温变环境下测试信号传输的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号的多变、随机及模糊特性是制约信号特征的识别与分析准确性的一个重要方面。目前,针对信号特征的分析多集中于后续的信号处理方法的研究,而类似车辆发动机的测试信号传输过程中受到的多种干扰因素,尤其是不确定的环境温度,对其特征产生的重要影响仍缺乏系统且深入的探讨。因而,深入地研究变化的环境温度对测试信号造成的多变性为获取测试系统准确的结构原始特征具有重要的理论意义和工程价值。
     在本文中,针对测试系统中受干扰因素影响的问题,对环境温度不断变化最终将由外到内的影响信号特征这一重要内容进行了深入的研究,研究的主要内容归纳如下:
     (1)推导并建立了信号传输载体-传输导线的热扩散方程,对导线整体进行了热电耦合受热分析。针对车辆测试系统中出现的热传递形式,以同轴电缆为主要研究对象,根据结构和材料的不同,分别建立了热传递方程。分析了自然对流、完全热传导及有限空间强制对流情况下的导线受热情况,并依据传递的电信号特征,建立了热电耦合模型。采用有限元方法模拟计算了各层的热传递特性,结果表明这种细化的热传递形式,有助于提高分析结果的准确性。研究发现导线在完全热传导和有限空间强制对流换热环境中,温度升高迅速,即在短时间内改变了导线的参数特性,进而对信号传输产生很大的影响。
     (2)提出了一种有效提取导线传输参数特性的方法,并对其温变和频变特性进行了分析。以Maxwell’s方程为基础,将环境温度对导线的影响转变为对其特性参数的影响,推导出了具有温度参变量的亥姆霍茨(Helmholtz)方程,由此也确定了信号传输中电磁场随温度而变化的特性。结合测试信号传输电路和信号完整性传递的特点,进而给出了一种计算传输参数的分析方法。该方法避免了以往数值方法复杂积分的缺点,减少了计算工作量,得到了经典能量法的验证。导线的RLCG参数在温度的影响下,发生了各自不同的变化,最为突出的是电阻R的变化。而考虑信号频率时,频率越高,参数的变化量愈明显。该方法适用于提取多导线耦合时的自参数和互参数。研究表明信号频率对互参数产生了重要的影响。多导线的互参数也加剧了导线间信号的串扰,参数的温变及频变特性,成为信号传输响应改变的重要参数依据。
     (3)基于信号传输理论,以有限差分、基尔霍夫定律和FDTD方法为基础,建立了信号传输的渐变温模型并分析了信号响应变化规律。就导线的温度与时空的关联特点,分别给出了两种渐变温模型,即温度和时间为离散变量的渐变温模型Ⅰ;以时间和空间为离散变量的渐变温模型Ⅱ。研究表明:信号响应与导线温度直接相关联,随着导线温度的升高,传输参数不断变化,信号输出响应幅值逐渐衰减。在中低频范围内,信号频率较低时,信号衰减量越大。多导线结构传递信号时存在串扰现象,输出信号难以复现初始信号特征。
     (4)提出了信号响应在温度和频率影响下的灵敏度评价分析方法,建立了相应的多参变量灵敏度方程。以直接法为基础,分别以温度、温度及频率、RLCG参数为参变量,进行二次变换得到参变量的列向量,推导出了相应的灵敏度计算表达式。研究表明,信号输出响应变化量的绝对值随温度的升高及频率的降低而增加,信号响应呈衰减趋势。研究还表明,电阻R的变化是造成信号响应改变的主要影响因素。
     (5)设计并加工了试验构件,建立了实现变温环境测试的试验平台,并完成了相应的试验。试验结果表明,信号的自功率谱峰值与时域平均幅值均随温度的升高而逐渐降低,变温的测试环境已改变了信号的原始特征。该试验分析也成功地验证了仿真模型结果的有效性。
     综上所述,在本文中,较系统地研究了测试信号传输过程中,以环境温度为主要干扰因素对信号响应产生的影响,对于提高测试信号精度等方面得到了一系列理论分析结果和实验结果。
The identification and analysis of signal characteristics are constrained by the ever-changing, random and fuzzy characteristics of signal. At present, researches on signal analysis are mainly concentrated on subsequent signal processing methods. However, similarly tests of vehicles engine, many kinds of interfering factors are inevitable in the process of signal transimission, and especially the ambient temperature is uncertain. The important effect on signal characteristic from external uncertain factors is still lack of system and deep investigations. Therefore, systematical studies on the test signal variability resulting from changing ambient temperature have not only important theoretical significance, but also practical value.
