. Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE Systemand its Numerical Solution [J]. SIAM J. SCI. COMPUT. 2003, 24(3): 1076-1089.
    [63] Shengtai Li, Linda Petzold, Wenjie Zhu. Sensitivity analysis of differential–algebraic equations: a comparison of methods on a special problem. Applied Numerical Mathematics [J]. 2000, 32: 161-174.
    [64] DERYA B. OZYURT AND PAUL I. BARTON.CHEAP SECOND ORDER DIRECTIONAL DERIVATIVES OF STIFF ODE EMBEDDED FUNCTIONALS [J]. SIAM J. SCI. COMPUT. 2005, 26(5): 1725-1743.
    [65] Derya B. Ozyurt and Paul I. Barton. Large-Scale Dynamic Optimization Using the Directional Second-Order Adjoint Method [J]. Ind. Eng. Chem. Res. 2005, 44: 1804-1881.
    [66] Eva Balsa Canto, Julio R. Banga, and Antonio A. Alonso, etc. Dynamic optimization of chemical and biochemical processes using restricted second-order information [J]. Computers and Chemical Engineering, vol. 25, pp. 539-546, 2001.
    [67] Eva Balsa Canto, Julio R. Banga, and Antonio A. Alonso, etc. Restricted second order information for the solution of optimal control problems using control vector parameterization [J]. Journal of Process Control, vol. 12, pp. 243-255, 2002.
    [68]邢继祥,张春蕊,徐洪泽.最优控制应用基础[M].北京:科学出版社,2003
    [69] R. Luus, Optimal control by dynamic programming using systematic reduction in grid size[J], Int. J. Control 19 (1990) 995–1013
    [70] R. Luus, Optimal control by dynamic programming using accessible grid points and region reduction[J], Hung. J. Ind. Chem. 17 (1989) 523–543
    [71]王靖岱等.迭代动态规划在树脂牌号切换最优化模型中的应用[J].高等化学工程学报,2000
    [72]李艳君.拟生态系统算法及其在工业过程控制中的应用[D].浙江:浙江大学,2001.
    [73]宋菁,曹竹安.迭代动态规划在系统最优化中的应用[J].化工学报,1999.
    [74] R. Luus, Iterative Dynamic Programming, Chapman and Hall/CRC, London, UK, 2000.
    [75]黎康保,陶文正,许丽华等.用PC机群组构并行超级计算机[J].计算机工程,2000,V26(9)
    [76]陈国良.并行计算-结构.算法.编程(修订版)[M].北京:高等教育出办社,2003
    [77]王健,陈丙珍,何小荣.并行计算在化工模拟与优化中的应用[J].化工学报,2002.5
    [78]张帆,邵之江.化工过程系统优化的分布式并行计算[J].化工学报,2001.5
    [79]费浦生,陈忠.最优化问题的并行算法[J].数学进展,1996.4
    [80]陈崚,章春芳.自适应的并行蚁群算法[J].小型微型计算机系统,2006.9
    [81]侯广坤,骆江鹏.一种理想并行遗传算法模型[J].软件学报,1999.5
    [82]高齐圣,张嗣瀛,潘德惠等.参数设计的模拟退火并行计算法[J].系统工程理论与实践,2000.8
    [83] Jack Dongarra等编著,莫则尧,陈军等译.并行计算综述[M].北京:电子工业出办社,2005.
    [84]黎康保,陶文正,许丽华等.用PC机群组构并行超级计算机[J].计算机工程,2000,V26(9)
    [85]陈国良.并行算法实践,北京:高等教育出办社,2004.
    [86]陈月明.油藏数值模拟基础[M].东营:石油大学出版社, 1989.
    [87]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001.
    [88]王晓冬.渗流力学基础[M].北京:石油工业出版社, 2006.
    [89]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社, 2001.
    [90]塔雷克.艾哈迈德.油藏工程手册[M].冉新权,何江川译.北京:石油工业出版社, 2002.
    [91]李宜强,张素梅等.泡沫复合驱物理模拟相似原理[J].大庆石油学院学报, 2003, 27(2) :93-95.
    [92]李宜强,孙连荣等.三元复合驱物理模拟相似原理[J].大庆石油学院学报, 2003, 27(2): 89-92.
    [93] Charles P. Thomas, Paul D. Fleming III, William K. Winter. A Ternary, Two-Phase, Mathematical Model of Oil Recovery with Surfactant Systems[J]. Society of Petroleum Engineers Journal. SPE(12934), Dec, 1984: 606-616.
    [94] Ye Jigen, Qi Yufen and Fang Yisheng. Application of Optimal Control Theory to Making Gas-Cycling Decision of Condensate Reservoir [J]. Chinese Journal of Computational Physics, Vol. 15, No. 1, Jan 1998, pp.71-76.
    [95] Yuan Shiyi, Yang Puhua. A Mathematical Model of Alkali Combination Flooding [J]. ACTA PETROLEI SINICA, Vol.15, No.1, Apr 1994, pp.76-88.
