红螯光壳螯虾(Cherax quadricarinatus)三个与精子发生相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖生物学是生物学研究最为重要的内容之一,它涉及到许多重大的生物学问题,比如生殖细胞的发生、性别决定、遗传、发育和进化等,这些生物学过程的发生机制一直倍受国内外研究者的关注。目前对于生殖细胞发生的分子机制研究主要集中在人类和一些常见的模式生物中,而对于水生生物,在甲壳类虾蟹动物中,相关的生殖分子生物学研究报道较少,尤其是雄性生殖细胞发生的分子机制甚少。淡水红螯光壳螯虾原产于澳大利亚,自1985年以来逐渐成为一种水产养殖业的重要品种。红螯螯虾已经成为许多包括澳大利亚,美国,中国,厄瓜多尔,墨西哥和阿根廷等国家集约化或半集约化养殖的品种。目前对其雄性生殖生物学的研究仅仅局限于生殖系统的解剖结构和精子形成的生理过程相关研究,其精子发生的分子机制,已经成为雄性红螯螯虾生殖生物学研究迫在眉睫的热点问题。因此,本论文以淡水红螯光壳螯虾(Cherax quadricarinatus)为研究对象,开展精子发生相关分子机制的研究。
     本研究的主要内容包括:(1)、三个精子发生相关基因DDX5、HSP70和Prohibitin基因的分子克隆和基因表达谱分析;(2)、单侧摘除眼柄对红螯螯虾繁殖性能和DDX5基因表达谱的影响;(3)、免疫组织化学染色技术对精巢内HSP70蛋白进行了组织定位;(4)、免疫荧光染色技术对精巢内Prohibitin蛋白在精子发生过程中的定位研究;(5)、Western Blot免疫印迹方法对红螯螯虾精巢发生各个时期HSP70和Prohibitin蛋白进行了蛋白印迹的表达分析;(6)、对Prohibitin进行免疫胶体金实验,证实其在红螯螯虾精子线粒体膜蛋白中生物学功能,并探讨无脊椎动物的线粒体遗传机制。
     本研究的主要结果如下:
     1、通过同源克隆策略克隆了红螯光壳螯虾性腺DDX5、HSP70和Prohibitin的cDNA片段长度分别为368bp,493bp,302bp;通过RACE PCR技术获得了三个基因的全长序列分别为2,258bp,2,366bp,1,472bp;分别含有编码522(1,569bp),652(1,959bp),275(828bp)个氨基酸(amino acid, aa)的开放阅读框。
     2、BLAST分析发现,Cq-DDX5、Cq-HSP70和Cq-PHB都是高度保守的蛋白家族成员,Cq-DDX5蛋白与其他物种的同质体具有53-90%的同源性;Cq-HSP70与其他物种HSP70的同源性为73-95%;Cq-PHB与其他物种的PHB的同源性为55-92%。分别以各自蛋白家族成员的氨基酸序列为分子标记,用MEGA4.0软件中的邻接NJ法构建系统进化树均发现,红螯螯虾与无脊椎动物的虾蟹类亲缘关系最近,这些结果都支持了传统的进化理论。
     3、多序列比对和InterPro蛋白结构功能研究发现,Cq-DDX5所编码的蛋白含有典型的DEAD-box蛋白家族的9个保守结构,DEAD-box RNA解旋酶特有的Q基序和DEAD/DEAH结构域。Cq-HSP70蛋白序列中含有三个HSP70家族基本结构域,多个潜在的磷酸化位点等结构域,1个钙离子结合结构域,1个富含氨基乙酸区域,1个伴肌动蛋白重复结构和1个双向的核定位信号。然而Cq-PHB蛋白的一级结构缺乏典型的信号序列,核酸结合位点,ATP结合位点和相关的转录因子,只有8个高度保守的类似区域和4个与转录相关的控制蛋白基序。
     4、利用RT-PCR和实时荧光定量qRT-PCR技术进行各基因的组织表达谱分析发现,Cq-DDX5、Cq-HSP70和Cq-PHB在所有检测的各个机体组织中都有表达,在性腺等高分化的组织内表达量较高。实时荧光定量qRT-PCT分析各基因转录本的表达谱分析结果如下:
     (1)、在胚胎发育过程中,Cq-DDX5的表达量在受精卵期最低,在卵裂期迅速显著上升,在原肠期维持较高水平,到无节幼体期达到最高水平,在一龄幼体期也维持在较高的水平。在精巢发育各期中,其表达量在不育期和休止期非常低,在精巢发育期表达量最高,在休止期表达量最低。在雄性红螯螯虾年/季节的生殖周期中,在交配前期其转录本达最高并在交配期维持较高水平,之后逐渐下调至交配后期和休止期显著下降。眼柄摘除后,从0d到3d其表达量逐渐增加,在第6d明显上升,到12d达到峰值,到18d显著下降。
     (2)、Cq-HSP70mRNA的表达量在精巢发生期最高,并且在精子发生阶段高表达,在精巢发生成熟阶段,其表达量明显下调,并且在休眠时期/休止期一直维持显著的低表达水平(P<0.05)。在季节/年生殖周期中,在预备期(1月到3月),交配前期(4月)和交配期(5月到8月)与交配后期(9月到10月)/休止期(10月到次年1月)相比发现具有较高的表达量(P<0.05)。
     (3)、在整个红螯螯虾精巢发生周期中都可见Cq-PHB mRNA转录本的表达,其中在精巢发生期的表达量显著升高,到增殖期达到最高,在精巢发生的成熟阶段其表达量明显下调,并且在休眠时期/休止期维持较低的表达水平(P<0.05)。
     5、Western Blot结果发现蛋白提取物可与HSP70抗体免疫结合,在免疫印迹膜上有一条特异性条带,条带大小接近70kDa,与预测的Cq-HSP70的分子质量相匹配。免疫组织化学染色技术分析发现在精巢内各个阶段的生殖细胞中包括精母细胞,精细胞和成熟的精子等都可观察到HSP70的阳性信号,在精原细胞和初级精母细胞中信号最强,在次级精母细胞中信号较低,在成熟的精子细胞中信号很弱甚至没有,而且Cq-HSP70蛋白信号主要存在于发生中生殖细胞的细胞质中。
     6、从精巢提取的蛋白通过聚丙烯酰胺凝胶电泳SDS-PAGE分离后,Western Blot检测后结果发现蛋白提取物可与Prohibitin抗体免疫结合,在免疫印迹上有些明显的Cq-PHB大小不同的梯度条带,分子量大小在180kDa到30kDa不等。通过免疫荧光染色技术分析发现Cq-PHB蛋白的在精巢内各个阶段的生殖细胞中都可观察到Cq-PHB蛋白的阳性信号。其中最强信号出现在精巢发生期和增殖期的精原细胞和初级精母细胞中,在次级精母细胞中信号较低,在成熟的精子细胞中信号很弱。通过进一步的组织学鉴定发现,Cq-PHB蛋白主要存在于发生中生殖细胞的细胞质和生殖细胞周围。取精巢不同发育时期的生殖细胞,通过胶体金免疫电镜技术研究发现,免疫胶体金颗粒主要分布在精子细胞的线粒体内膜上,在精子细胞内还可见一些大的胶体金颗粒和一些游离的胶体金颗粒。
     通过以上研究结果可见,Cq-DDX5、Cq-HSP70和Cq-PHB分别是'DEAD-box'蛋白家族、HSP超家族和Band-7家族蛋白中新成员在红螯螯虾的首次报道。Cq-DDX5和其他物种的DDX5一样具有促进细胞分化的功能,我们的研究还证实了DDX5在红螯螯虾个体发育和精子发生过程中具有必要的促进或催化作用。在红螯螯虾精子发生过程中Cq-HSP70mRNA转录本表达水平的变化与精巢中各个时期的精子的HSP70免疫信号相一致。这些结果表明,Cq-HSP70蛋白在精子发生的起始阶段对于精母细胞的分化过程和精子细胞的形成过程是必不可少的,其可能通过调控生殖细胞分裂和分化过程中的胞质重组而调节红螯螯虾的精子发生过程,精子中HSP70蛋白的表达可能与红螯螯虾精子发生效率和精子质量密切相关。在红螯螯虾中Cq-PHB的研究结果表明,Cq-PHB参与了红螯螯虾精子发生的调控过程和精子发生的泛素化过程,不同大小的ladder条带提示PHB可能与不同大小的泛素分子结合参与精子发生的泛素化过程,而且Cq-PHB可能和在其他无脊椎动物的功能一样作为泛素的底物而参与其中的生物学过程。结合胶体金的实验还可以推断,PHB在甲壳动物甚至在无脊椎动物中可能也存在类似的参与线粒体母系遗传的生物学机制。
     综上所述,本研究首次在红螯螯虾中报道了精子发生密切相关的三个功能基因,分析了它们的基因结构,表达谱和相关蛋白的组织定位,这些研究方法对于进一步深入研究甲壳类生殖相关分子机制具有重要的借鉴意义,该研究的结果将充实并推动甲壳类生殖相关内容研究的进一步深化。这些研究成果将为虾类生殖分子生物学研究提供有用的信息并为后续有关无脊椎动物精子发生的分子生殖生物学研究奠定了坚实的研究基础。
Reproductive biology is one of the most important researches in biology, it involves many important biological problems, such as germ cells ontogenesis, development, sex determination, genetics and evolution, these mechanisms of biological processes has been arisen many researchers'concerns at home and abroad. Currently the molecular mechanism for germ cell ontogenesis mainly focused on humans and other common model animals, and there are little related molecular mechanism reports on the aquatic organism especially in crustaceans shrimps and crabs, and the molecular mechanisms on male germ cells is even rare. Therefore in our present study, we selected the freshwater crayfish Cherax quadricarinatus, which is a commercially important aquatic organism, as the experimental materials and to study the molecular mechanism on ontogenesis and spermatogenesis.
     The "red claw" crayfish Cherax quadricarinatus (von Martens,1898)(Astacida, Parastacidae) is an important species for culture since1985for consumption and acquarism. At present, it is cultured intensively and semi intensively in many countries including Australia, United States, China, Ecuador, Mexico and Argentina. As C. quadricarinatus is concerned, the knowledge about the reproductive biology of males is limited to the anatomy of the reproductive system and formation and transference of the spermatophore. Therefore, a better understanding of the molecular mechanism of spermatogenesis has become a research priority at the moment.
