TNF-α、IL-1β及LPS对骨关节炎软骨细胞蛋白聚糖代谢的作用以及菊蒿成分(Parthenolide)的保护作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     骨关节炎(osteoarthritis,OA)是一种关节软骨进行性消失,骨质过度增生,临床表现为活动后加重的慢性关节疼痛、关节僵硬、肥大及活动受限的常见风湿病。OA的确切发病原因不明,可能由多种因素诱发,其本质为关节软骨基质的分解代谢和合成代谢的失衡。既往的研究认为OA是一种非炎症性的关节病变,但近年来大量的研究证实异常炎症反应在OA的发病中起着重要的作用。多种细胞因子均参与OA的发病,如TNF-α和IL-1β都在其中扮演着重要的角色。对OA发病机制的重新认识将给OA的治疗提供更多的选择。
     尽管目前有多种药物治疗OA,包括控制症状的药物和另一大类改善病情的药物及软骨保护剂,但即使这些药物能够控制炎症与疼痛,内在的软骨组织和骨组织仍不能受到很好的保护和修复,OA的预后还不尽人意,仍有不少的患者最终需行关节置换。
     目前的研究认为蛋白聚糖的异常降解在OA的发病及进展中都起着重要的作用,而前炎症因子导致一些蛋白酶活性的增高,从而促进蛋白聚糖的降解是OA发病的主要原因之一。所以近年来治疗关节炎的发展趋势是寻找降解软骨组织的蛋白酶的抑制剂,保护基质完整,从根本上治疗OA。OA的炎症发病机制给我们寻找新的治疗OA的靶位提供了理论依据。
     菊蒿是一种草本类植物,它的主要药物活性成分为小白菊内酯(parthenolide,PAR)。大量的研究证实PAR对多种细胞具有较强的抗炎免疫抑制作用,促使我们想通过有关实验了解PAR是否对OA的关节软骨细胞也有免疫抑制作用,是否能保护OA软骨细胞的蛋白聚糖免受异常降解,为OA的治疗提供新的药物选择。
     目的:
     利用体外培养的人OA关节软骨细胞体系,通过不同的测定方法观察三种细胞因子(TNF-α、IL-1β和LPS)对体外培养的人OA关节软骨细胞的蛋白聚糖的影响;并通过相同的实验体系初步了解PAR是否对人OA软骨细胞的蛋白聚糖代谢具有保护作用。
     方法:
     本研究分为三部分:①软骨细胞的体外培养和细胞活性的鉴定;②细胞因子TNF-α、IL-1β及LPS对软骨细胞蛋白聚糖代谢的调节作用;③PAR对TNF-α、IL-1β及LPS诱导的软骨细胞蛋白聚糖代谢异常的保护作用。具体方法如下:
     1.软骨细胞取自人OA膝关节置换术后的股骨髁。采用第一代体外培养的软骨细胞,用MTT法检测细胞的存活率,以细胞存活率大于95%为标准,选择合适的细胞因子及PAR的作用浓度。
     2.将软骨细胞分为不同条件的培养组,分别为:对照组、PAR组、IL-1β组、TNF-α组、LPS组、PAR+IL-1β组、PAR+TNF-α组及PAR+LPS组。
     3.用二甲基亚甲兰(1,9-dimethylmethylene blue,DMMB)分光光度法测定不同组软骨细胞及培养液中的GAG含量,计算GAG释放入培养液中的百分率。此为蛋白聚糖降解的标记物,比较各组间的差别。
     4.应用抗蛋白聚糖单克隆抗体(Mab)-5D4及3B3,分别采用ELISA法及WesternBlotting法,检测并比较不同条件培养液中的两种蛋白聚糖代谢片段的含量。其中Mab-5D4可检测蛋白聚糖核心蛋白的KS链,Mab-3B3可检测蛋白聚糖核心蛋白的CS链。
     5.应用半定量RT-PCR方法,测定不同条件培养的软骨细胞中8种细胞成分的mRNA表达。8种细胞成分分别为:TNF-α、IL-1β、蛋白聚糖、ADAMTS-4、ADAMTS-5、TIMP-1、COX-Ⅱ及MAPK-1。
     结果:
     1.在一定作用浓度的各种细胞因子及PAR作用下,除了LPS组的部分细胞形态略有梭形变外,其余各组细胞形态在光镜下无明显差别;各组细胞的存活率均大于95%。
     2.TNF-α、IL-1β和LPS组软骨细胞GAG释放的百分率均明显高于对照组,同时培养液中的5D4片段也明显高于对照组;LPS组培养液中3B3片段明显低于对照组,而TNF-α、IL-1β组培养液中的3B3片段与对照组比较无差别。
     3.TNF-α、IL-1β和LPS可不同程度地影响软骨细胞内不同细胞因子的mRNA表达:①三种细胞因子均可上调软骨细胞内的ADAMTS-4、TNF-α、IL-1β及COX-Ⅱ的mRNA表达;同时下调蛋白聚糖的mRNA表达。②TNF-α和LPS可促进培养的软骨细胞内ADAMTS-5及MAPK-1的mRNA表达:而IL-1β组此两种细胞成分的mRNA表达与对照组无差别。③三种细胞因子对软骨细胞的TIMP-1mRNA表达均无影响。
     4.PAR+IL-1β组、PAR+TNF-α及PAR+LPS组的软骨细胞GAG的释放率均低于其相应的单独细胞因子组。说明PAR可分别抑制TNF-α、IL-1β及LPS所导致的体外培养的人OA关节软骨细胞GAG的释放。
     5.PAR+IL-1β组、PAR+TNF-α及PAR+LPS组的培养液中5D4片段均低于其相应的单独细胞因子组,即PAR可抑制这三种细胞因子所导致的软骨细胞蛋白聚糖核心蛋白区硫酸角质素链的降解。
     6.RT-PCR的结果显示:①PAR可下调TNF-α、IL-1β及LPS所导致的体外培养的人OA关节软骨细胞内ADAMTS-5及TNF-α的mRNA过度表达;并同时上调蛋白聚糖mRNA表达。②PAR可下调IL-1β所致的ADAMTS-4的mRNA过度表达;③PAR可下调TNF-α及IL-1β所致的IL-1β的mRNA过度表达:④PAR可下调TNF-α及LPS所致的COX-Ⅱ及MAPK-1的mRNA过度表达。
     结论:
     1.在不改变细胞存活率的情况下,TNF-α、IL-1β及LPS可促进体外培养的人OA关节软骨细胞蛋白聚糖的降解,尤其是核心蛋白区硫酸角质素链的降解。推断三种细胞因子在OA的发病中起着一定的作用;而PAR可不同程度地减轻以上三种细胞因子所导致的蛋白聚糖降解。
     2.TNF-α、IL-1β和LPS可不同程度地上调软骨细胞内多种与炎症相关的细胞因子的mRNA表达,同时下调蛋白聚糖的mRNA表达,说明三种细胞因子可能在不同的细胞功能水平作用于软骨细胞,导致软骨细胞功能的受损。
     3.PAR可不同程度地抑制TNF-α、IL-1β和LPS所导致的软骨细胞多种炎症细胞因子的基因过度表达,而同时上调软骨细胞蛋白聚糖的mRNA表达,推测PAR可能具有保护软骨细胞功能的潜在作用。
     4.PAR可望成为治疗OA药物的新选择,值得进一步做相关的研究。
Background
     Osteoarthritis(OA) is a slowly progressive degenerative disease characterized by gradual loss of articular cartilage,but the mechanism of OA pathology is still unknown.Biochemical and genetic factors contribute to the OA lesions in cartilage by disrupting chondrocyte-matrix associations and altering metabolic responses in the chondrocyte.
     OA is characterized by a progressive depletion of aggrecan from articular cartilage,with subsequent impairment of tissue function.The most abundant cartilage proteoglycan is aggrecan,comprising a protein core to which are attached many chondroitin sulphate(CS) and keratin sulphate(KS) chains.Monoclonal antibodies (Mab)which specifically against structural carbohydrate epitopes on the KS and CS side chains of aggrecan have been produced.The antibody 5D4 recognises KS neo-epitopes and has been used to estimate KS in body fluids as well as cultured media in vitro.Many studies found that the level KS epitopes are increased in OA patients.Certain neo-epitopes on CS chains recognised by the Mab 3B3 were also found to increase in OA patients.
     Although OA has been regarded primarily as a noninflammatory arthropathy, symptoms of local inflammation and synovitis are present in many patients and have been observed in animal models of OA.Proinflammatory cytokines,such as interleukin-1(IL-1),IL-17,IL-18 and tumor necrosis factor-α(TNF-α),are suspected of causing damage to OA cartilage and degradation of matrix components.The balance of synthesis and degradation of matrix components is disturbed,with both degradation and synthesis usually enhanced.The new insight of OA aetiology will be leading some new potential therapeutic applications.
     Extracts from plants of sesquiterpene lactones have been used as folk remedies for migraine,inflammatory arthritis,and tumors.Parthenolide(PAR),one of the major products from sesquiterpene lactones is an active ingredient responsible for the anti-inflammatory properies.