     With respect to test signal transmission affected by interfering factors, a further study into the change of signal characteristic caused by varied ambient temperature has been made in the paper. The main contents are summarized as follows.
     (1) The heat diffusion equations for singal transmission cable are derived and established, and the thermoelectric couple model for whole cable is analyzed. Taking the coxial cable as main rearch subject, the heat diffusion equations are obtained for different structure and materials considering the forms of heat transfer in vehicle test system. By applying characteristic of transmission signal, the thesis constructs thermoelectric couple model to analyze the heat transfer characteristic of cable in environment of natural convection, fully heat conduction and forced convection. FEM is applied to calculate heat transfer characteristic of cable. The results show that the refinement form of heat transfer for cable helps to improve the accuracy of analysis. Moreover, the temperature of cable increases rapidly especially in space of fully heat conduction and forced convection. Correspongdingly, characteristics of cable materials changes in a short period, which has a huge impact on signal transmission.
     (2) A novel method for extracting the transmsission parameters of signal cable is proposed. Based on Maxwell’s equations, the Hlemholtz equation with temperature variable is derived. It determines electromagnetic behavior changing with temperature in process of signal transmission. Combined with signal transmission circuit and singal integrity, a method for calculating transmission parameters is described. Contrary to other methods, the proposed method is of less calculation and can also be verified using classical energy method. The behaviors of parameters are pointed out. RLCG parameters change with ambient temperature and the most prominence is of resistance changes in proportion to increasing temperature. Considering different signal frequencies, the parameters change more obviously with respect to the higher frequency. The method is also effective for extracting self and mutual parameters of multiconductors. The results demonstrate that the signal frequency is significant for mutual parameters which exacerbate the crosstalk signal between wires. Temperature and frequency characteristics of parameters become to be the key parameters foundation for change of signal response.
     (3) Based on signal transmission theory, finite difference, Kirchhoff’s law and FDTD, the study builds two gradient temperature models. The changes of signal response are also described. Two models are separately of temperature and time for discrete variables in modelⅠand of time and space for discrete variables in modelⅡ. The results indicate that signal responses are directly related with conductor temperature. As the conductor temperature rises, transmission parameters are constantly changing, and the amplitude of output signal is in response to gradual attenuation. In low-frequency range, the amount of signal amplitude attenuation is greater with lower frequency. Crosstalk phenomena come to existence when multiconductor structure is applied for signal transmission, and in this case output signal is difficult to replicate the character of intial signal.
     (4) A sensitivity analysis method is put forward according to the change of signal response caused from ambient temperature and signal frequency, and the corresponding multi-variables sensitivity equations are constructed. By adopting the direct method, a second transformation for temperature, frequency, and RLCG parameters has been out to obtain parameter vector and the sensitivity expression are also derived. The results demonstrate that the absolute value of signal changed quality increases with the rise of temperature and lower frequency, and signal attenuation is of positive trends. The study also shows that resistance R has major influence on change of signal response contrary to other LCG parameters.
     (5) A test platform is constructed to implement the signal transmission in changing temperature environment by designing and processing components, and corresponding tests are also completed. The experimental results reflect that the power spectrum peak and the average time-domain amplitude of signal are gradually lowered with increasing temperature. The different ambient temperature has changed the characteristics of original signal. And the experimental analysis also verifies the validity of the results of simulation models successfully.
     In conclusion, taking the ambient temperature as the main disturbance factor, the change of test signal in transmission process, is systematically studied in the thesis. The study obtains a series of theoretical and experimental results for impoving the precision of test signals.
引文
[1]孟庆丰.特征信号提取方法与应用研究[D].成都:电子科技大学,2006.
    [2]廖庆斌,李舜酩,覃小攀.车辆振动信号的特征提取方法比较[J].吉林大学学报(工学版), 2007,37(4):910-914.
    [3]李舜酩,廖庆斌.工程信号处理的研究与发展[C].江苏省博士后学术大会论文集. 2005, 12:284-290.
    [4]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998:1-8.
    [5] Edward S.M., George I.C. Skin-effect considerations on transient response of a transmission line excited by an electromagnetic pulse[C]. IEEE Trans. Electromagn.Compat., 34(3): 320-329.
    [6]李征帆,毛军发.微波与高速电路理论[M].上海:上海交通大学出版社, 2000:2-5.
    [7] R.E.马蒂克.数字与通讯网络中的传输线[M].北京:科学出版社, 1982:23-49,139-190.