     Hence in this paper, the major contents are as follows:(1) molecular cloning of three spermatogenesis closely related genes DDX5, HSP70, Prohibitin, and their expression patterns at different spermatogenesis phase;(2) reproduction performance and temporal expression patterns of Cq-DDX5after unilateral eyestalk-ablation;(3) localization of the Cq-HSP70protein in testes was studied by immunohistochemical analyses;(4) immunofluorescence analysis on localization of the Cq-PHB protein in testes (5) HSP70and Prohibitin protein expression analysis on different testes development stage by Western Blot; and (6) localization of Cq-PHB in sperm mitochondria by immunogold electron microscopy to find out its biological function in mitochondria membrane proteins and explore the mitochondria maternal inheritance mechanism in invertebrate.
     The mainly results of this paper are as following:
     1. Using degenerated PCR amplification strategy, DDX5, HSP70and Prohibitin cDNA fragments were cloned from the crayfish testes, and their length are368bp,493bp,302bp respectively. After RACE PCR,2,258bp,2,366bp,1,472bp full-length cDNA of DDX5, HSP70and Prohibitin are obtained, which containing the open reading frame (ORF) encoded522aa (1,569bp),652aa (1,959bp),275aa (828bp) respectively.
     2. BLAST search against the databases revealed that the deduced amino acid sequence shows high similarity to other similar protein sequence. Cq-DDX5, Cq-HSP70and Cq-PHB are highly conserved multigene superfamily. The deduced amino acid sequence of Cq-DDX5has a53-90%similarity to DDX5of other eukaryotic species, and Cq-HSP70has73-95%similarity with others, and Cq-PHB has55-92%similarity. A neighbor-joining (NJ) phylogenetic tree was constructed using MEGA software version4.0. Phylogenetic analysis results also showed that C. quadricarinatus clustered with other invertebrates, and most closely to that of the gene products encoded by other shrimp or crab species, which supports the traditional taxonomic relationships.
     3. Using InterPro searches the predicted amino acid sequences showed:the Cq-DDX5comprise nine consensus sequence characteristic of the DEAD-box proteins, Q-motif of dead-box RNA helicase profile and DNA/RNA helicase (DEAD/DEAH box) domain. Three HSP70family signature motifs were identified in the Cq-HSP70protein sequence, many potential phosphorylation sites, a calcium-binding domain profile (EF-HAND-2), a glycine-rich region profile motif (GLY-RICH), a nebulin repeat profile (NEBULIN) and a bipartite nuclear localization signal profile (NLS-BP) were also identified. But the primary structure of Cq-PHB protein lacks motifs typical for signal sequences, nuclear localization signals, ATP-binding sites or transcription factors. The comparison between PHB genes in other species discovers eight highly conserved regions with four of them corresponding to binding sites of known transcriptional control proteins (CCAAT box,'SV40'sites and two Spl sites) were identified in the Cq-PHB protein sequence.
     4. The mRNA transcript of Cq-DDX5, Cq-HSP70and Cq-PHB were expressed universally in all the organs investigated, including the brain, eyestalk, gill, thoracic ganglia, heart, muscle, hemocytes, hepatopancreas, stomach, intestine, testes and ovaries. Expression was at the high level in high differentiation organizations such as gonads, hepatopancreas and hemocytes. Further, the temporal expression patterns on each gene transcripts are as follows:
     (1). During the course of embryonic development, the expression of Cq-DDX5is very low in the fertilized egg stage but significantly up-regulate at the cleavage stage, and maintain at high level at gastrula stage and sharply up-regulate to peak at the nauplii stage and maintained at high level even in one-day larvae stage. In testes developmental period, the expression of Cq-DDX5was significantly low during absence period and resting phases when compared to the developmental period and multiplication phase, and a highest level was seen at the developmental phase and a lowest level at the resting level. In the mature male testes seasonal/annual cycle, the Cq-DDX5transcript up-regulate sharply and peak at the prespawning phase and maintain high level at the spawning phase, and then down-regulate and decline drastically during post-spawning/regressed phase. After eyestalk ablation, the relative testicular weight of destalked males was higher than that of intact males, but decreased sharply after the second week and these differences were not statistically significant. Interestingly, a gradual increase in Cq-DDX5expression is seen from0d to3d time interval, and significantly increase at6d and peak at12d after eyestalk ablation treatment group then declined drastically at18d.