     Because of the key role of cytokines in the pathegenesis of OA,our interest in this field prompted us to hypothesize that PAR,which has been reported to be anti-inflammatory agent on several kinds of cells,might have anti-inflammatory ability to OA chondrocyte and protect degradation of aggrecan.
     Objective
     1.To evaluate the effects of TNF-α,IL-1βand LPS on aggrecan metabolism in cultured human chondrocytes with OA.
     2.To investigate whether these three cytokines can regulate the gene expresstions of 8 different cell ingredients.
     3.Further to study the possible inhibition of PAR in cartilage aggrecan depletion induced by three cytokines(TNF-α,IL-1βand LPS) and PAR may have potential therapeutic effect in OA.
     Methods
     1.Human Chondrocytes were cultured with different stimulated subjects for up to 8 days.The cytotoxic effect of the experimental substances was evaluated by a cell viability test based on the cleavage of 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) by mitochondrial dehydrogenases of metabolically active cells.
     2.Cultured chondrocytes were classified into 8 groups;they are control,TNF-α, IL-1β,LPS,PAR,PAR+TNF-α,PAR+IL-1βand PAR+LPS.
     3.The content and release of aggrecan in chondrocyte and conditional culture media as sulfated glycosaminoglycan(GAG),which is primarily a measure of aggrecan content.GAG content was measured by using a modification of a 1,9-dimethylmethylene blue spectrophotometric assay(DMMB).GAG release into medium was represented as a percentage of the total cumulative GAG in the chondrocyte plus cumulative GAG release into medium.
     4.Aggrecan catabolic fragments in medium were measured by methods of ELISA and Western Blotting using anti-aggrecan monoclonal antibodies 3B3 and 5D4.
     5.RNA was isolated from chondrocyte with different culture condition and analyzed for expression of aggrecan,A disintegrin and metalloproteinase with thrombospondin motifs(ADAMTS-4),ADAMTS-5,TIMP-1,COX-Ⅱ,MAPK-1, TNF-α,IL-1βand 18S by reverse transcription-polymerase chain reaction (RT-PCR).
     Results
     1.The phenotypes of different conditional cultured chondrocyte were no difference in light microscope except LPS group and the cell viability rate were all more than 95%in 8 groups.
     2.Levels of GAG in medium samples of three groups(TNF-α,IL-1βand LPS) increased significantly comparing with control group.Fragments of 5D4 in medium of three groups also experienced significantly increases at the same time. There was significant decrease of 3B3 level in group LPS than control,whereas 3B3 fragments had no difference among TNF-α,IL-1βand control groups.
     3.TNF-α,IL-1βand LPS can alter gene expression of some cytokines in cultured chondrocyte.①Levels of aggrecan mRNA in three groups were lower than control,and the gene expression of ADAMTS-4、TNF-a、IL-1βand COX-Ⅱwas up-regulated in three groups comparing the control.②TNF-a and LPS up-regulated ADAMTS-5 and MAPK-1 gene expression while there was no effect of IL-1βon these two kinds of gene expression.③There was no difference of TIMP-1 gene expression among four groups.
     4.Levels of GAG in medium of PAR+TNF-α,PAR+IL-1βand PAR+LPS group decreased significantly comparing to TNF-α,IL-1βand LPS groups,respectively. PAR produced dose-dependent decreases of GAG release in OA chondrocyte induced by three studied cytokines.
     5.Fragments of 5D4 in medium of PAR+TNF-α,PAR+IL-1βand PAR+LPS group decreased significantly comparing to TNF-α,IL-1βand LPS groups,respectively. PAR can inhibit the degradation of KS chains in aggrecan stimulated by three cytokines.
     6.RT-PCR results showed:①PAR down-regulated gene expression of ADAMTS-5 and TNF-αin cultured chondrocyte stimulated by TNF-α,IL-1βand LPS,and up-regulated aggrecan gene expression at the same time.②PAR inhibited gene expression of ADAMTS-4 in chondrocyte induced by IL-1β,whereas there was no difference of ADAMTS-4 gene expression in chondrocyte when stimulated by combination of TNF-αand PAR,LPS and PAR,respectively.③IL-1βgene expression induced by TNF-αand IL-1βwas suppressed by PAR.④PAR inhibited COX-Ⅱand MAPK-1 gene expression of chondrocyte induced by TNF-αand LPS.
     Conclusion
     1.TNF-α,IL-1βand LPS can stimulate aggrecan catabolism in cultured human OA chondrocyte;especially the degradation of KS chains in core protein of aggrecan. These three cytokines may play an important role in pathogenesis of OA.
     2.TNF-a,IL-1βand LPS can up-regulate different kinds of pro-inflammatory cytokines to some degree,and suppress aggrecan gene expression.
     3.PAR can inhibit aggrecan catabolism of chondrocyte induced by TNF-a,IL-1βand LPS.
     4.PAR can down-regulate gene expression of proinflammatory cytokines and aggrecanase,such as TNF-αand ADAMTS-5,in chondrocyte,and up-regulate aggrecan gene expression,indicating PAR may have chondrocyte protection in OA.
     5.PAR may have potential therapeutic effect in OA.
引文
1. Hardingham T, Bayliss M. Proteoglycans of articular cartilage: changes in aging and in joint disease,Semin Arthritis Rheum, 1990,20(3 Suppl 1):12-33.
    