    [8] P.格里微.高频传输线的物理基础[M].上海:上海科学技术出版社, 1984:1-2.
    [9] Giulio A, Antonio O, Clayton R.P. An improved method of modeling lossy transmission lines finite-difference time-domain analysis[J]. IEEE,1999:435-439.
    [10] Johan G, Patrick D. Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations[J]. IEEE Transactions on Magnetics, 2005,41(5):1416-1419.
    [11] Daniel D.Z, Luc K. Skin effect modeling based on a differential surface admittance operator[J]. IEEE Trans. Microwave Theory Tech., 2005, 53(8):2526-2538.
    [12] Mingli W, Yu F. Numerical valculations of internal impedance of solid and tubular cylindrical vonductors under large parameters[J]. IEEE Proc.-Gener.Transm.Distrib., 2004,151(1):67-72.
    [13] Sergio L.M, Berleze, R.R. Skin and proximity effects in nonmagnetic conductors[J]. IEEE Trans.on Education. 2003,46(3):368-372.
    [14] Joseph R.M, Roger F.H, Chungi G..H. The inductance matrix of a multiconductor transmision line in multiple magenetic media[J]. IEEE Trans. Microwave Theory Tech.,1988, 36(8):1293-1295.
    [15] Michael J.T, Jin A.K. A hybrid method for the calculation of the resistance and inductance of transmission lines with arbitrary cross section[J]. IEEE Trans. Microwave Theory Tech.,1991,39(8):1338-1347.
    [16] Antonije R.D, Sarkar T.K, Harrington R.F. Time-domain resonse of multiconductortransmission lines[J]. Proceeding of the IEEE,1987,75(6):743-764.
    [17]李征帆.时域微波领域的进展[J].电子学报, 1988,16(5):93-102.
    [18]孙韬.传输线方程解析解的研究[D].重庆:重庆大学,2005.
    [19] Clayton R.P. Incorporation of terminal constraints in the FDTD analysis of transmission lines[J]. IEEE Trans. Electromagn Compat., 1994,36(2):85-91.
    [20] Wolfgang J.R. The transmission line matrix method-theory and applications[J]. IEEE Trans. On MTT, 1985,33(10):882-893.
    [21]张云华,陈杭生.传输线矩阵方法的研究及应用进展[J].电子学报, 1995,23(6):95-101.
    [22] MeyerW.S, Dommel H.W. Numerical modelling of frequency-dependent transmission parameters in an electromagnetic transients program[J]. IEEE, Power Engineering, 1974,1401-1409.
    [23] Griffith J.Richarg, Michel S.N. Time-domain analysis of lossy coupled transmission lines[J]. IEEE Trans. Microwave Theory Tech., 1990,38(10):1480-1487.
    [24] Sartaco C, Maradei F. Spice-like models for the analysis of the conducted and radiated Immunity of shielded cables[J]. IEEE Trans. Electromagn Compat., 2004,43(4):606-616.
    [25]毛军发,李征帆.非均匀传输线综合的特征法[J].电子学报, 1996,24(5):22-25.
    [26] Rohini G, Lawence T.P. Modeling lossy tansmission lines using the method of characteristics[J]. IEEE Trans. On CAS-I,1996,43(7):80-582.
    [27] Anders G, Braun J.M, Vainberg M, Rizzetto S, Heinrich B. Rating of cables in a nonuniform thermal environment[C]. 1999 IEEE Transmission and Distribution Conference, (1): 83– 88.
    [28] Xijin T, Olgierd A. P. Reliability, thermal analysis and optimization workability design of multi-layer PCB boards[C]. 2002 Proceedings annual reliability and maintainability symposium, 392-398.
    [29] John H.L. A heat transfer textbook[M]. Prentice-Hall, INC., Englewood Cliffs, New Jersey 07632.
    [30]杨世铭.传热学[M].北京:高等教育出版社, 1983: 1-8.
    [31] Domenico V, Alfredo V. Transient tolerance analysis of power cables thermal dynamic by interval mathematic[J]. Electric Power Systems Research, 2007, 77:308-314.
    [32] Hall J.F, Deb A.K. Prediction of overhead transmission line ampacity by stochastic and deterministic models[J]. IEEE Trans. Power Del. 1988, 3(2):789-800.
    [33] H.Wan, J.D. Mccalley, V. V. Increasing thermal rating by risk analysis[J]. IEEE Trans. Powersys., 1999,14(3): 815-828.
    [34] Carstea D, Carstea I. Simulation of coupled electric and thermal fields in coaxial cables[J]. IEEE, Serbia and Montenegro, 697-700.