    [96] Karin Mannhardt, Idar Svorstol. Surfactant concentration for foam formation and propagation in Snorre reservoir core [J]. Journal of Petroleum Science and Engineering. 2001, 30: 105-119.
    [97]袁士义,杨普华.碱复合驱数学模型[J].石油学报, 1994, 15(2): 76-88.
    [98]侯健,李振泉等.考虑扩散和吸附作用的聚合物驱替过程渗流数值模拟[J].计算物理, 2003, 20(3):239-244.
    [99]侯健.用流线方法模拟碱/表面活性剂/聚合物三元复合驱[J].石油大学学报(自然科学版), 2004, 28(1): 58-62.
    [100]哈利德.阿齐兹,安东尼.塞特瑞.油藏数值模拟[M].袁士义,王家禄译.石油工业出版社, 2004.
    [101]章根德,刘曰武.多孔介质中流体流动的细观-宏观模拟[J].岩石力学与工程学报, 2000, 19:1006-1013.
    [102]张德志,姚军,王友启.聚合物驱油藏数值试井解释方法研究[J].石油钻探技术. 2006, 34(3): 71-74.
    [103]李振泉,祝仰文等.三维非均质模型上聚合物及有机交联聚合物提高采收率研究[J].油田化学, 2002, 19(1): 73-76.
    [104]张德志,姚军,王友启.聚合物驱油藏数值试井解释方法研究[J].石油钻探技术. 2006, 34(3): 71-74.
    [105]王新海.聚合物驱数值模拟主要参数的确定[J].石油勘探与开发, 1990, 17(3): 69-76.
    [106]孙焕泉,张以根,曹绪龙.聚合物驱油技术[M].石油大学出版社,2002.
    [107]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000.
    [108]胡博仲,刘恒,立林.聚合物驱采油工程[M].北京:石油工业出版社, 1997.
    [109]胡键伟,赵志勇,薛运华等译. C++数值算法[M].北京:电子工业出版社, 2005.
    [110]沈静珠,陈丙珍.过程系统优化[M].北京:清华大学出办社,1994:74-76.
    [111] R. Luus, Optimal control by dynamic programming using systematic reduction in grid size[J], Int. J. Control 19 (1990) 995–1013.
    [112] Sage A P,White C C. Optimal Systems Control;Prentice-Hall;Englewood Cliffs,1977.
    [113] Reddy K V, Husain A.Computation of Optimal Policy with Singular Subar[J].Can. J.chen.Eng.1981.
    [114]张莉.胜利油田聚合物驱油技术经济潜力分析[J].石油勘探与开发,2004,34(1):79-81.
    [115]付德奎,冯振雨,曲金明,邓生辉,王恩辉.剩余油分布研究现状及展望[J].断块油气田,2007,14(2):39-41.
    [116]冯太少编译.国外剩余油饱和度的测量技术[J].断块油气田,19,1(l):586.
    [117]于兰兄.确定剩余油分布技术[J].西安地质学院学报,1997,19(4):69-71.
    [118]邬侠,孙尚如,胡勇,等.聚合物驱后剩余油分布物理模拟实验研究[J].大庆石油地质与开发,2003,22(5):55-57.
    [119]马春华,郑浩,王文军.应用精细数值模拟方法研究聚合物驱后剩余油分布[J].石油钻探技术,2007,35(4):76-79.
    [120]李剑.大庆油田主力油层聚驱后剩余油分布规律研究[D].大庆:大庆石油学院,2003.
    [121]孙尚如,何先华.聚合物驱后剩余油分布核磁成像实验研究[J].大庆石油地质与开发,2003,22(4):62-63
    [122]卢祥国,高振环.聚合物驱油过程中聚合物滞留及残余油分布的数值模拟研究[J].油田化学,1994,11(3):230-233.
    [123]杨二龙,宋考平,张勇.刘越强.应用改进的POLYMER软件研究聚合物驱后剩余油分布[J].石油钻采工艺,2008,28(5):38-39.
    [124]李洪玺,刘全稳.物理模拟研究剩余油微观分布[J].新疆石油地质,2006,27(3):351-352.
    [125]宋考平,杨钊,舒志华,方伟.聚合物驱剩余油微观分布的影响因素[J].大庆石油学院学报.2004,28(2):25-26.
    [126]沈平平,袁士义,邓宝荣,宋杰,沈奎友.非均质油藏化学驱波及效率和驱替效率的作用[J].石油学报,2004,25(5):57-58.
    [127]韩培慧,赵群,穆爽书,李治平,哈斯巴特尔.聚合物驱后进一步提高采收率途径的研究[J].大庆石油地质与开发,2006,25(5):83-84.
    [128]高淑玲,邵振波,张景存.聚驱后续水驱阶段挖掘分流线剩余油进一步提高采收率的方法[J].大庆石油地质与开发,2006,25(3):88—90.
    [129]薄纯辉,张小卫,刘军,刘福娥.聚合物驱后提高原油采收率对策研究[J].钻采工业,2007,30(5):156-157.
    [130]赵福麟,王业飞,戴彩丽,任熵,焦翠.聚合物驱后提高采收率技术研究[J].中国石油大学学报,2006,30(1):86-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700