    2. Rizkalla G, Reiner A, Bogoch E, Poole AR.Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest. 1992 Dec;90(6):2268-77.
    
    3. Innes JF, Little CB, Hughes CE, Caterson B. Products resulting from cleavage of he interglobular domain of aggrecan in samples of synovial fluid collected from dogs with early- and late-stage osteoarthritis. Am J Vet Res. 2005 0ct;66(10):1679-85.
    
    4. Kiani C, Chen L, Wu YJ,et al. Structure and function of aggrecan. Cell Res, 2002,12:19-32.
    
    5. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883(2):173-7.
    
    6. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1-2):237-46.
    
    7. Caterson B, Flannery CR, Hughes CE, et al. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol, 2000,19(4):333-44
    
    8. Hughes CE, Caterson B, Fosang AJ, Roughley PJ, Mort JS.Monoclonal antibodies that specifically recognize neoepitope sequences generated by ' aggrecanase' and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J. 1995 Feb 1;305 ( Pt 3):799-804.
    
    9. lsaid KA, Jay GD, Warman ML, et al. Association of articular cartilage degradation and loss of boundary-lubricating ability of syonvial fluid flowing injury and inflammatory arthritis. Arthritis Rheumatism, 2005,53:1746-1755
    
    10. Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS.Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments.Osteoarthritis Cartilage. 2006 Feb;14(2):101-13.
    
    11. Heptinstall S, Awang DV, Dawson BA, Kindack D, Knight DW, May J. Parthenolide content and bioactivity of feverfew (Tanacetum parthenium (L.) Schultz-Bip.).Estimation of commercial and authenticated feverfew products. .) Pharm Pharmacol. 1992 May;44(5):391-5.
    
    12. Macias FA, Galindo JC, Castellano D, Velasco RF. Sesquiterpene lactones with potential use as natural herbicide models (I): trans, trans-germacranolides. J Agric Food Chem. 1999 0ct;47(10):4407-14.
    