     (2). In the testes developmental cycle, Cq-HSP70mRNA was up-regulated to peak expression during the developmental phase, and high expression was maintained during the spermatogonial multiplication period. Then the expression was down-regulated during the mature sperm stage, and significantly lower expression levels were found during the resting phase (P<0.05). In the seasonal/annual reproductive cycle, significantly greater expression (P<0.05) was found in the preparatory (January-March), pre-spawning (April) and spawning (May-August) phases compared with the post-spawning/regressed phases (November-January). Overall, Cq-HSP70mRNA transcripts were maintained at high levels during the spermatogenesis and spawning stages.
     (3). In the testes developmental cycle, Cq-PHB mRNA was up-regulated during the developmental phase, and high expression was maintained during the spermatogonial multiplication period. Then the expression was down-regulated during the mature sperm stage, and lower expression levels were found during the resting phase (P<0.05).
     5. Western Blot results showed that a distinct single band characteristic of Cq-HSP70was observed on the immunoblot when the protein extracts were transferred to a nitrocellulose membrane and immunoprobed with anti-HSP70. The anti-HSP70recognized bands of approximately70kDa, which matches well with the calculated molecular mass for CqHSP70. Furthermore the Immunohistochemistry (IHC) results showed that immunoreactive positive signals (in brown color) for the HSP70protein were detected in spermatocytes, spermatids and spermatozoa of normal mature testes. Within the testes, the strongest signals for Cq-HSP70were found in spermatogonia, with lower positive signals in secondary spermatocytes, and weak or absent signals in mature sperm. Moreover, the Cq-HSP70protein was concentrated mainly in the cytoplasm of developmental sperm cells.
     6. When the protein extracts were transferred to a nitrocellulose membrane and immunoprobed with anti-PHB, a series of ladder bands characteristic of Cq-PHB was observed on the immunoblot. The anti-PHB recognized bands of approximately from180kDa to30kDa. Further the Immunofluorescence (IF) results showed that immunoreactive positive signals (blue fluorescence) for the PHB protein were detected in spermatocytes, spermatids and spermatozoa of normal mature testes. Within the testes, the strongest signals for Cq-PHB were found in spermatogonia, with lower positive signals in secondary spermatocytes, and weak or absent signals in mature sperm. Moreover, the Cq-PHB protein was concentrated mainly in the cytoplasm of developmental sperm cells and the peripheral'sertoli cells'. The Immunogold Electron Microscopy (IEM) results showed that Prohibitin was found mainly on the mitochondrial inner membrane of the spermatozoa, with some labeling in the matrix and free mitochondria particles. Prohibitin immunoreactivity was also observed on the spermatozoa nucleus but not any signals in negative preparations with omission of first antibody.
     Taken together the above results, we first reported Cq-DDX5, Cq-HSP70and Cq-PHB are new members in'DEAD-box'protein family, HSP superfamily and Band-7protein family respectively. Our findings demonstrated that Cq-DDX5might have an essential role in ontogenesis and spermatogenesis. The Cq-HSP70mRNA transcript levels changed during the sperm development process, which was in accordance with the immunoreactive signals of Cq-HSP70in the testes. These observations suggest that Cq-HSP70is critical for spermatogonial multiplication and spermatogenesis. The high levels of Cq-HSP70mRNA observed in the spermatogonial multiplication period may imply that Cq-HSP70is also an essential promoter in crayfish spermatogenesis, in turn, could be involved in high spermatogenic efficiency, which would support earlier findings in vertebrates. The results in Cq-PHB showed that it is related to the maternal inheritance of mtDNA and Cq-PHB also has a similar biological function involved in ubiquitination process in crustacean even in the invertebrate animals.
     Overall, this study provides the forwarding step towards understanding molecular mechanism about ontogenesis and spermatogenesis in marine invertebrates, which will contribute towards improving the quality and quantity of aquaculture. In the future, the molecular mechanism(s) linking DDX5or HSP70functions to spermatogenesis and ontogenesis need to be determined, particularly if these genes are to be exploited as a molecular biomarker in further studies of development. As to the Cq-PHB's function, it is also therefore necessarily to find out the mitochondrial inheritance mechanism in invertebrate animals for further research.
引文
Abdelhaleem M,2005. RNA helicases:regulators of differentiation, Clin. Biochem.,38:499-503.
    Abdu U, Barki A, Karplus I, Barel S, Takac P, Yehezkel G, Laufer H, Sagi A, 2001. Physiological effect of methyl farnesoate and pyriproxyfen on wintering female crayfish Cherax quadricarinatus. Aquaculture 202:163-175.
    Ali A, Salter CL, Flajnik MF, Heikkila JJ,1996. Isolation and characterization of a cDNA encoding a Xenopus heat shock cognate protein, Hsc70 Ⅰ. Comp. Biochem. Physiol. B 113:681-687.
    Allen JW, Dix DJ, Collins BW, Merrick BA, He C, Selkirk JK, Poorrnan-Allen P, Dresser ME, Eddy EM,1996. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 104 (6):414-421.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, David J, Lipman DJ,1997. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res.25:3389-3402.
    Altus MS, Wood CM, Stewart DA,1995. Regions of evolutionary conservation between the rat and human prohibitin-encoding genes. Gene,158(2):291-294.
    Ana BB, Laura SL,2009. Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Aquaculture 295:292-299
    Angelier N, Moreau N, Rodriguez ML, Penrad MM, Prudhomme C,1996. Does the chaperone heat shock protein hsp70 play a role in the control of developmental processes? Int. J. Dev. Biol.40:521-529.
    Ankel-Simons F, Cummins JM,1996. Misconception about mitochondria and mammalian fertilization:implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859-13863.
    Artal-Sanz M, Tavernarakis N,2009. Prohibitin and mitochondrial biology. Trends Endocrin Met 20(8):394-401.
    Artal-Sanz M, Tsang WY, Willems EM, Grivell LA, Lemire BD,2003. The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem 278:32091-32099.
    Asquith KL, Harman AJ, McLaughlin EA, Nixon B, Aitken RJ,2005. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction Biol Reprod 72(2):328-337.
    Barki A, Karplus I,1999. Mating behaviour and a behavioural assay for female receptivity in the red claw crayfish Cherax quadricarinatus. J. Crustacean Biol.19: 493-497.
    Barki A, Levi T, Hulata G, Karplus I,1997. Annual cycle spawning and molting in the redclaw crayfish, Cherax quadricarinatus, under laboratory conditions. Aquaculture 157:239-249.
    Beausoleil SA, Villen J, Gerber SA,2006. A probability-based approach for high-throughput protein phosphorylation analysis and site localization, Nat. Biotechnol.,24:1285-1292.
    Berger KH, Yaffe MP,1998. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol 18: 4043-4052.
    Berruti, G, Martegani, E,2001. MSJ-1, a mouse testes-specific DnaJ protein, is highly expressed in haploid male germ cells and interacts with the testes-specific heat shock protein Hsp70-2. Biol. Reprod.65(2):488-495.
    Boorstein, W.R, Ziegelhoffer, T, Craig, E.A,1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol.38:1-17.
    Borst DW, Laufer H,1990. Methyl farnesoate, a JH-like compound in crustaceans. In:Gupta, A.P. (Ed.), Morphogenic hormones of Arthropods, discoveries, synthesis, metabolism, evolution, mode of action and techniques. Rutgers University press, New Brunswick, NJ.
