溶胶凝胶自蔓延法低温烧结MnZn铁氧体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MnZn铁氧体作为软磁性材料被广泛用于通讯、汽车、医疗、工业、军事和宇航等领域。随着现代设备的高性能、高密度和高可靠性的要求,LTCC(Low Temperature Co-fired Ceramics)封装技术成为了现代研究的热点。由于内电极的共烧要求,LTCC的烧结温度要控制在900℃以下。作为其中的主要元件之一,电感磁性材料的烧结温度也要控制在900℃以内。本文通过液相法合成超细纳米粉体以及添加助烧剂的办法实现低温烧结。
     首先,以分析纯的硝酸铁、硝酸锰、硝酸锌、柠檬酸、氨水、硝酸以及去离子水为主原料,分析纯的硝酸铜、硝酸铋为添加剂原料,利用干凝胶自蔓延燃烧工艺合成纳米级MnZn铁氧体粉体,用X衍射(XRD)仪和透射电子显微镜(TEM)分析了粉体的晶体结构、粉体粒径及颗粒分布程度。综合分析了原料、络合剂、pH值、硝酸盐浓度以及热处理对纳米铁氧体粉体的生成过程及粉体结构的影响,试图寻找最佳的粉体制备工艺条件。
     其次,在MnZn铁氧体原始配方中加入不同的少量添加剂Cu(NO3)2·3H2O和Bi(NO3)3·5H2O,所制得的干凝胶,自燃烧后获得的粉末加入一定量的酒精,反复冲洗三次,然后球磨、烘干、造粒并干压成圆片状坯体。将坯体在850℃、875℃、900℃、930℃、950℃的温度下烧结,低温合成了一系列的Mn0.5Zn0.5Fe2O4+xBi2O3/ CuO/ (CuO-Bi2O3)铁氧体(x=0~8wt%)。利用扫描电子显微镜(SEM)、振动样品磁强计(VSM)研究了烧结MnZn铁氧体的成相、致密化和磁性能。
     实验结果分析,纳米级粉体制备的纯MnZn铁氧体,烧结温度为930℃;CuO引入,烧结温度降到900℃,MnZn铁氧体的磁性能有一定的提高。Bi2O3引入,烧结温度虽降到850℃,但损失了磁性能。CuO-Bi2O3引入,其磁性能大幅度提高:磁导率188,比饱和磁强度60.09emu/g。综上所述在Mn0.5Zn0.5Fe2O4的基础上掺杂CuO-Bi2O3,可得到低温烧结、优良磁性能的MnZn铁氧体。
MnZn ferrite materials are extensively applied in telecommunications, cars, industry, military affairs and space navigation etc. With the trend of modern electronic applications towards optimum properties, high density and high reliability, LTCC technology is paid more attention to being an hotspot. Due to co-fired request of inside electrode, it is required to control sintering temperarture of LTCC technology less than 900℃. For one of important component, sintering temperarture of LTCC technology will be also controlled less than 900℃. Liquid phase method prepared nanopowders and added additives is used to lower sintering temperarture in this paper.
     Firstly, Soft magnetic MnZn ferrite nanoparticles were prepared by a novel sol-gel auto-combustion method using Mn(NO3)2,Fe(NO3)3·9H2O and Zn(NO3)2·6H2O as a starting materials dissolved in water and citric acid. The powder was charactered by X-ray diffraction analysis and transmission electron Microscope (TEM) method. The effects of process and powders structure were further studied, considering and analyzing raw materials, complexing agent, pH value, concentration, heat treatment.
     Secondly, Soft magnetic MnZn ferrite powders were washed repeatedly by alcohol, then groud, dried, made grains and pressed into wafer. At 850~950℃, Mn0.5Zn0.5Fe2O4+xBi2O3/CuO/(CuO·Bi2O3) (where x=0~8wt%) ferrites were prepared under low temperatures. The effects of on phase formation, densification process, and magnetic properties were further studied by scanning electron microscope (SEM) and vibrating samples magnetometer (VSM).