    13. Kang BY, Chung SW, Kim TS. Inhibition of interleukin-12 production in 1 ipopolysaccharide-activated mouse macrophages by parthenolide, a predominant sesquiterpene lactone in Tanacetum parthenium: involvement of nuclear factor-kappaB. Immunol Lett, 2001, 77(3):159-163.
    14.Hwang D,Fischer NH,Jang BC,et al.Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases.Biochem Biophys Res Commun,1996,226(3):810-818.
    15.Piela-Smith TH,Liu X.Feverfew extracts and the sesquiterpene lactone parthenolide inhibit intercellular adhesion molecule-1 expression in human synovial fibroblasts.Cell Immunol,2001,209(2):89-96
    16.R.Altman,E.Asch,D.Bloch,G.Bole,D.Borenstein,K.Brandt,W.Christy,et,al.Development of criteria for the classification and reporting of osteoarthritis:Classification of osteoarthritis of the knee.Arthritis & Rheumatism,1986,29:1039-1049.
    17.López-Armada MJ,Caramés B,Cillero-Pastor B,Lires-Deán M,Maneiro E,Fuentes I,et,al.Phosphatase-1 and -2A inhibition modulates apoptosis in human osteoarthritis chondrocytes independently of nitric oxide production.Ann Rheum Dis.2005;64(7):1079-82.
    18.Farndale RW,Buttle DJ,Barrett AJ.Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.Biochim Biophys Acta,1986;883(2):173-7.
    19.Chan SS,Kent GN,Will RK.A sensitive assay for the measurement of serum chondroitin sulfate 3B3(-) epitope levels in human rheumatic diseases.Clin Exp Rheumatol.2001 Sep-Oct;19(5):533-40.
    20.Towbin,H.,Staehelin,T.and Gordon,J.Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:procedure and some applications.Proc Natl Acad Sci U S A.1979;76(9):4350-4.
    21.Hughes C.E.,CatersonB,Fosang AJ,Roughley P.J,Mort JS.Monoclonal antibodies that specifically recognize neoepitope sequences generated by'aggrecanase' and matrix metalloproteinase cleavage of aggrecan:application to catabolism in situ and in vitro.Biochem J.1995,305:799-804.
    22.Buckwalter J A,Mankin H J.Articular cartilage:Degeneration and osteoarthrosis,repair,regeneration,and transplantation.J Bone Joint Surg,1997,79:612
    23.Mary BG,THE ROLE OF THE CHONDROCYTE IN OSTEOARTHRITIS.ARTHRITIS & RHEUMATISM,2000,43(9):1916-1926.
    24 谈志龙,邢国胜,李德达。细胞因子对关节软骨细胞作用的研究,骨与关节损伤杂志,2003,18:316-318。
    25.Kiani C,Chen L,Wu YJ,et al.Structure and function of aggrecan.Cell Res,2002,12:19-32.
    26.Lohmander LS,Neame PJ,Sandy JD.The structure of aggrecan fragments in human synovial fluid.Evidence that aggrecanse mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum, 1993;36:1214-1222.
    
    27. Bautch JC, Clayton MK, Chu Q, Johnson KA. Synovial fluid chondroitin sulphate epitopes 3B3 and 7D4, and glycosaminoglycan in human knee osteoarthritis after exercise. Ann Rheum Dis. 2000 Nov;59(11):887-91.
    
    28. vSquires GR, Okouneff S, lonescu M, Poole AR. The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis.Arthritis Rheum. 2003 May;48(5):1261-70
    
    29. Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA.Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis.Osteoarthritis Cartilage. 2003 Jan;11 (1):65-77.
    
    30. Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005 Jan;52(l):128-35.
    
    31. Lee MS, Ikenoue T, Trindade MC, Wong N, Goodman SB, Schurman DJ, Smith RL.Protective effects of intermittent hydrostatic pressure on osteoarthritic chondrocytes activated by bacterial endotoxin in vitro. J Orthop Res. 2003 Jan;21(1):117-22.
    
    32. Anthony R, Jenny AT, Timothy EH. Articular cartilage cultured with interleukin-1.Chem J, 1986,238:571-580.
    
    33. Saxne T, Heinegard D, Wollheim FA, Pettersson H. Difference in cartilage proteoglycan level in synovial fluid in early rheumatoid arthritis and reactive arthritis. Lancet. 1985 Jul 20;2(8447):127-8
    
    34. Hughes CE, Little CB, Buttner FM, Bartnik E, Caterson B. Differential expression of aggrecanase and matrix metalloproteinase activity in chondrocytes isolated from bovine and porcine articular cartilage.J Biol Chem. 1998 Nov 13;273(46):30576-82.
    
    35. Lohmander LS, Dahlberg L, Eyre D, Lark M, Thonar EJ, Ryd L. Longitudinal and cross-sectional variability in markers of joint metabolism in patients wi th knee pain and articular cartilage abnormalities.Osteoarthritis Cartilage. 1998 Sep;6(5):351-61.
    
    36. Sharif M, Osborne DJ, Meadows K, Woodhouse SM, Colvin EM, Shepstonc L, Dieppe PA The relevance of chondroitin and keratan sulphate markers in normal and arthritic synovial fluid. Br J Rheumatol. 1996;35(10):951-7.
    
    37. Fawthrop F, Yaqub R, Belcher C, Bayliss M, Ledingham J, Doherty M. Chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in progressive versus non-progressive osteoarthritis. Ann Rheum Dis. 1997 Feb;56(2):119-22.
    
    38 Caterson B, ChristnerJE, Baker JR. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan.J Biol Chem. 1983 Jul 25;258(14):8848-54.
    
    39. Piscoya JL, Fermor B, Kraus B, et al. The influence of mechanical compression on the induction of osteoarthritis related biomarkers in arthritis cartilage explants. Osteoarthritis and Cartilage, 2005,13:1092-1099.
    
    40. Elsaid KA, Jay GD, Warman ML, et al. Association of articular cartilage degradation and loss of boundary-lubricating ability of syonvial fluid flowing injury and inflammatory arthritis. Arthritis Rheumatism, 2005,53:1746-1755.
    
    41. Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage. 2001 Aug;9(6):539-52.
    
    42. Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem.2002 Jun 21;277(25):22201-8.
    
    43. Garnero P, Rousseau JC, Delmas PD. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases.Arthritis Rheum, 2000,43:953-68.
    
    44. Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI,et,al.Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997;100(1):93-106.
    
    45. Little CB, Hughes CE, Curtis CL, Janusz MJ, Bohne R, Wang-Weigand S, et, al. Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol. 2002 Apr;21(3):271-88.
    
    46. Pelletier JP, Boileau C, Boily M, Brunet J, Mineau F, Geng C, et,al. The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases.Arthritis Res Ther. 2005;7(5):R1091-102. Epub 2005 Jul 19.
    