    Borst DW, Tsukimura B,1992. Methyl farnesoate levels in crustaceans. In: Mauchamp, B, Couillaud, F, Baehr, J.C. (Eds.), Insect juvenile hormone research. INRA Editions, Paris, pp:27-35.
    Borst DW, Wainwright G, Rees HH,2002. In vivo regulation of the mandibular organ in the edible crab, Cancer pagurus. Proc. R. Soc. Lond B, Biol. Sci.269: 483-490.
    Brill LM, Xiong W, Lee KB, Ficarro SB, Crain A, Xu Y, Terskikh A, Snyder EY, Ding S,2009. Phosphoproteomic analysis of human embryonic stem cells, Cell Stem Cell,5:204-213.
    Bugnot AB, Lopez Greco LS,2009. Sperm production in the red claw crayfish Cher ax quadricarinatus (Decapoda, Parastacidae). Aquaculture. Aquaculture 295: 292-299.
    Byard EH, Shivers RR, Aiken DE,1975. The mandibular organ of the lobster, Homarus americanus. Cell. Tissue. Res.162:13-22.
    Carsten M, Thomas L,2009. Prohibitin function within mitochondria:Essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793: 27-32.
    Cassier P,1990. Morphology, histology and ultra-structure of JH producing glands in insects. In:Gupta, A.P. (Ed.), Morphogenetic hormones of arthropods. Rutgers University press, New Brunswick, pp.184-194.
    Castrillon, D, Quade, B, Wang, T, Quigley, C, Crum, C,2000. The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. USA 97: 9585-9590.
    Chan SH, Wang LL, Chang KF, Ou CC, Chan JY,2003. Altered temporal profile of heat shock factor 1 phosphorylation and heat shock protein 70 expression induced by heat shock in nucleus tractus solitarii of spontaneously hypertensive rats. Circulation 107(2):339-345.
    Chang ES, Chang SA, Mulder EVA,2001. Hormones in lives of crustaceans:an overview. Am. Zool.41:1090-1097.
    Charmantier G, Charmantier-Daures M,1998. Endocrine and neuroendocrine regulations in embryos and larvae of crustaceans. Invertebr. Reprod. Dev.33:273-287.
    Chaves AR,2001. Effects of sinus gland extract on mandibular organ size and methyl farnesoate synthesis in the crawfish. Comp. Biochem. Physiol.128:327-333.
    Choongkittaworn NM, Kim KH, Danner DB, Griswold MD,1993. Expression of prohibitin in rat seminiferous epithelium. Biol Reprod 49:300-310.
    Choresh O, Loya Y, Muller WE, Wiedenmann J, Azem A,2004. The mitochondrial 60-kDa heat shock protein in marine invertebrates, biochemical purification and molecular characterization. Cell Stress Chaperon 9:38-47.
    Christians ES, Zhou Q, Renard J, Benjamin IJ,2003. Heat shock proteins in mammalian development. Semin Cell Dev. Biol.14:283-290.
    Chung JS, Manor R, Sagi A,2011. Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus:Implications for eyestalk regulation of IAG expression. General and Comparative Endocrinology,173:4-10.
    Claerhout T, Bendena W, Tobe SS, Borst DW,1996. Characterization of methyl transferase activity in the mandibular organ of the American lobster Homarus americanus. Biol. Bull.191:304-308.
    Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA,1997. The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7:607-610.
    Coates PJ, Nenutil R, McGregor A, Picksleye SM, Crouchf DH, Halla PA, Wright EG,2001. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res,265(2):262-73.
    Cordin O, Banroques J, Tanner NK, Linder P,2006. The DEAD-box protein family of RNA helicases, Gene,367:17-37.
    Costa Y, Speed RM, Gautier P, Semple CA, Maratou K, Turner JM, Cooke HJ, 2006. Mouse maelstrom:the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol. Genet.15:2324-2334.
    Cummins J,1998. Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172-182.
    Daugaard M, Rohde M, Jaattela M,2007. The heat shock protein 70 family, highly homologous proteins with overlapping and distinct functions. FEBS Lett.581: 3702-3710.
    Delelis-Fanien C, Penrad-Mobayed M, Angelier N,1997. Molecular cloning of a cDNA encoding the amphibian Pleurodeles waltl 70-kDa heat-shock cognate protein. Biochem. Biophys. Res. Commun.238:159-164.
    Demand J, Luders J, Hohfeld J,1998. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell Biol.18: 2023-2028.
    Dix DJ, Herrle MR, Gotoh H, Mori CO, Goulding EH, Barrett CV, Eddy EM, 1996. Developmentally regulated expression of Hsp70-2 and a Hsp70-2/lacZ transgene during spermatogenesis. Develop. Bio.174 (2):310-321.
    Eddy EM,1999. Role of heat shock protein HSP70-2 in spermatogenesis Rev Reprod 4:23-30.
    Eddy EM,2002. Male germ cell gene expression. Recent Prog. Horm.Res.57: 103-128
    Eggert KW, Neuer A, Clussmann C, Boit R, Geissler W, Rohr G, Strowitzki T, 2002. Seminal antibodies to human 60 kd heat shock protein (HSP60) in male partners of subfertile couples. Hum. Reprod.17:726-735.
    Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF,2008. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Human Genet 83:254-260.
    Eric A, Gustafson, Gary M, Wessel,2010. DEAD-box helicases:Posttrans-lational regulation and function. Biochem. Bio. Res. Communi.395:1-6
    Evans TG, Yamamoto Y, Jeffery WR, Krone PH,2005. Zebrafish HSP70 is required for embryonic formation. Cell Stress Chaperones 10:66-78.
    Eveleth DD, Marsh JL,1986. Sequence and expression of the Cc gene, a member of the dopa decarboxylase gene cluster of Drosoplzila:Possible translational regulation. Nucleic Acids Res 14:6169-6183.
    Extavour C,2005. The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 277:387-402.
    Extavour CQ Akam M,2003. Mechanisms of germ cell specification across the metazoans:epigenesis and preformation. Development 130:5869-5884.
    Fang J, Kubota S, Yang B, Zhou N, Zhang H, Godbout R, Pomerantz RJ,2004. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev, Virology,330:471-480.
    Feder ME, Hofmann GE,1999. Heat-shock proteins, molecular chaperones and the stress response, evolutionary and ecological physiology. Ann. Rev. Physiol.61: 243-282.
    Feng HL, Sandlow JI, Sparks AE,2001. Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril 76 (6):1136-1139.
    Freeman BC, Myers MP, Schumacher R, Morimoto RI,1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281-2292.
    Fuertes MA, Perez JM, Soto M, Menendez M, Alonso C,2004. Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70 Biochim Biophys Acta 1699:45-46.
    Fuller-Pace FV, Ali S,2008. The DEAD box RNA helicases p68 (DDX5) and p72 (Ddx17):novel transcriptional co-regulators, Biochem. Soc. Trans.36:609-612.
    Fusaro G, Dasgupta, Rastogi S, Joshi B, Chellappan SP,2003. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853-47861.
    Gething MJ, Sambrook J,1992. Protein folding in the cell. Nature 335:33-45
    Gillian AL, Svaren J,2004. The Ddx20/DP103 dead box protein represses transcriptional activation by Egr2/Krox-20, J. Biol. Chem.,279:9056-9063.