     The experimental results show that sintering temperature of pure MnZn-ferrite is only 930℃. An appropriate amount of Bi2O3 can lower the sintering temperature obviously to 850°C but sacrifice the magnetic property. An appropriate amount of CuO and CuO-Bi2O3 can also lower the sintering temperature below 900°C and improve the magnetic property which high values of the permeability and the saturation magnetization are 188 and 60.09 emu.g-1 respectively. Thus CuO-Bi2O3 is subsequently evaluated for its contribution to lower the sintering temperature and improve the magnetic property of MnZn-ferrites.
引文
[1] 大森丰明主编, 刘代琦, 梁宇青译, 磁性材料手册,北京:机械工业出版社,1985, 189.
    [2] 齐风春,软磁材料的发展现状,材料学报,1995, 3: 27–30.
    [3] 何水校,软磁铁氧体材料的应用与市场,磁性材料及器件,1997, 29(1):44–47.
    [4] Zeng.M. Modern ferrite technologies and products. J.of Materials and Product Technology.1994, 9(4-6):265–280.
    [5] Topfer. J, Schops.W, Nauber.P, et al. Modern developmental trend in the producti- on and application of hard and soft magnetic ferrite materials. CFI, Ceram Forum Int.1999, 76(9): 49–55.
    [6] 何水校,锰锌铁氧体材料的未来发展动向磁性材料及器件,2001, 32(6): 27–30.
    [7] 周志刚,铁氧体磁性材料,北京:科学出版社,1981, 55–57.
    [8] 周亚栋,无机材料物理化学,武汉:武汉工业大学出版社,1994, 167–168.
    [9] Marcano. J. R, Mora. A. E, dreman. O. O, et al. Single-crystal structural study of an atural (Zn, Mn) ferrite. Materials Research Bulletin.1996, 31(12):1587–1592
    [10] 李萌远,李国栋.铁氧体物理学,北京:科学出版社,1978.30.
    [11] Wohifarth.E.P主编,刘增民等译铁磁材料--磁有序物质特性手册卷, 北京电子工业出版社,1993.28.
    [12] 龙毅,张正义,李守卫编,新功能磁性材料及其应用,北京:机械工业出版社,1997, 1–5.
    [13] 潘道凯,赵成大,邓载兴等编,物质结构,北京:高等教育出版社,1996, 516.
    [14] 马本, 杨先发, 王热等编,固体物理基础,北京科学技术出社,1992, 356.
    [15] 何玉平,胡国光,尹萍,用精铁矿粉制备功率软磁MnZn铁氧体的初步研究,安徽大学学报,2001, 25(2): 52–58.
    [16] 艾树涛,胡国光,高磁导率Mn-Zn铁氧体的配方和烧结工艺的研究,安徽大学学报,1999, 23(1): 130–136.
    [17] A.Thakur, M.Singh.Preparation and characterization of nanosize Mn0.4Zn0.6Fe2O4 ferrite by citrate precursor method[J].Ceramics International. 2003,299, 505–511.
    [18] Shifeng Yan, Wei Ling, Enle Zhou. Rapid synthesis of Mn0.65Zn0.35Fe2O4/SiO2 homogeneous nanocomposites by modified sol–gel auto-combustion method[J]. Journal of Crystal Growth, 2004, 8(25): 226–233.
    [19] J.H.Lee, Kim C.K., Katoh S, et al. Microwave-hydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders[J]. Journal of Alloys and Compounds, 2001, 325(1): 276–280.
    [20] V.M. Bujoreamu, E.Segal, On the dehydration of mixed oxides powders coprecipitated from aqueous solutions[J], Solid State Sci. 2001, 3(4): 407.
    [21] Z. Yuexing, J. Zhou, L. Li, X. Wang, et al. Effect of copper on the electromagne- tic properties of MgZnCu ferrites prepared by sol–gel auto-combustion method [J]. Mater. Sci. Eng. B, 2001, 86(1): 64.
    [22] Albet Rousset. Reactibity of solids and new metastable phase:examples of mixed valence defect spinel ferrites and manganites. Solid State Ionics. 1993, 63–65: 236–242.