    [35] Buonanno G, Carotenuto A, Delllsola M. Effect of radiative and convective heat transfer on thermal transients in powercables[J]. IEEE Proc. Gener. Transm. Distrib., 1995, 412:436-444.
    [36] Li H.J. Estimationof thermal parameters and prediction of temperature rise in crane power cables[J]. IEE Prc.-Gener. Transm. Distrib, 2004,151(3):355-360.
    [37] Kocar I, Ertas A. Thermal analysis for determination of current carrying capacity of PE and XLPE insulated Power Cables Using finite element method[J]. IEEE Melecon, 2004, 905-908.
    [38] Bottura L, Rosso C, Breschi M. A generatl model for thermal, hydraulic and electric analysis of superconduting cables[J]. Cryogenics, 2006,40:617-626.
    [39] Carstea D, Carstea I. Simulation of coupled electric and thermal fields in coaxial cables[C]. 2003. TELSIKS 2003. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, (2): 697-700.
    [40] Carstea D, Carstea I, Carstea A. Numerical simulation of coupled electromagnetic and thermal fields in cable terminations[C]. 2005. 7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, (2):475-478.
    [41]李征帆,曹毅等.微波与高速电路中的电磁场理论及其数值方法[M].北京:科学出版社, 2002:312-370.
    [42] Schweig E, Bridges W. Computer analysis of dielectric waveguides: a finite-difference method[J]. IEEE Trans. on MTT, 1984, 32(5):531-541.
    [43] Enrique E.M. Impedances for the calculation of electromagnetic transients within transformers[J]. IEEE Trans on Power delivery, 2002,17(2):479-488.
    [44] Konrad A. Integrodifferential finite element formulation of two-dimensional steady-state skin effect problems[J]. IEEE Trans.Magn., 1982,Mag-18(1):284-292.
    [45] Cristina S, Feliziani M. A finite element technique for multiconductor cable parameters calculations[J]. IEEE Trans.Magn.,1989,25(4):2986-2988.
    [46] Sergio L.M, Berleze R.R. Skin and proximity effects in nonmagnetic conductors[J]. IEEE Trans. On Education, 2003,46(3):368-372.
    [47] Johan G, Patrick D. Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations[J]. IEEE Transactions on Magnetics, 2005,41(5):1416-1419.
    [48] Aiello G. FEM computation of electrical parameters in axisymmetric boundless skin-effect problems[C]. IEEE Electrotechnical Conference, MELECON '96., 8th Mediterranean 1996,1407-1410.
    [49] Elfadel I.M, Deutsch A, Howard H.S. A multiconductor transmission line methodology for global on-chip interconnect modeling and analysis[J]. IEEE transactions on advancted packaging, 2004,1(27): 71-78.
    [50] Zhao J, Li Z.F. A time domain full wave extraction method of frequency dependent equivalent circuit of multiconductor interconnection lines[J]. IEEE Trans. On MTT, 1997,45(1).
    [51]赵进,李征帆.一种提取多导体互连线等效电路参数的时域全波方法[J].电子学报,1997, 25(4):33-38.
    [52]赵进,李征帆.用FDTD法分析MCM中具有网孔接地板互连线电特性[J].微波学报,1997,13(3):183-187.
    [53]袁正宇,李征帆. FDTD法分析高速集成电路芯片互连线[J].电子学报, 2000, 28(2):14-16.
    [54] Pregla R., Pascher W. The method of lines. in numerical techniques for microwave and millimeter wave passive structure[M]. Itoh T. Ed., New York: Wiley, 1989.
    [55]洪伟.直线法原理与应用[M].南京:东南大学出版社,1993:12-46.
    [56] Xiao S.J, Vahldieck R, Hesselbarth J. Analysis of cylindrical transmission lines with the method of lines[J]. IEEE Trans microwave theory and techniques, 1996,44(7):993-999.
    [57]赵进,李征帆.有限厚度的平面型多导体互连线系统静态参量的直线法提取[J].电子学报, 1998, 26(2):25-30.
    [58] Mei K.K, Pous R, Chen Z, Liu Y. The measured equation of invariance: a new concept in field computation[J]. IEEE Trans. Antenn Propagat. 1994, 42:320-327.
    [59] Mei K.K, liu Y. Comments on“A theoretical and numerical analysis of the measured equation of invariance”[J]. IEEE Tranc. Antenn Propagat.,1995,43:1168-1171.
    [60] Liu Y, Lan K, Lee K.K. Capacitance extraction for electrostatic multiconductor problem by On-Surface MEI. IEEE Trans. on Advanced Packaging, 2000,23:489-494.