    Giudice G, Sconzo G, Roccheri MC,1999. Studies on heat shock proteins in sea urchin development. Dev. Growth Differ.41:375-380.
    Godbout R, Li L, Liu RZ, Roy K,2007. Role of DEAD box 1 in retinoblastoma and neuroblastoma, Future Oncol.3:575-587.
    Gunamalai V, Kirubagaran R, Subramoniam T,2004. Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica Milne Edwards. Gen. Comp. Endocrinol.138:128-138.
    Gupta RS, Singh B,1994. Phylogenetic analysis of 70 kDa heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus Curr Biol 4: 1104-1114.
    Gusev NB, Bukach OV, Marston SB,2005. Structure, properties, and probable physiological role of small heat shock protein with molecular mass 20 kD (Hsp20, HspB6). Biochemistry (Mosc) 70 (6):629-637.
    Hartl FU,1996. Molecular chaperones in cellular protein folding Nature 381: 571-579.
    Hay B, Jan LY, Jan YN,1988. A protein component of polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependant helicases. Cell 55: 577-587.
    Heikkila JJ,2010. Heat shock protein gene expression and function in amphibian model systems. Comp. Biochem. Physiol. A 156:19-33.
    Heinlein UA,1998. Dead box for the living, J. Pathol.184:345-347.
    Helmbrecht K, Zeise E, Rensing L,2000. Chaperones in cell cycle regulation and mitogenic signal transduction, a review. Cell Prolif.33:341-365.
    Henry RP, Borst DW,2006. Effects of eyestalk ablation on carbonic anhydrase activity in the euryhaline blue crab Callinectes sapidus; neuroendocrine control of enzyme expression. J. Exp. Zool.305:23-31.
    Hirling H, Scheffner M, Restle T, Stahl H,1989. RNA helicase activity associated with the human p68 protein. Nature,339:562-4.
    Holford KC, Edwards KA, Bendena WG, Tobe SS, Wang Z, Borst DW,2004. Purification and characterization of a mandibular organ protein from the American lobster Homarus americanus, a putative farnesoic acid O-methyltransferase. Insect Biochem. Mol. Biol.34:785-798.
    Holmstrom TH, Mialon A, Kallio M, Nymalm Y, Mannermaa L, Holm T, Black E, Johansson H,2008. C-Jun supports ribosomal RNA processing and nucleolar localization of RNA helicase DDX21, J. Biol. Chem.,283:7046-7053.
    Huang Y, Liu ZR,2000. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem,277:12810-12815.
    Iggo RD, Lane DP,1989. Nuclear protein p68 is an RNA-dependent ATPase. EMBO J,8:1827-1831.
    Ikonen E, Fiedler K, Parton RG, Simons K,1995. Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett 358:273-277.
    Isam Khalaila, Rivk Manor, Simy Weil, Yosef Granot, Rainer Keller, Amir Sagi, 2002. The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. General and Comparative Endocrinology 127:147-156.
    Ishaq M, Ma L, Wu X, MuY, Pan J, Hu J, Hu T, Fu Q, Guo D,2009. The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription, J. Cell. Biochem.,106:296-305.
    Isobe N, Yoshimura Y,2007. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle. J. Reprod. Dev.53,1119-1124.
    Jacobs AM, Nicol SM, Hislop RG,2007. SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDACl, Oncogene,26:5866-5876.
    Johnson BD, Schumacher RJ, Ross ED, Toft DO,1998. Hop modulates hsp70/hsp90 interactions in protein folding. J. Biol. Chem.273:3679-3686.
    Johnson ES,2004. Protein modification by SUMO, Annu. Rev. Biochem.,73: 355-382.
    Jones,1997. C. quadricarinatus is a native species in the north of Queensland (Australia) and the southeast of Papua New Guinea.
    Jones CM,1995. Production of juvenile redclaw crayfish, Cherax quadricarinatus (Von Martens) (Decapoda, Parastacidae) I. Development of hatchery and nursery procedures. Aquaculture 138,221-238.
    Jones CM,1997. The biology and aquaculture potential of the tropical freshwater frayfish Cherax quadricarinatus. Department of Primary Industries, Queensland, Australia.
    Jost JP, Schwarz S, Hess D, Angliker H, Fuller-Pace FV, Stahl H,1999. A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein—RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res,27:3245-52.
    Jupe ER, Liu XT, Kiehlbauch JL,1995. Prohibitin antiproliferative activity and lack of heterozygosity in immortalized cell lines. Exp Cell Res,218(2):577-80.
    Jupe ER, Liu XT, Kiehlbauch JL,1996a. The 3'untranslated region of prohibitin and cellular immortalization. Exp Cell Res,224(1):128-35.
    Jupe ER, Liu XT, Kiehlbauch JL,1996b. Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 3'untranslated region mutations. Cell Growth Differ,7(7):871-8.
    Kalverda AP, Thompson GS, Vogel A, Schroder M, Bowie AG, Khan AR, Homans SW,2009. Poxvirus K7 protein adopts a Bcl2 fold:biochemical mapping of its interactions with human DEAD box RNA helicase DDX3, J. Mol. Biol.385: 843-853.
    Kamaruddin M, Kroetsch T, Basrur PK, Hansen PJ, King WA,2004. Immunolocalization of heat shock protein 70 in bovine spermatozoa. Andrologia 36 (5):327-34.
    Kanai Y. Dohmae N, Hirokawa N,2004. Kinesin transports RNA:isolation and characterization of an RNA-transporting granule, Neuron 43:513-525.
    Karplus I, Gideon H, Barki A,2003. Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cher ax quadricarinatus into winter by environmental manipulations. Aquaculture 220:277-286.
    Karplus I, Hulata G, Barki A,2003. Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cherax quadricarinatus into winter by environmental manipulations. Aquaculture 220:277-286.
    Kasashima K, Ohta E, Kagawa Y, Endo H,2006. Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem,281(47):36401-36410.
    Khalaila I, Weil S, Sagi,A,1999. Endocrine balance between male and female components of the reproductive system in intersex Cherax quadricarinatus (Decapoda:Parastacidae). J. Exp. Zool.283:286-294.
    Kiang JG, Tsokos GC,1998. Heat shock protein 70 kDa, molecular biology, biochemistry, and physiology. Pharmacol Ther. 80:183-201.
    Kiledjian M, Dreyfuss G,1992. Primary structure and binding activity of the hnRNP U protein:Binding RNA through RGG box.. EMBO J 11:2655-2664
    Kim WJ, Kim JH, Jang SK,2007. Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A, EMBO J,26:5020-5032.
    Knowlton AA, Salfity M,1996. Nuclear localization and the heat shock proteins. J. Biosci.21:123-132.
    Koonin EV,1993. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication, Nucleic Acids Res.21:2541-2547.
    Koppen M, Langer T,2007. Protein degradation within mitochondria:versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol,42(3): 221-42.
    Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P,2006. The chromatoid body of male germ cells:similarity with processing bodies and presence of Dicer and microRNA pathway components, Proc. Natl. Acad. Sci. USA,103:2647-2652.
    Kotaja N, Sassone-Corsi P,2007. The chromatoid body:a germ cell-specific RNA-processing centre. Nat. Rev. Mol. Cell Biol.8:85-90.
    Krone PH, Evans TG, Blechinger SR,2003. Heat shock gene expression and function during zebrafish embryogenesis. Semin. Cell Dev. Biol.14:267-274.