    47. Little CB, Flannery CR, Hughes CE, Mort JS, Roughley PJ, Dent C, Caterson B.Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J. 1999 Nov 15;344 Pt 1:61-8.
    
    48. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, et, al. Purification and cloning of aggrecanase-1:a member of the ADAMTS family of proteins.Science.1999 Jun 4;284(5420):1664-6.
    49.Arner EC,Pratta MA,Decicco CP,Xue CB,Newton RC,Trzaskos JM,Magolda RL,Tortorella MD.Aggrecanase.A target for the design of inhibitors of cartilage degradation.Ann N Y Acad Sci.1999 Jun 30;878:92-107.
    50.Arner EC,Pratta MA,Trzaskos JM,Decicco CP,Tortorella MD.Generation and characterization of aggrecanase.A soluble,cartilage-derived aggrecan-degrading activity.J Biol Chem.1999 Mar 5;274(10):6594-601.
    51.Song RH,Tortorella MD,Malfait AM,Alston JT,Yang Z,Arner EC,Griggs DW Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and AOAMTS-5.Arthritis Rheum.2007 Feb;56(2):575-85.
    52.Little CB,Hughes CE,Curtis CL,Jones SA,Caterson B,Flannery CR Cyclosporin A inhibition of aggrecanase-mediated proteoglycan catabolism in articular cartilage.Arthritis Rheum.2002 Jan;46(1):124-9.
    53.Mastbergen S C,Lafeber F,Bijlsma J.Selective COX- 2 inhibition prevents proinflammatory cytokine - induced cartilage damage.Rheumatology,2002,41:801.
    54.方忠,杨琴,李锋,熊伟,李光辉,敦先礼。特异性COX-2抑制剂对骨关节炎的软骨保护作用的临床对照研究。实用医学进修杂志2005,33:222-227.
    55.Abramsom S B.The role of cox - 2 produced by cartilage in arthritis.Osteoarthrits and Cartilage,1999,7:380.
    56.Huh YH,Kim SH,Kim SJ,Chun JS.Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes.J Biol Chem.2003 Mar 14;278(11):9691-7.
    57.Thomas B,Thirion S,Humbert L,Tan L,Goldring MB,Béréziat G,Berenbaum F.Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes:role of p38 mitogen-activated protein kinase.Biochem J.2002,362:367-73.
    58.ChangL,Karin M.Mammalian MAP kinase signaling cascades.Nature,2001,410:(6824):37.
    59.DeChiara TM,Kimble RB,Poueymirou WT,Rojas J,Masiakowski P,Valenzuela DM,et,al.Ror2,encoding a receptor-like tyrosine kinase,is required for cartilage and growth plate development.Nat Genet.2000,24(3):271-4.
    1.Buckwalter J A,Mankin H J.Articular cartilage:Degeneration and osteoarthrosis,repair,regeneration,and transplantation.J Bone Joint Surg,1997,79:612.
    2.Fernandes JC,Martel-Pelletier J,Pelletier JP.The role of cytokines in osteoarthritis pathophysiology.Biorheology.2002;39(1-2):237-46.
    3.Kobayashi M,Squires GR,Mousa A,Tanzer M,Zukor DJ,Antoniou J,Feige U,Poole AR.Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage.Arthritis Rheum.2005 Jan;52(1):128-35.
    4.Punzi L,Oliviero F,Plebani M.New biochemical insights into the pathogenesis of osteoarthritis and the role of laboratory investigations in clinical assessment.Crit Rev Clin Lab Sci.2005;42(4):279-309.
    5.张奉春主编,风湿病学新进展。骨关节炎,27-42。
    6.Squires GR,Okouneff S,Ionescu M,Poole AR.The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis.Arthritis Rheum.2003 May;48(5):1261-70
    7.Appleyard RC,Burkhardt D,Ghosh P,Read R,Cake M,Swain MV,Murrell GA.Topographical analysis of the structural,biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis.Osteoarthritis Cartilage.2003 Jan;11(1):65-77.
    8.Malfait AM,Liu RQ,Ijiri K,Komiya S,Tortorella MD Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage.J Biol Chem.2002 Jun 21;277(25):22201-8.
    9.Arner EC,Pratta MA,Decicco CP,Xue CB,Newton RC,Trzaskos JM,Magolda RL,Tortorella MD.Aggrecanase.A target for the design of inhibitors of cartilage degradation.Ann N Y Acad Sci.1999 Jun 30;878:92-107.
    10.Arner EC,Pratta MA,Trzaskos JM,Decicco CP,Tortorella MD.Generation and characterization of aggrecanase.A soluble,cartilage-derived aggrecan-degrading activity.J Biol Chem.1999 Mar 5;274(10):6594-601.
    11.Song RH,Tortorella MD,Malfait AM,Alston JT,Yang Z,Arner EC,Griggs DW Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5.Arthritis Rheum.2007 Feb;56(2):575-85.
    12.Innes JF,Little CB,Hughes CE,Caterson B.Products resulting from cleavage of the interglobular domain of aggrecan in samples of synovial fluid collected from dogs with early- and late-stage osteoarthritis.Am J Vet Res.2005Oct;66(10):1679-85.
    13.Knight DW.Feverfew:chemistry and biological activity.Nat Prod Rep.1995 Jun;12(3):271-6.
    
    14. VoglerBK, PittlerMH, Ernst E. Feverfew as a preventive treatment for migraine:a systematic review. Cephalalgia. 1998 Dec;18(10):704-8. Review.
    