    [61] Hong W, Sun W.K, Dai W.M. Fast parameters extraction of multiayer and muticonductor interconnects using geometry independent measured equation of invariance[J]. IEEE MCMC-96, Santa Cruz, USA:105-110.
    [62] Jin R.H, Cao Y, Li Z.F. Fast parameters extraction for multiconductor interconnects in multilayered dielectric media using mixture method of Equivalent Source and MeasuredEquation of Invariance[J]. IEEE Trans. on CPMT, 1997,20(3): 235– 240.
    [63] Harrington R F. Field computation by moment method[M]. New York, MacMillan, 1968.
    [64]刘晨波,李征帆,王玉洋.芯片内互连线电阻和电感频变分布参数提取[J].微波学报, 2002,18(2):9-13,32.
    [65] Cao W, Harringhton R.F, Mautz J.R, Sarkar T.K. Multiconductor transmission lines in multilayered dielectric media[J]. IEEE Trans. On MTT, 1984,32(4):439-450.
    [66]郑戟,李征帆.高速集成电路互连线参数提取的一种新方法:利用Pade逼近的介质格林函数[J].电子学报, 1998,26(5):21-25,47.
    [67] Wang Z.Y, Wu Q.M. A two-dimensional resistance simulator using the boundary element method[J]. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 1992,11(4):497-504.
    [68]方蜀州,王泽毅.随频率变化二维集成电路互连电感电阻的快速计算[J].清华大学学报(自然科学版), 2002,42(1):33-35,39.
    [69]王习仁,喻文健,王泽毅.三维互连电阻解析与边界元耦合提取方法[J].清华大学学报(自然科学版),2004,44(9):1277-1281.
    [70]方蜀州,王泽毅.最少变量数边界元提取三维VLSI互连电感与电阻[J].中国科学(E辑), 2003, 33(2):186-192.
    [71] Coperich K.M, Ruehli A.E, Cangellaris A. Enhanced skin effect for partial Element Equivalent-Circuit(PEEC) Models[J]. IEEE Trans. Microwave Theory Tech., 2000,48(9):1435-1442.
    [72] Kamon M, Marques N, Silveira L.M, White J. Generating reduced order models via PEEC for capture skin and proximate effects[J]. Electrical performance of electronic packaging,West point NY, 1998,259-262.
    [73] Ruehli A.E, Heeb H. Circuit models for three-dimensional geometries including dielectrics[J]. IEEE Trans. Microwave Theory Tech.1992,40:1507-1516.
    [74] Pinello W, Cangellari A.C, Ruehli A.E. Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent circuit formulation[J]. IEEE Trans. Microwave Theory Tech. 1997,45:1889-1896.
    [75] Cao Y, Li Z.F, Mao J.F. A PEEC with a new capacitance model for circuit simulation of interconnects and packaging structures[J]. IEEE Trans. Microwave Theory Tech., 2000,48:281-287.
    [76]曾翔君,陈继明,杨旭,王兆安.基于局部元等效电路原理对混合封装电力电子集成模块内互感耦合的研究[J].中国电机工程学报, 2004,24(7):133-139.
    [77] Diordjevic A.R, Sarkar T.K. Computation of inductance of simple vias between two striplines above a ground plane[J]. IEEE Trans. Microwave Theory Tech., 2000,MTT-33:265-269.
    [78] Fang S.Z, Tang X.B, Wang Z.Y, Hong X.L. A dimplified hybrid method for calculating the grequency-dependent inductances of transmission lines with tectangular cross section[C]. Proceedings of the ASP-DAC, Design Automation Conference, Asia and South Pacific, 2000:453-456.,
    [79]魏洪川,喻文健,杨柳,王泽毅.基于k参数思想的快速三维互联电感电阻提取算法[J].电子学报, 2005,33(8):1365-1369.
    [80] Pierre M.P, Griffith J, Tuyet T.L, George W.P. Fast hybrid integral equation-neural network method for the modeling of multiconductor transmission lines[C]. IEEE MTT-S International Microwave Symposium Digest, 1999,4:1673-1676.
    [81] Djordjevic A.R, Sarkar T.K, Harrington R.F. Time-domain resonse of multiconductor transmission lines[J]. Proceeding of the IEEE,1987,75(6):743-764.
    [82] Yee K S. Numerical dolution of initial boundary value Problems involving inimiz’s equations in isotropic media[J]. IEEE Transactions on Antennas Propagation, 1966,14(5):302-307.