    [23] Laarj. M, Kacim. S, Gillot. B. Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometcr. MnxCoFe2-x spinel ferrites. J. Solid State Chemistry.1996, 125: 67–74.
    [24] Gillot. B, Domenichini. B. Effect of the preparation method and grinding time of some mixed valency feferrite spinels on their cationed distribution and thermal stability towards oxygen. Materials Chemistry and Physics. 1997, 47:217–224
    [25] Masahiro Tabata, Kazuhiro Akanuma, Kenichi Nishizawa, et al. Reactivity of oxygen-deficient Mn (II)-bearing ferrites (MnxFe3-xO4, 0≤ x≤1,) towards CO2 decomposition to carbon. J. Materials. Science.1993, 28: 5753–5760.
    [26] Rietveld. B. A profile refinement method for nuclear and magnetic structure. J. A ppl. Cryst.1969, 2: 65–71.
    [27] Trivedi.U.N, Jani.K.H, Modi.K.B, et al. Study of cation distribution in lithium doped nickel ferrite. J. Mater. Sic. Lett. 2000, 19: 1271–1273.
    [28] Qiang-min Wei, Jian-bao Li, Yong-jun Chen, et al. Cation distribution in NixMnl-xFe2O4 ferrites. Materials Chemistry and Physics. 2002, 74: 340–343.
    [29] 杨文,杨邦朝,阳离子分布对尖晶石型热敏陶瓷电性能的影响,功能材料, 2000, 31(5): 513–515.
    [30] Chhaya.U.V, Trivedi.B.S, Kulkami.R.G. Magnetic ordering and properties of nickel ferrites doped with Al3+ and Cr3+ ions. J.Mater.Sci.Lett.1999, 18: 1177– 1179.
    [31] Hemeda. O. M, Said. M. Z, Barakat. M. M. Spectral and transport phenomenain Ni ferrite-substituted Gd2O3. J. Magn. Magn. Mater. 2001, 224: 132–142.
    [32] 张熙,磁性材料及器件国内外市场情况,磁性材料及器件,1993, 24(4): 1–8
    [33] 胡效敏,热敏MnZn铁氧体材料,磁性材料及器件,1985, 16(2): 28–31.
    [34] 王耕福,软磁铁氧体生产应用和市场预测,磁性材料及器件,1995, 26(2): 11–14.
    [35] 汪敢,高频电源铁氧体的新进展磁性材料及器件,1991, 22(2): 29–33.
    [36] 谭小平,古映莹,尖晶石型超微铁氧体粉末合成方法进展,磁性材料及器件,2002, 33(4): 17–20.
    [37] Liu.C.S, Wu.J.M, Tsay.M.J, et al. Optimum power-loss and microstructure of MnZn Ferrite sunder consideration of particle size. IEEE Trans Magn.1996, 32(5): 4860–4862.
    [38] K.Mandal, S.Pan Mandal, P.Agudo et al. A study of nanocrytalline (Mn-Zn) ferrite in SiO2 matrix[J]. Applied Surface Science 182(2001) 386–389.
    [39] Gasiorek S, Kulikowski J. Some physical and technological effects of V2O5 or Bi2O3 on the properties of Ni-Zn ferrites. J.Magn.Magn.Mater.1982,26: 295–296
    [40] Sale F. R, Fan J, Chien Y. T. The effects of V2O5 on the microstructure and magnetic properties of gel-derived Mg-Mn-Zn and Mn-Zn ferrites. Am. Ceram.Trans.1995, 47: 155–167.
    [41] Naramura T, OkanoY. Low temperature sintered Ni-Zn-Cu ferrite. J.phys, IV (France).1997, 7: CI–91–CI–92.
    [42] Rezlescu E, Sachelarie L, Popa P.D, et al. Effect of substitution of divalent Ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE. Trans. Magn.2000, 36(6):3962–3967.
    [43] Fujii H, Harada S, Kawamata T. Development of non-shrinking Ni-Zn-Cu soft ferrites. J. Magn. Soc. JPn.1998, 22: 37–39.