    Kwok R, Zhang JR, Tobe SS,2005. Regulation of methyl farnesoate production by mandibular organs in the crayfish, Procambarus clarkii:a possible role for allatostatins. J. Insect Physiol.51:367-378.
    Lane DP, Hoeffler WK,1980. SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288:167-170.
    Lang L, Miskovic D, Lo M, Heikkila J,2000. Stress-induced, tissue-specific enrichment of hsp70 mRNA accumulation in Xenopus laevis embryos. Cell Stress Chaperones 5:36-44.
    Laufer H, Ahl JS, Rotlant G, Baclaski B,2002. Evidence that ecdysteroids and methyl farnesoate control allometric growth and differentiation in a crustacean. Insect Biochem. Mol. Biol.32:205-210.
    Laufer H, Ahl JS, Sagi A,1993. The role of juvenile hormones in crustacean reproduction. Am. Zool.33:365-374.
    Laufer H, Biggers WJ,2001. Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. Am. Zool.41: 442-457.
    Laufer H, Demir N, Pan X, Stuart JD, Ahl JS,2005. Methyl farnesoate controls adult male morphogenesis in the crayfish, Procambarus clarkii. J. Insect Physiol.51: 379-384.
    Laufer H, Landau M,1991. Endocrine control of reproduction in shrimp and other crustaceans. In:Dehoach, P, Dougherty, W.J, Davison, M.A. (Eds.), Frontiers in shrimp research. Elsevier Science Publications, Amsterdam, pp.65-81.
    Lemaire L, Heinlein UA,1993. High-level expression in male germ cells of murine P68 RNA helicase mRNA. Life Sci,52:917-926.
    Levesque M, Guimond JC, Pilote M, Leclerc S, Moldovan F, Roy S,2005. Expression of Heat-Shock protein 70 during limb development and regeneration in the axolotl. Dev. Dyn.233:1525-1534.
    Li L, Monckton EA, Godbout R,2008. A role for DEAD box 1 at DNA double-strand breaks, Mol. Cell. Biol,28:6413-6425.
    Li S, Wagner CA, Friesen JA, Borst DW,2003.3-Hydroxy-3-methyl glutaryl-coenzymeA reductase in the lobster mandibular organ, regulation by the eyestalk. Gen. Comp. Endocrinol.134:147-155.
    Linder P,2006. Dead-box proteins:a family affair-active and passive players in RNP-remodeling, Nucleic Acids Res.34:4168-4180.
    Lindquist S, Craig EA,1988. The heat shock proteins. Ann. Rev. Genet 22: 631-677.
    Liu C, Gilmont RR, Benndorf R, Welsh MJ,2000. Identification and characterization of a novel protein from Sertoli cells, PASS1, that associates with mammalian small stress protein HSP70. J. Biol. Chem.275(25):18724-18731.
    Liu Z, Wang G, Pan Y, Zhu C,2004. Expression of androgen receptor and heat shock protein 90alpha in the testicular biopsy specimens of infertile patients with spermatogenic arrest Zhonghua Nan Ke Xue 10(9):662-666.
    Liu ZR,2002. p68 RNA helicase is an essential human splicing factor that acts at the Ul snRNA-5V splice site duplex. Mol Cell Biol 22:5443-5450.
    Livak KJ, Schmittgen TD,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods 25: 402-408.
    Lopez Greco LS, Lo Nostro FL,2008. Structural changes of the spermatophore in the freshwater "red claw" crayfish Cherax quadricarinatus (von Martens,1898) (Decapoda, Parastacidae). Acta Zool 89:149-155.
    Lopez Greco LS, Vazquez FJ, Rodriguez E,2007. Morphology of the male reproductive system and spermatophore formation in the freshwater "red claw" crayfish Cherax quadricarinatus (Von Martens,1898) (Decapoda, Parastacidae). Acta Zool.88:223-229.
    Lovett DL, Tanner CA, Glomski K, Ricart TM, Borst DW,2006. The effect of seawater composition and osmolality on hemolymph levels of methyl farnesoate in the green crab Carcinus maenas. Comp. Biochem. Physiol.143:61-11.
    Luchini L,2004. Algo mas sobre el cultivo de la red claw(Cherax quadricarinatus) Ed Secretaria de Agricultura, Ganaderia, Pesca y Alimentos (SAGPyA), Subsecretaria de Pesca y Acuicultura.
    Macario AJ, Conway de Macario E,2007. Molecular chaperones, multiple functions,pathologies, and potential applications. Front Biosci.1:2588-2600.
    Marcelo GG, Michel EH, Humberto V,2003. Description of the embryonic developmentof Cherax quadricarinatus (von martens,1868) (decapoda, parastacidae), based on the staging method. Crustaceana 76 (3):269-280
    Matwee CN, Kamaruddin M, Betts DH, Basrur PK, King WA,2001. The effects of antibodies to heat shock protein 70 in fertilization and embryo development. Mol. Hum. Reprod.9:829-837.
    Mayer MP, Bukau B,2005. Hsp70 chaperones, cellular functions and molecular mechanism. Cell Mol. Life Sci.62:670-684.
    McClung JK, Danner DB, Stewart DA, Smith JR, Schneider EL, Lumpkin CK, Dell'Orco RT, Nuell MJ,1989. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem Biophys Res Commun,164 (3):1316-22.
    Meistrich ML, Mohapatra B, Shirley CR, Zhao M,2003. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483-488
    Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B,2008. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22(4):476-88.
    Merkwirth C, Langer T,2009. Prohibitin function within mitochondria:essential roles for cell proliferation and cristae morphogenesis. Biochemica et Biophysica Acta, 1793(1):27-32.
    Miller D, Brough S, Al-Harbi O,1992. Characterization and cellular distribution of human spermatozoal heat shock proteins. Hum. Reprod.7:637-645.
    Minshall N, Kress M, Weil D, Standart N,2009. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly, Mol. Biol. Cell,20:2464-2472.
    Minshall N, Reiter MH, Weil D, Standart N,2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes, J. Biol. Chem.,282: 37389-37401.
    Minshall N, Standart N,2004. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer, Nucleic Acids Res.32:1325-1334.
    Mishra S, Murphy LC, Murphy LJ,2006. The prohibitins:emerging roles in diverse functions. J Cell Mol Med,10(2):353-363.
    Mochizuki K, Fujisawa C, Fujisawa T,2001. Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299-308.
    Mohamed AA, Hanan AA, Mahmoud Rezk AH,2008. Heat shock protein 27 expression in the human testis showing normal and abnormal spermatogenesis. Cell Biology International 32:1247-1255.
    Mohamed Abdelhaleem 2005. RNA helicases:Regulators of differentiation. Clinical Biochemistry 38:499-503
    Mori C, Nakamura N, Dix DJ, Fujioka M, Nakagawa S, Shiota K, Eddy EM, 1997. Morphological analysis of germ cell apoptosis during postnatal testes development in normal and Hsp 70-2 knockout mice. Dev Dyn 208(1):125-136.
    Mouillet JF, Yan X, Ou Q, et al.,2008. DEAD-box protein-103 (DPl03, Ddx20) is essential for early embryonic development and modulates ovarian morphology and function, Endocrinology,149:2168-2175.
    Multhoff, G,2007. Heat shock protein 70 (Hsp70), membrane location, export and immunological relevance. Methods 43,229-237.