    [83] Antonini G, Antonio O, Clayton R.P. An improved method of modeling lossy transmission lines finite-difference time-domain analysis[J]. 1999 IEEE International Symposium on Electromagnetic Compatibility, 435-439.
    [84] Clayton R.P. Incorporation of terminal constraints in the FDTD analysis of transmission lines[J]. IEEE Trans. Electromagn Compat., 1994,36(2):85-91.
    [85] Edward S.M, George I.C. Skin-effect considerations on transient response of a transmission line excited by an electromagnetic pulse[J]. IEEE Trans. Electromag. Compat., 1992,34(3):320-329.
    [86] Fichtner W. P. Modes on printed vircuit boards and their effects on EMC and signal integrity[J]. IEEE Trans. Electromag. Compat., 2001,43(4):416-425.
    [87] May M.P, Thomas K, Gravrok R. Packaging and interconnect design and analysis using FDTD[C]. IEEE 6th Topical Meeting on Electrical Performance of Electronic Packaging, 1997,(27-29):87-90.
    [88]张华.高速互联系统的信号完整性研究[D].南京:东南大学, 2005.
    [89] Ruehli A.E, Cangellaris A.C. Progress in the methodologies for the electrical modeling of inter-connects and rlectronic packages[J]. Proceedings of the IEEE, 2001,89(5):740-771.
    [90] Erdin I, Nakhla M. Mixed circuit/electromagnetic analysis of radiation from high-speed interconnects[J]. IEEE International Microwave Symposium Digest, 1999,3(13-19):1305-1308.
    [91] Li E.P, Liu E.X, Li L.W. A couple efficient and systematic full-wave time-domain macromodeling and circuit simulation method for signal integrity analysis of high-speed interconnects[J]. IEEE Transactions on Advanced Packaging, 2004,27(1):213-223.
    [92] Lee S.Y, Konrad A. Lossy transmission line transient analysis by the finite element method[J]. IEEE Trans.Magn., 1993,29(2):1730-1732.
    [93]杜学峰.长电缆传输研究[D].合肥:中国科学技术大学, 2006.
    [94]毛军发,李征帆.非均匀传输线综合的特征法[J].电子学报,1996,24(5): 22-25.
    [95] Rohini G, Lawrence T. P. Modeling lossy transmission lines using the method of characteristics[J]. IEEE Trans. On CAS-I. 1996,43(7). 580-582.
    [96] Xu Q.W, Li Z.F, Wang J, Mao J.F. Transient analysis of lossy interconnects by modified method of characteristics[J]. IEEE Trans. On CAS-I. 2000,47(3). 363-375.
    [97] Chang F.Y. Transient analysis of lossless coupled transmission lines in a nonhomogeneous dielectric medium[J]. IEEE Trans on Microwave Theory and Techniques, 1970, 18(9): 616-626.
    [98] Mao Z.F, Xu Q.W. Fast simulation of lossy transmission lines by the modified method of characteristics[J]. Electronics Letters,1997,33(11):942-944.
    [99]朱建政,李征帆,徐勤卫.高速集成电路连线特征法的电导修正时域宏模型[J].上海交通大学学报, 1997, 12 (31): 15-18.
    [100] Xu Q.W, Li Z.F, Chen W. Simulation of nonuniform interconnects by harmonic differential quadrature method[J]. Electronics Letters, 1998,34(22).
    [101] Wolfgang J.R. The transmission linematrix method-theory and applications[J]. IEEE Trans. On MTT, 1985,33(10):882-893.
    [102]张云华,陈杭生.传输线矩阵方法的研究及应用进展[J].电子学报, 1995,23(6):95-101.
    [103]邵振海,洪伟.一种新的压缩顶点传输线矩阵法及其应用[J].电波科学学报, 1999, 14(4): 426-433.
    [104] Matthew N.O, Lawrence C.A. A simple introduction to the transmission line modeling[J]. IEEE Trans.On CAS, 1990,31(8):991-999.
    [105] Rohini G, Seok Y, Lawrence T.P. Domain characterization of transmission line models andanalyses[J]. IEEE Trans.On Computer-Aided Design of Integrated Circuits and Systems, 1996,15(2):184-193.
    [106] Chang F.Y. Waveform relaxation analysis of RLGC transmission lines[J].IEEE Trans. On.CAS, 1990,37(11):1394-1415.
    [107] Lau F.C, Deeley E.M. Improvements in the waveform relaxation method applied to transmission lines[J]. IEEE Trans.On MTT, 1995,43(5):1201-1203.