    15. Brown AM, Edwards CM, Davey MR, Power JB, Lowe KC. Pharmacological activity of feverfew (Tanacetum parthenium (L.) Schultz-Bip.): assessment by inhibition of human polymorphonuclear leukocyte chemi luminescence in-vitro. J Pharm Pharmacol.1997 May;49(5):558-61
    
    16. Heptinstall S, Awang DV, Dawson BA, Kindack D, Knight DW, May J. Parthenolide content and bioactivity of feverfew (Tanacetum parthenium (L.) Schultz-Bip. ).Estimation of commercial and authenticated feverfew products. J Pharm Pharmacol.1992 May;44(5):391-5.
    
    17. Macias FA, Galindo JC, Castellano D, Velasco RF. Sesquiterpene lactones with potential use as natural herbicide models (I): trans, trans-germacranolides.J Agric Food Chem. 1999 Oct;47(10):4407-14.
    
    18. Groenewegen WA, Knight DW, Heptinstall S. Compounds extracted from feverfew that have anti-secretory activity contain an alpha-methylene butyrolactone unit. J Pharm Pharmacol. 1986 Sep;38(9):709-12.
    
    19. Hwang D, Fischer NH, Jang BC, et al. Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases. Biochem Biophys Res Commun, 1996, 226(3):810-818.
    
    20. Sumner H, Salan U, Knight DW, Hoult JR. Inhibition of 5-1ipoxygenase and cyclo-oxygenase in leukocytes by feverfew. Involvement of sesquiterpene lactones and other components. Biochem Pharmacol. 1992 Jun 9;43(11):2313-20.
    
    21. Min Li-Weber, Marco Giaisi, Monika K. Treiber and Peter II. Krammer. The anti-inflammatory sesquiterpene lactone parthenolide suppresses IL-4 gene expression in peripheral blood T cells. Eur. J. Immunol. 2002. 32: 3587 - 3597.
    
    22. Schnyder B, Schnyder-Candrian S, Panski A, Bommel H, Heim M, Duschl A, Moser R. Phytochemical inhibition of interleukin-4-activated Stat6 and expression of VCAM-1. Biochem Biophys Res Commun. 2002 Apr 12;292(4):841-7.
    
    23. Wong 1IR,Menendez IY.Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smoo th musclee ells. Biochem Biophys Res Commun, 1999; 262 ( 2) :375-801.
    
    24. Shin SG, Kang JK, Lee KR, Lee HW, Han JW, Choi WS. Suppression of inducible ni trie oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. J Toxicol Environ Health A. 2005 Dec 10;68(23-24):2119-31.
    25.Kang BY,Chung SW,Kim TS.Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide,a predominant sesquiterpene lactone in Tanacetum parthenium:involvement of nuclear factor-kappaB.Immunol Lett.2001 Jul 2;77(3):159-63.
    26.Uchi It,Arrighi JF,Aubry JP,Furue M,Hauser C.The sesquiterpene lactone parthenolide inhibits LPS- but not TNF-alpha-induced maturation of human monocyte-derived dendritic cells by inhibition of the p38 mitogen-activated protein kinase pathway.J Allergy Clin Immunol.2002 Aug;110(2):269-76.
    27.Piela-Smith TH,Liu X.Feverfew extracts and the sesquiterpene lactone parthenolide inhibit intercellular adhesion molecule-1 expression in human synovial fibroblasts.Cell Immunol,2001,209(2):89-96.
    28.P Melottil,E Nicolisl,A Tamaninil,R Rolfinil,A Pavirani2 and G Cabrinil.Activation of NF-kB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector.Gene Therapy(2001) 8,1436-1442.
    29.陆茜,李宁丽.Fas介导细胞凋亡及相关免疫调节作用.细胞生物学杂志,2006,28:543-54。
    30.M Li-Weber,1,M Giaisil,S Baumannl,MK Treiberl and PH Krammerl.The anti-inflammatory sesquiterpene lactone parthenolide suppresses CD95-mediated activation-induced-cell-death in T-cells.Cell Death and Differentiation.2002,9:1256-1265.
    31.Yip KH,Zheng MH,Feng HT,Steer JH,Joyce DA,Xu J.Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity.J Bone Miner Res.2004 Nov;19(11):1905-16.
    32.Nikhil M Patell,6,Shinichi Nozaki2,6,Nicholas H Shortlel,et al.Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kB is enhanced by[kBa super-repressor and parthenolide.Oncogene(2000) 19,4159-4169.
    33.Oka D,Nishimura K,Shiba M,Nakai Y,Arai Y,Nakayama M,et,al.Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB.Int J Cancer.2007 Jun 15;120(12):2576-81.
    34.Yamanishi Y,Boyle DL,Clark M,Maki RA,Tortorella MD,Arner EC,Firestein GS Expression and regulation of aggrecanase in arthritis:the role of TGF-beta.J Immunol.2002 Feb 1;168(3):1405-12.
    35.Tortorella MD,Liu RQ,Burn T,Newton RC,Arner E.Characterization of human aggrecanase 2(ADAM-TS5):substrate specificity studies and comparison with aggrecanase 1(ADAM-TS4).Matrix Biol.2002 Oct;21(6):499-511.
    36.llegemann N,Kohn B,Brunnberg L,Schmidt MF.Biomarkers of joint tissue metabolism in canine osteoarthritic and arthritic joint disorders.Osteoarthritis Cartilage. 2002 Sep;10(9):714-21.
    
    37. Naito K, Takahashi M, Kushida K, Suzuki M, Ohishi T, Miura M, Inoue T, Nagano A. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford). 1999 Jun;38(6):510-5.
    
    38. Goldring MB, Berenbaum F. Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression. Osteoarthritis Cartilage. 1999 Jul;7(4):386-8.
    
    39. Thomas B, Thirion S, Humbert L, Tan L, Goldring MB, Bereziat G, Berenbaum F.Differentiation regulates interleukin-lbeta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase. Biochem J. 2002 Mar 1;362(Pt 2):367-73.
    
    40. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000 Sep;43(9):1916-26.
    