    [44] Kwang Pyo Chae, Won Ki Kim, Sung Ho Lee, et.al. Crystalloraphic and magnetic properties of TixCo1+xFe2-2xO4 ferrite powder. J. Magn. Magn. Mater. 2001, 232(l): 133–138.
    [45] Rezlescu.E, Rezlescu.N, Pasnicu.C, et al. Nickel-Zinc ferrites with Ti-Ge substitution for high-frequency use. Ceramic Int.1993, 19: 71–75.
    [46] Znidarsic.A, Limpel.M, Drofenik.M. Effect of dopants on the magnetic properties of MnZn-Ferrites for high frequency power supplies. IEEE. Trans. Magn.1995, 31(2): 950–953.
    [47] Ken Hirota, Osamu Inoue. Sodium-doped Mn-Zn ferrites-microstructure and properties. Am. Ceram. Soc. Bull. 1987, 66(12): 1755–1758.
    [48] Matsuo.Y, Ono. K, Ishikura. M. et al. Effects of MoO3 addition on manganesezinc ferrites. IEEE. Trans. Magn.1997, 33(5):3751–3753.
    [49] Su-Ii Pyun, Seung-Hyun Chang, Duk-NongYoon, et-al. Permeability and Temperature dependence of permeability in Co2+ and Al3+ doped Mn-Zn ferrites. Am.Ceram.Soc.Bull.1985, 64(4): 585–588.
    [50] Tatsuji Aoyama, Sinsuke Enomoto, Masaru Yoshinaka, et al. Electric and magnetic properties of low-temperature sintering Mn-Zn ferrite by addition of lithium borosilicate glass. J. Mater. Sci. Lett. 1999, 18: 479–499.
    [51] Geun-Min Jeong, Jaeho Choi, Sung-Soo Kim. Abnormal grain growth and magnetic loss in Mn-Zn ferrites containing CaO and SiO2. IEEE. Trans. Magn. 2000, 36(5): 3405–3407.
    [52] Soon Cheon Byeon, Kug Sun Hong, In-Tae Kim. Line width of manganese-zinc ferrite polycrystals with oxygen partial pressure. Journal of Applied Physics. 2000, 83(11): 6873–6875.
    [53] 林其壬,铁氧体工艺原理,上海:上海科学技术出版社,1987.
    [54] Roess E. Manufacturing problems and quality assurance in the production of soft ferrites. J. Magn. Magn. Mater., 1984, 86: 576-579.
    [55] Roess E. Magnetic properties and microstructure of high permeability MnZn ferrites. FERRITES, 1970, 7: 203-209.
    [56] Hon Y. S., Ko Y. C. The two step sintering of MnZn ferrites. Proceeding of the Sixth International Conference on Ferrites (ICF6). Kyoto and Tokyo, Japan. 1992: 35-308.
    [57] Nomura T., Okatani K., Kitagawa T., et al. Sintering of MnZn ferrites for Power electronics. Amer. Ceram. Soc. Bulletin, 1982, 61(8): 809-812.
    [58] Wager U. Aspects of the correlation between raw material and ferrite properties. J. Magn. Magn. Mater., 1981, 23: 73-78.
    [59] Yan M. F., Johnson D. W. Impurity induced exaggerated grain growth in MnZn ferrites. J. Amer. Ceram. Soc., 1978, 61(7): 342-349.
    [60] Nakata A., Chihara H., Sasaki A. Microscopic study of grain boundary regions in polycrystalline. J. Appl. Phys., 1985, 35(6): 4177-4179.
    [61] Brook R. J. Pore-grain boundary interaction and grain growth. J. Amer. Ceram. Soc., 1969, 52(1): 56-57.
    [62] Zegadi L., Rousseau J. J., Allard B., et al. Model of power soft MnZn ferrites, including temperature effect. IEEE Trans. Magn., 2000, 36(4): 2022-2032.
    [63] Chen S. H., Chang S. C., Lin I. N. The influence of grain boundary internal stresson permeability: temoerature curve for MnZn ferrites. J. Magn. Magn. Mater., 2000, 209: 193-196.