    [108]赵进全,马西奎,邱关源.精细计算多导体耦合传输线时域响应[J].电路与系统学报,1997,2(3):13-17.
    [109]赵进全,马西奎,邱关源.变电站空载母线波过程的精细积分计算方法[J].电力系统自动化, 2002,10:52-55
    [110] Lee S.Y, Konrad A. Lossy transmission line transient analysis by the finite element method[J]. IEEE Trans. On Magn, 1993, 29(2):1730-1732.
    [111]窦磊.分布参数系统若干近似计算方法应用研究[D].南京:南京理工大学, 2006.
    [112]钱建平,郭金生,黄锦安.变量分离法在传输线瞬态分析中的应用[J].江苏大学学报(自然科学版), 2002,23 (6): 61-64.
    [113] Palusinski O.A. Analysis of transients in nonuniform and uniform multiconductor transmission lines[J]. IEEE Trans. Microwave Theory Tech., 1989, 37(1):127-138.
    [114]李鸿儒,李征帆.一种用于模拟高速VLSI中互连线瞬态响应的高效数值方法[J].上海交通大学学报, 2001, 35(6):817-819,825.
    [115] Meyer W.S, Dommel H.W. Numerical modelling of frequency-dependent transmission parameters in an electromagnetic transients program[J]. IEEE Power Engineering, 1974,1401-1409.
    [116] Lau F. Waveform relaxation analysis of lossy coupled transmission line sets in cascade[J]. IEEE Proc-Circuits Devices Syste, 1995,142(6):373-378.
    [117] Chang F.Y. The generalized method of characteristics for waveform relaxation analysis of lossy coupled transmission lines[J]. IEEE Trans on Microwave Theory and Techniques, 1999,37(12):2028-2038.
    [118] Chang F.Y. Waveform relaxation of PLCG transmission lines[J]. IEEE Trans. on CAS, 1990,37.
    [119] Chang E.C, Kang S.M. Computationally efficient simulation of a lossy transmission line with skin effect by using numerical inversion of Laplace transforms[J]. IEEE Trans.On CAS-I, 1992,39(11):861-868.
    [120] Griffith J.R, Michel S.N. Time-domain analysis of lossy coupled transmission lines[J]. IEEE Trans. Microwave Theory Tech., 1990,38(10):1480-1487.
    [121]郭裕顺.用NILT导出的传输线瞬态分析模型[J].电子学报, 2002,30(3):381-385.
    [122] Sergio G, Martins N, Sergio L.V, Carlos P. Modal analysis of electromagnetic transients in ac networks having long transmission lines[J]. IEEE Trans. Power Del., 2005,20(4):2623-2630.
    [123] Ashok K.A, Howard M.F, Larry D.S, Shyam H.G. Application of modal analysis to the transient Responseof multiconductor transmission lines with branches[J]. IEEE Trans. Electromagn Compat.,1979,EMC-21(3):256-262.
    [124] Wilcox D.J, Condon M. Time-domain model for multiconductor power transmission lines[J]. IEE Proc.-Gener. Transm.Distrib, 1998,145(4):473-479.
    [125] Tang T.K, Nakhla M.S. Analysis of high-speed VLSI interconnects using the asymptotic waveform evaluation technique[J]. IEEE Trans CAD, 1992, 11(3):341-352.
    [126]杨晓平,李征帆.用修正的AWE法分析高速集成电路中互连线时域响应[J].上海交通大学学报, 2000, 34(6):741-743.
    [127]毛军发,李征帆.非零初始状态传输线瞬态分析[J].电子学报, 1996,24(8):122-124.
    [128]卢斌先,王泽忠,王炳革.故障电力传输线电压时域响应分析[J].电网技术, 2000,24(2):29-31.
    [129] Liao J.C, Palusinski O.A, Prince J.L. Computation of transients in lossy VLSI packaging interconnections[J]. IEEE Trans. On Components, Hybrids, and Aanufacturing Technology, 1990,13(4):833-838.
    [130] Araneo R, Celozzi S. Direct time-domain analysis of transmission lines above a lossy ground[J]. IEE Proc.-Sci, Meas.Technol., 2001,148(2):73-79.
    [131] Chang F.Y. Transient analysis of lossy transmission lines with arbitrary initial potential and current distributions[J]. IEEE Trans. On Circuits and Systems-I: Fundamental Theory and Applications, 1992,39(3): 180-198.
    [132] Liao J.C, Palusinski O.A, Prince J.L. Computation of transients in lossy VLSI packaging interconnections[J]. IEEE Trans. On Components, Hybrids, and Aanufacturing Technology, 1990,13(4):833-838.