    41. Notoya K, Jovanovic DV, Reboul P, Martel-Pelletier J, Mineau F, Pelletier JP The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol. 2000 Sep 15;165(6):3402-10.
    
    42. ChangL ,Karin M. Mammalian MAP kinase signaling cascades. Nature, 2001,410:(6824):37.
    
    43. DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, et,al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet. 2000,24(3):271-4.
    
    44. Takahashi T, Ogawa Y, KitaokaK, Tani T, Uemura Y, Taguchi H, Kobayashi T, Seguchi H, Yamamoto H, Yoshida S. Selective COX-2 inhibitor regulates the MAP kinase signaling pathway in human osteoarthritic chondrocytes after induction of nitric oxide.Int J Mol Med. 2005, 15(2):213-9.
    1. Robin AP, Paul D. Biological markers in rheumatoid arthritis. Seminars in arthritis and rheumatism. 1994,23:17-31.
    
    2. Appleyard RC, Ghosh P, Swain MV. Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. Osteoarthritis and Cartilage, 1999,7:281-294.
    
    3. Hardingham T, BaylissM. Proteoglycans of articular cartilage: changes in aging and in joint disease,Semin Arthritis Rheum, 1990,20(3 Suppl 1):12-33.
    
    4. Kiani C, Chen L, Wu YJ,et al.Structure and function of aggrecan. Cel1 Res,2002,12:19-32.
    
    5. Saxne T, Heinegard D, Wollheim FA, Pettersson H. Difference in cartilage proteoglycan level in synovial fluid in early rheumatoid arthritis and reactive arthritis. Lancet. 1985 Jul 20;2(8447):127-8
    
    6. Anthony R, Jenny AT, Timothy EH. Articular cartilage cultured with interleukin-1.Chem J, 1986,238:571-580.
    
    7. Caterson B, Christner JE, Baker JR. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan.J Biol Chem. 1983 Jul 25;258(14):8848-54.
    
    8. Caterson B, Flannery CR, Hughes CE, et al. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol, 2000,19(4):333-44.
    
    9. Hughes C. E. , Caterson B, Fosang AJ, Roughley P.J, Mort JS. Monoclonal antibodies that specifically recognize neoepitope sequences generated by ' aggrccanase' and matrix metal loproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J. 1995,305:799-804.
    
    10. Hughes CE, Little CB, Buttner FH, Bartnik E, Caterson B. Differential expression of aggrecanase and matrix metalloproteinase activity in chondrocytes isolated from bovine and porcine articular cartilage.J Biol Chem. 1998 Nov 13:273(46) :30576-82.
    
    11. Lohmander LS, Dahlberg L, Eyre D, Lark M, Thonar EJ, Ryd L. Longitudinal and cross-sectional variability in markers of joint metabolism in patients with knee pain and articular cartilage abnormalities.Osteoarthritis Cartilage. 1998 Sep;6(5):351 61.
    
    12. Sharif M, Osborne DJ, Meadows K, Woodhouse SM, Colvin EM, Shepstone L, Dieppe PA The relevance of chondroitin and keratan sulphate markers in normal and arthritic synovial fluid. Br J Rheumatol. 1996:35(10):951-7.
    
    13. Visco DM, Johnstone B, Hill MA, Jolly GA, Caterson. Immunohistochemical analysis of 3B3(-) and 7D4 epitope expression in canine osteoarthritis. Arthritis Rheum,1993:36:1718-1725.
    
    14. Garnero P, Rousseau JC, Delmas PD. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases.Arthritis Rheum, 2000,43:953-68.
    
    15. Lovasz G, Park SH, Ebramzadeh E, et al. Characteristics of degeneration in an unstable knee with a coronal surface step-off. J Bone Joint Surg(Br), 2001, 83-B:428-36.
    
    16. Lin PM, Chen CTC, Torzilli PA. Increased stromelysin-1(MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis and Cartilage, 2004, 12:485-496.
    
    17. Little CB, Flannery CR, Hughes CE, et al. aggrecanse versus matric metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J, 1999,344:61-68.
    
    18. Little CB, Hughes CE, Cuitis CL, et al. Cyclosporin A inhibition of aggrecanase mediated proteoglycan catabolism in articular cartilage. Arthritis Rheumatism,2002,46:124-129.
    
    19. Innes JF, Little CB, Hughes CE, et al. Products resulting from cleavage of the interglobular domain of aggrecan in samples of synovial fluid collected from dogs with early- and late-stage osteoarthritis, Am J Vet Res, 2005, 66:1679-1685.
    
    20. Piscoya JL, Fermor B, Kraus B, et al. The influence of mechanical compression on the induction of osteoarthritis related biomarkers in arthritis cartilage explants. Osteoarthritis and Cartilage, 2005,13:1092-1099.
    
    21. Elsaid KA, Jay GD, Warman ML, et al. Association of articular cartilage degradation and loss of boundary-lubricating ability of syonvial fluid flowing injury and inflammatory arthritis. Arthritis Rheumatism, 2005, 53:1746-1755.
    
    22. Qi WN, Scully SP. Type II collagen modulates the composition of extracelulalr matrix synthesized by articular chondrocytes. J Orthopaedic-Research, 2003,21:282-289.
    
    23. Johnson KA, Hulse DA, Hart RC, et al. Effects of an orally administered mixture of chondroitin sulfate, glucosamine hydrochloride and manganese ascorbate on synovial fluid chondroitin sulfate 3B3 and 7D4 epitope in a canine cruciate ligament transection model of osteoarthritis.Osteoarthritis and Cartilage,2001,9:14-21.
    
    24. Chan SS, Kent GN, Will RK. A sensitive assay for the measurement of serum chondroitin sulfate 3B3(-) epitope levels in human rheumatic diseases. Clin Exp Rheumatol,2001,19:533-540.
    