    Myasnikov AG, Simonetti A, Marzi S, Klaholz BP,2009. Structure-function insights into prokaryotic and eukaryotic translation initiation, Curr. Opin. Struct. Biol. 19:300-309.
    Nagaraju GPC, Suraj NJ, Reddy PS,2003. Methyl farnesoate stimulates gonad development in Macrobrachium malcolmsonii Milne Edwards. Crustaceana 76: 1171-1178.
    Narasimhan S, Armstrong M, McClung JK, Richards FF, Spicer EK,1997. Prohibitin, a putative negative control element present in Pneumocystis carinii. Infect Immun 65(12):5125-5130.
    Neuer A, Spandorfer SD, Giraldo P, Dieterle S, Rosenwaks Z, Witkin SS,2000. The role of heat shock proteins in reproduction. Hum. Reprod. Update 6:149-159.
    Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA,2000. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444-2451.
    Nijtmans LG, Sanz AM, Grivell LA, Coates PJ,2002. The mitochondrial PHB complex:roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59:143-155.
    Noce, T. et al.2001. Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct.26,131-136
    Nuell MJ, Stewart DA, Walker L, Friedman V, Wood CM,1991. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol Cell Biol 11:1372-1381.
    Olmstead AW, Leblanc GA,2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J. Exp. Zool.293:736-739.
    Olsen JV, Blagoev B, Gnad F,2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks, Cell,127:635-648.
    Olsen LC, Aasland R, Fjose AA,1997. VASA-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev.66,95-105.
    Ou JX, Huang SF, Chen H,2010. Research Progress in the Structure and Functions of Prohibitin. J Reproduction and Contraception 21(2):117-124.
    Papadimitrou E, Kritikou D, Mavroidis M, Zacharopoulou A, Mintzas A,1998. The heat shock 70 gene family in the Mediterranean fruit fly Ceratitis capitata. Insect Mol. Biol.7:279-290.
    Parvinen M,2005. The chromatoid body in spermatogenesis. Int. J. Androl.28: 189-201
    Piper PW, Jones GW, Bringloe D, Harris N, MacLean M,2002. The shortened replicative life span of PHB mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells. Aging Cell 1(2):149-157.
    Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M,2005. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837-843.
    Rajender S, Rahul P, Mahdi AA,2010. Mitochondria, spermatogenesis and male infertility. Mitochondrion 10(5):419-428.
    Rocak S, Linder P.2004. DEAD-box proteins:The driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232-241.
    Rodgers LJ, Saoud PI, Rouse DB,2006. The effects of monosex culture and stocking density on survival, growth and yield of redclaw crayfish (Cherax quadricarinatus) in earthen ponds. Aquaculture 259:164-168.
    Rodriguez EM, Lopez Greco LS, Medesani DA, Laufer H, Fingerman M,2002. Effect of methyl farnesoate alone and in combination with other hormones on ovarian growth of the red swamp crayfish Procambarus clarkii during vitellogenesis. Gen. Comp. Endocrinol.125:34-40.
    Rosario MO, Perkins S.L, O'Brien DA, Allen RL, Eddy EM,1992. Identification of the gene for the developmentally expressed 70 kDa heat-shock protein (P70) of mouse spermatogenic cells. Dev. Biol.150:1-11.
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S, 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research 26(7):1628-1635.
    Roskams AJ, Friedman V, Wood CM, Walker L, Owens GA,1993. Cell cycle activity and expression of prohibition mRNA. J Cell Physiol 157:289-295.
    Rotllant G, Takac P, Liu L, Scott GL, Laufer H,2000. Role of ecdysteroids and methyl farnesoate in morphogenesis and terminal moult in polymorphic males of the spider crab Libinia emarginata. Aquaculture 190:103-118.
    Saffman EE, Lasko F,1999. Germline development in vertebrates and invertebrates. Cell. Mol. Life Sci.55:1141-1163.
    Sagi A, Homola E, Laufer H,1993. Distinct reproductive types of male spider crabs Libinia emarginata differ in circulating and synthesizing methyl farnesoate. Biol.Bull.185:168-173.
    Saitou N, Nei M,1987. The neighbor-joiningmethod:a newmethod for reconstructing phylogenetic trees. Mol. Biol. Evol.4:406-425.
    Saluja A, Dudeja V,2008. Heat shock proteins in pancreatic diseases. J. Gastroenterol Hepatol 23:42-45.
    Sandhu H, Lemaire L, Heinlein UA,1995. Male germ cell extracts contain proteins binding to the conserved 3'-end of mouse p68 RNA helicase mRNA. Biochem Biophys Res Commun,214:632-638
    Sato T, Daito H, Swensen J, Olifant A, Wood C,1992. The human Prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cncer. Cancer Res 52:762-764.
    Satoh J, Nanri Y, Yamamura T,2006. Rapid identification of 14-3-3-binding proteins by protein microarray analysis, J. Neurosci. Methods,152:278-288.
    Schroder M, Baran M, Bowie AG,2008. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation, EMBO J.,27: 2147-2157.
    Schulz RW, de Franca LR, Lareyre JJ, Le Gac F, Chiarini-Garcia H, Nobrega RH, Miura T,2010. Spermatogenesis in fish. Gen Comp Endocrinol 165:390-411
    Sekiguchi T, Kurihara Y, Fukumura J,2007. Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro, Biochem. Biophys. Res. Commun.356:668-673.
    Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S.2006. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287-300
    Seufert W, Kos R, Erickson CA, Swalla BJ,2000. A DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. J Exp Zool 288 (68):193-204.
    Seydoux G, Braun RE,2006. Pathway to totipotency:lessons from germ cells. Cell 127:891-904
    Sharma A, Qadri A,2004. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci 101:17492-17497.
    Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML,2006. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis, J. Biol. Chem.,281:35048-35056.
    Shibata N, Tsunekawa N, Okamoto-Ito S, Akasu R, Tokumasu A, Noce T,2004. Mouse RanBPM is a partner gene to a germline specific RNA helicase, mouse vasa homolog protein, Mol. Reprod. Dev.,67:1-7.
    Shih JW, Tsai TY, Chao CH, Wu Lee YH,2008. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein, Oncogene,27:700-714.
    Shivaji S, Kota V, Siva AB,2009. The role of mitochondrial proteins in sperm capacitation. J Reprod Immunol 83:14-18.
    Snedecor G, Cochran W,1971. Statistical Methods. Ames, Iowa:The Iowas State University Press.
    Soulat D, Burckstummer T, Westermayer S,2008. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J.,27:2135-2146.
    Span M, Evenson DP,1993. Flow cytometric analysis for reproductive biology. Biol Cell 78:53-62.
    Spiropoulos J, Turnbull DM, Chinnery PF,2002. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Human Reprod 8:719-721.
    Steger K.2001. Haploid spermatids exhibit translationally repressed mRNAs. Anat. Embryol. (Berl.) 203,323-334
    Steglich G, Neupert W, Langer T,1999. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol,19(5):3435-42.
    Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, Fuller-Pace FV,1998. Expression of the'dead box'RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus, J. Pathol., 184:351-359.
    Sugiura T, Sakurai K, Nagano Y,2007. Intracellular characterization of DDX39, a novel growth-associated RNA helicase, Exp. Cell Res.,313:782-790.
    Sun L, Liu L, Yang XJ, Wu Z,2004. Akt binds Prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J Cell Sci 117:3021-3029.