    [64] Ravinder D., Latha K. Electrial conductivity of MnZn ferrites. J. Appl. Phys., 1994, 75(10): 6118-6120.
    [65] Rosales M. L., Valenzuela O. A., Valenzuela R. Microstructure dependence of AC magnetic properties in MnZn ferrites. IEEE Trans. Magn., 2001, 37(4): 2373-2376.
    [66] Zenger M., Bogs M., Lucke R., et al. High quality ferrite production. Amer. Ceram. Soc. Bulletin, 1995, 74(8): 77-81.
    [67] Matsuo Y., Ono K., Hashimoto T. Magnetic properties and mechanical strength of MnZn ferrite. IEEE Trans. Magn., 2001, 37(4): 2369-2372.
    [68] Sakamoto H., Harada K., Washimiya S., et al. Large air gap coupler for inductive charge. IEEE Trans. Magn., 1999, 35(5): 3526-3528.
    [69] Rath C., Anand S., Das R. P., et al. Dependence on cation distribution of particle size, lattice, and magnetic properties in nanosize MnZn ferrite. J. Appl. Phys., 2002, 91(4): 2211-2215.
    [70] Drofenik M., Znidarsic A., Makovec D. Ca redistribution in MnZn ferrite Grain boundaries during heat treatment in a reducing atmosphere. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 530-532.
    [71] 姚学标,方以坤,胡国光等,用溶胶凝胶自蔓延燃烧法制备的低温度系数MnZn铁氧体[A],磁性材料及器件,2003, 34(5): 11–14.
    [72] 岳振星,周济,张洪国等,柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J],硅酸盐学报,1999, 27(4): 466–470.
    [73] 贾利军,张杰,张怀武等,LTCC 用低温烧结 Mg-Cu-Zn 铁氧体的研究[J],材料导报,2004, 18(8): 58–60.
    [74] 杨邦朝,蒋明,胡永达,混合微电子技术,2002, 13(1): 1-11.
    [75] 王传声,王正义,电子元器件应用,2002, 4(4): 52-54.
    [76] 冉建桥,刘欣,唐哲,刘中其,微电子学,2002, 32(4): 287-289.
    [77] 黄建国,低温燃烧法合成纳米BaFe12O19及其磁性能研究,中科院上海硅酸盐研究所,博士学位论文,2003.
    [78] 郭文宇,岳振星,周济等, Bi2O3对自燃烧法合成NiZnCu铁氧体的显微结构与性能的影响[J],压电与声光,2001, 23(5): 391–393.
    [79] K. Hirota, T. Aoyama, S. Enomoto, et al. Microstructure and magnetic andelectric properties of low-temperature sintering Mn–Zn ferrites without and with addition of lithium borosilicate glass[J], J. Magn. Magn. Mater. 1999, 205 (2): 283–289.
    [80] 钱兴达,洪雪辉,游淑洁,纳米晶锰锌铁氧体的低温合成[A],建筑材料学报,2004, 7(3): 346-349.
    [81] H. Zhang, J. Zhou, Y. Wang, et al. Microstructure and magnetic characteristic of low-temperature-fire modified Z-type hexaferrite with Bi2O3 additive[J], IEEE Trans. Magn. 2002, 38 (4): 1797–1802.
    [82] M. Drofenik, A. ?nidar?i? and D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites[J], J. Am. Ceram. Soc.1998, 81(11): 2841–2848.
    [83] O. Dernovsek, A. Naeini, G. Preu, et al. LTCC glass–ceramic composites for microwave application [J], J. Eur.Ceram. Soc. 2001, 21(11): 1693–1697.
    [84] Yoon S H., Lee J H., Kim D Y et al. Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor-(niobium) and accep tor- (magnesium) doped bariumtitanate. J. Am. Ceram. Soc., 2003, 86 (1): 88–92.
    [85] T. González-Carre?o, M. P. Morales, C. J. Serna, Barium ferrite nanoparticles prepared directly by aerosol pyrolysis,Mater. Let., 43(2000) 97-101.
    [86] V. Pillai, P.Kumar, D. O. Shah, Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. J. Magn. Magn. Mater., 116(1992) L299-L304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700