    [133] Caniggia S, Maradei F. Equivalent circuit models for the analysis of coaxial cables immunity[C]. 2003International Symposium on Electromagnetic Compatibility, 881-886.
    [134] Caniggia S, Maradei F. Spice-like models for the analysis of the conducted and radiatedimmunity of shielded cables[J]. IEEE Trans. Electromagn Compat., 2004,43(4):606-616.
    [135] Romeo F, Santomauro M. Time-domain simulation of n coupled transmission lines[J]. IEEE Trans. Microwave Theory Tech., 1987, MTT-35(2):131-137.
    [136] Shinh G.S, Nakhla N.M, Achar R, Nakhla M.S, Dounavis A, Erdin I. Fast transient analysis of incident field coupling to multiconductor transmission lines[J]. IEEE Trans. on Electromag. Compat., 2006,48(1):57-72.
    [137] Caniggia S, Santi P. Common-mode radiated emissions from UTP/STP cables with differential high-speed drivers/receivers[C]. IEEE International Symposium on Electromagnetic Compatibility, 2003, 2:564-569.
    [138] Araneo R, Caniggia S. Maradei F. New extraction procedure of shielded cable SPICE macro-model for the prediction of signal integrity and conducted immunity[C]. IEEE International Symposium on Electromagnetic Compatibility, 2006,3:751-755.
    [139] Lee D.J, Palusinski O.A. Adaptation of“Spices”to simulation of lossy multiple-coupled transmission lines[J]. IEEE Trans. on Components, Packaging, and Manufacturing Tchnology-PartB: Advanced Packaging, 1994,17(2):126-133.
    [140] Liao J.C, Palusinski O.A, Prince J.L. Transmission line simulator as a basic component of CAD system for VLSI interconnects[C]. The 9th Annual International Phoenix Conference on Computers and Communications, 1990:840– 846.
    [141] Palusinski O.A. Spectral technique for simulation of circuits and systems[C]. IEEE 3rd Topical Meeting on Electrical Performance of Electronic packaging, 1994:62– 64.
    [142] Palusinski O.A. Analysis of transients in nonuniform and uniform multiconductor transmission lines[J]. IEEE Trans. Microwave Theory Tech., 1989, 37(1):127-138.
    [143] Palusinski O.A, Szidarovsky F, Abdennadher M, Marcjan C, Reiss K. Accelerated simulation of integrated circuits using chebyshev series[C]. IEEE International Symposium on Circuits and Systems, 1992, 1:89 - 92.
    [144]蔡少棠,林本铭.电子线路的计算机辅助分析:算法和计算技术[M].上海:上海机械学院, 1984:45-56.
    [145]毛军发,李征帆.非均匀传输线综合的特征法[J].电子学报, 1996,24(5):22-25.
    [146] Gupta R, Pileggi L.T. Modeling lossy tansmission lines using the method of characteristics[J]. IEEE Trans. On CAS-I,1996,43(7):80-582.
    [147]梁贵书,仁宇.抛物线型无损耗传输线的时域灵敏度分析[J].华北电力大学学报,2004,31(2):5-8.
    [148]王勇.含均匀和非均匀传输线网络的灵敏度分析[D].华北电力大学, 2006.
    [149] Bonani F, Guerrieri S.D, Ghione G. Physics-based simulation techniques for small and large-signal device noise analysis in RF applications[J]. IEEE Trans. on Electron Devices, 2003,50(3):633-644.
    [150] Fabrizio Bonani, Giovanni Ghione, Mark R.Pinto, R.Kent Smith. An Efficient Approach to Noise Analysis Through Multidimensional Physics-Based Models[J]. IEEE Trans. on Electron Devices, 1998, 45(1): 261-269.
    [151] Bandler J.W, Biernacki R.M, Cai Q, Chen S.H, Ye S, Zhang Q.J. Integrated physics-oriented statistical modeling simulation and optimization[J]. IEEE Trans. Microwave Theory Tech., 1992, 40(7):1374-1400.
    [152] J.A.斯特莱顿.电磁理论[M].北京:科学出版社, 1992:1-24.
    [153]黄至洵,王晓金.微波传输线理论与实用技术[M].北京:科学出版社,1996:40-45.
    [154] Caniggia S, Maradei F. Spice-like models for the analysis of the conducted and radiated immunity of shielded cables[J]. IEEE Trans. Electromagn Compat., 2004,43(4):606-616.
    [155]杨世铭.传热学[M].北京:高等教育出版社, 1998:182-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700