    Sutovsky P,2003. Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control:killing three birds with one stone. Microscopy Res Technol 61(1):88-102.
    Takata H, Matsunaga S, Morimoto A, Ma N, Kurihara D et al,2007. Prohibitin 2 protects sister-chromatid cohesion in mitosis. Curr Biol 17:1356-1361.
    Tamura K, Dudley J, Nei M, Kumar S,2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
    Tatsuta T, Langer T,2008. Quality control of mitochondria:protection against neurodegeneration and ageing. EMBO J,27(2):306-14.
    Tatsuta T, Model K, Langer T,2005. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248-259.
    Tavernarakis N, Driscoll M, Kyrpides NC,1999. The SPFH domain:implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 24:425-427.
    Terashima M, Kim KM, Adachi T, Nielsen PJ, Reth M,1994. The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J 13(16):3782-3792.
    Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP,2007. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 21:197-206.
    Thompson WE, Powell JM, Whittaker JA, Sridaran R, Thomas KH,1999. Immunolocalization and expression of prohibitin, a mitochondrial associated protein within the rat ovaries. Anat Rec 256 (1):40-48.
    Uhlmann-Schiffler H, Kiermayer S, Stahl H,2009. The DEAD box protein Ddx42p modulates the function of ASPP2, a stimulator of apoptosis, Oncogene,28: 2065-2073.
    Wang S, Nath N, Adlam M, Chellappan S,1999. Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene,18(23):3501-10.
    Werner A, Meinhardt A, Seitz J, Bergmann M,1997. Distribution of heat-shock protein immunoreactivity in testes of infertile men. Cell Tissue Res.288,539-544.
    Weston A, Sommerville J,2006. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation, Nucleic Acids Res.,34:3082-3094.
    Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV,2004. The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner, BMC Mol. Biol.,5:11.
    Woodlocka TJ, Bethlendya G, Segel GB,2001. Prohibitin Expression Is Increased in Phorbol Ester-Treated Chronic Leukemic B-Lymphocytes. Blood Cells, Molecules and Diseases,17:27-34.
    Yang L, Lin C, Liu ZR,2006. P68 RNA helicase mediates PDGF-induced epithelial-mesenchymal transition by displacing Axin from beta-catenin. Cell,127: 139-155.
    Yang L, Lin C, Zhao S, Wang H, Liu ZR,2007. Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up regulating cyclin D1 and c-Myc expression, J. Biol. Chem.,282:16811-16819.
    Zakowicz H, Yang HS, Stark C, Wlodawer A, Laronde-leblanc N, Colburn NH, 2005. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI, RNA,11:261-274.
    Zhou J, Wang WN, He WY, Zheng Y, Wang L Xin Y, Liu Y Wang AL,2010. Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. J. Invert. Patho.103:170-178.
    蔡生力.甲壳动物内分泌学研究和展望.水产学报,1998,22(2):154-161.
    陈孝煊,吴志新,罗字良,等.红螯螯虾产卵量与孵卵时间的研究.水利渔业,1996,(4):23-24.
    丁银娣,贾林芝,马强,等.红螯螯虾输精管的结构及精荚的形成.水产学报,2009,33(1):78-83.
    丁银娣,王群,李恺,等.红螯螯虾雄性生殖系统的生化组成及精子代谢.中 国水产科学,2005a,12(5):526-528.
    丁银娣.红螯螯虾(Cherax quadricarinatus)精荚形成、精子代谢及其雄性腺结构和功能研究.华东师范大学,硕士学位论文,2005b.
    堵南山编著.甲壳动物学(下册).北京:科学出版社,1993.
    堵南山,赖伟,陈立侨,等.蟹类精子超微结构的比较研究.1999,20(5):372-378.
    樊玉杰,曾错,赵云龙,等.红螫螯虾生殖系统的组织学研究.上海师范大学学报(自然科学版),2004,33(12):42-47.
    樊玉杰.红螯螯虾(Cherax quadricarinatus)生殖系统发育的研究.华东师范大学,硕士学位论文,2005.
    甘信辉,李伟微,李嘉尧,等.饲料中胆固醇含量对雄性红螯光壳螯虾生长及生殖的影响.动物学杂志,2011,46(1):86-92.
    甘信辉.脂类营养对雄性红螯光壳螯虾生长和生殖的影响研究.华东师范大学,硕士学位论文,2010.
    顾志敏,许谷星,密国强,等.红螯螯虾的国内外养殖情况及其发展前景.水产养殖,1997,2:22-24.
    郭占林,李嘉尧,甘信辉,等.不同脂肪源对红螯光壳螯虾幼虾生长、消化酶活性及其肌肉生化组成的影响.中国水产科学,2010a,17(5):996-1004
    郭占林.红螯光壳螯虾(Cherax quadricarinatus)仔虾及幼虾脂质营养的研究.华东师范大学,硕士学位论文,2010b.
    李荷迪.红螯螯虾胚胎营养代谢的研究.华东师范大学,硕士学位论文,2004.
    李红,盂凡丽,田华梅,等.红螯螫虾人工养殖技术.华东师范大学学报,1999:116-119.
    李家尧.红螯光壳螯虾(Cherax quadricarinatus)卵黄发生的研究.华东师范大学,硕士学位论文,2008.
    罗文,王群,赵云龙,等.维生素E对红螯螯虾繁殖性能的影响.海洋与湖沼,2005,36(4):335-341.
    罗文,赵云龙,王群等.光照对红螯螯虾繁殖性能及其受精卵卵质的影响.水产学报,2004,28(6):675-681.
    罗文.红螯螯虾(Cherax quadricarinatus)胚胎营养代谢的研究.华东师范大 学,博士学位论文,2004.
    罗字良,吴志新,陈孝煊等.红螯螫虾精巢发育的组织学研究.华中农业大学学报,1999,18(1):78-79.
    孟凡丽,赵云龙,陈立侨等.红螯螯虾胚胎发育研究Ⅰ.胚胎外部结构的形态发生.动物学研究2000,21(6):468-472.
    孟凡丽,赵云龙,陈立侨等.红螯螯虾胚胎发育研究Ⅱ.消化系统的发生.动物学研究,2001,22(5):383-387.
    钱诗群,庞守忠.红螯螯虾的生物学特性及其养殖简介.内陆水产,1997(8):25.
    舒新亚,杜健鹰,张从义等.红螯螯虾(Cherax quadricarinams)人工繁殖试验.水产科技情报,2004,31(5):210-211.
    王福刚,陈碧霞,刘伟斌,等.红螯螯虾人工繁殖技术研究Ⅰ.红螯螯虾生物学特性的观察.福建水产,1995(4):12-15.
    吴晓燕.转录因子RFX1调控狼疮T细胞CD11a和CD70基因表达的表观遗传机制研究.中南大学,硕士学位论文,2011.
    吴志新,陈孝煊,罗宇良,等.不同饵料蛋白质含量对红螯螯虾生长的影响.水利渔业,1998(4):22-23.
    叶玉珍,吴清江,董新红.澳洲淡水红螯螯虾繁殖特性及精荚显微结构的研究.水利渔业,1997,92(5):9-11.
    赵云龙,孟凡丽,陈立侨等.不同水温对红螯螯虾胚胎发育的影响.湖泊科学,2000a,12(1):59-62.
    赵云龙,孟凡丽,陈立侨等.红螯螯虾繁殖习性的研究.动物学研究,2000b,35(5):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700