    25. SpectorTD, Woodward L, Hall GM, et al. Keratan sulphate in rheumatoid arthritis, osteoarthritis, and inflammatory diseases. Ann Rheum Dis, 1992,51:1134-1137.
    
    26. Verstappen SMM, Poole AR , Ionescu M, et al. Radiographic joint damage in rheumatoid arthritis is associated with differences in cartilage turnover and can be predicted by serum biomarkers: an evaluation from 1 to 4 years after diagnosis. Arthritis Research & Therapy, 2006, 8:R31.
    
    27. Fawthrop F, Yaqub R, Belcher C, et al. Chondroitin and keratan sulphate epi topes,glycosaminoglycans, hyaluronan in progressive versus non-progressive osteoarthritis. Ann Rheum Dis, 1997,56:119-122.
    
    28. Judith CB, Murray KC, Qili C, et al. Synovial fluid chondroitin sulphate epi topes 3B3 and 7D4, and glycosaminoglycan in human knee osteoarthritis after exercise.Ann Rheum Dis,2000, 59:887 - 891.
    
    29. Rosen M, Edfors LI, Bjornsson S. Quantitation of repetitive epitopes in glycosaminoglycans immobilized on hydrophobic membranes treated with cationic detergents. Analytical Biochemistry, 2002,308:210-222.
    1.Macias FA,Galindo JC,Castellano D,Velasco RF.Sesquiterpene lactones with potential use as natural herbicide models(Ⅰ):trans-germacranolides.J Agric Food Chem.1999 Oct;47(10):4407-14.
    2.Knight DW.Feverfew:chemistry and biological activity.Nat Prod Rep,1995;12:271-276.
    3.Heptinstall S,Awang DV,Dawson BA,Kindack D,Knight DW,May J.Parthenolide content and bioactivity of feverfew(Tanacetum parthenium(L.) Schultz-Bip.).Estimation of commercial and authenticated feverfew products.J Pharm Pharmacol.1992 May;44(5):391-5.
    4.宋晓凯,吴立军,屠鹏飞。观光木树皮的生物活性成分研究。中草药,2002,33:676-678。
    5.Hwang D,Fischer NH,Jang BC,et al.Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases.Biochem Biophys Res Commun,1996,226(3):810-818.
    6.Kang BY,Chung SW,Kim TS.Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide,a predominant sesquiterpene lactone in Tanacetum parthenium:involvement of nuclear factor-kappaB.Immunol Lett,2001,77(3):159-163.
    7.宋晓凯,潘福娟.小白菊内酯的生物活性与NF-Kappa B通道抑制.中国老年杂志,2003,23:892-893。
    8.Feltenstein MW,Sch(u|¨)hly W,Warnick JE,Fischer NH,Sufka KJ.Anti-inflammatory and anti-hyperalgesic effects of sesquiterpene lactones from Magnolia and Bear' s foot.Pharmacol Biochem Behav.2004 Oct;79(2):299-302
    9.Hwang D,Fischer NH,Jang BC,et al.Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines.by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases.Biochem Biophys Res Commun,1996,226(3):810-818.
    10.Sumner H,Salan U,Knight DW,Hoult JR.Inhibition of 5-lipoxygenase and cyclo-oxygenase in leukocytes by feverfew.Involvement of sesquiterpene lactones and other components.Biochem Pharmacol.1992 Jun 9;43(11):2313-20.
    11.Min Li-Weber,Marco Giaisi,Monika K.Treiber and Peter H.Krammer.The anti-inflammatory sesquiterpene lactone parthenolide suppresses IL-4 gene expression in peripheral blood T cells.Eur..J.Immunol.2002.32:3587-3597.
    12.Schnyder B,Schnyder-Candrian S,Panski A,B(o|¨)mmel H,Heim M,Duschl A,Moser R.Phytochemical inhibition of interleukin-4-activated Star6 and expression of VCAM-1.Biochem Biophys Res Commun.2002 Apt 12;292(4):841-7.
    13.Wong HR,Menendez IY.Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smoo th musclec ells.Biochem Biophys Res Commun,1999;262(2):375-801.
    14.Shin SG,Kang JK,Lee KR,Lee HW,Han JW,Choi WS.Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones.J Toxicol Environ Health A.2005 Dec 10;68(23-24):2119-31.
    15.Kang BY,Chung SW,Kim TS.Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide,a predominant sesquiterpene lactone in Tanacetum parthenium:involvement of nuclear factor-kappaB.Immunol Lett.2001 Jul 2;77(3):159-63.
    16.Uchi H,Arrighi JF,Aubry JP,Furue M,Hauser C.The sesquiterpene lactone parthenolide inhibits LPS- but not TNF-alpha-induced maturation of human monocyte-derived dendritic cells by inhibition of the p38 mitogen-activated protein kinase pathway.J Allergy Clin Immunol.2002 Aug;110(2):269-76.
    17.Piela-Smith TH,Liu X.Feverfew extracts and the sesquiterpene lactone parthenolide inhibit intercellular adhesion molecule-1 expression in human synovial fibroblasts.Cell Immunol,2001,209(2):89-96.
    18.P Melottil,E Nicolisl,A Tamaninil,R Rolfinil,A Pavirani2 and G Cabrinil.Activation of NF-kB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector.Gene Therapy(2001) 8,1436-1442.
    19.陆茜,李宁丽.Fas介导细胞凋亡及相关免疫调节作用.细胞生物学杂志,2006,28:543-54。
    20.M Li-Weber,1,M Giaisil,S Baumannl,MK Treiberl and PH Krammerl.The anti-inflammatory sesquiterpene lactone parthenolide suppresses CD95-mediated activation-induced-cell-death in T-cells.Cell Death and Differentiation.2002,9:1256-1265.
    21.Bailey SR,Cunningham FM,Elliott J.Endotoxin and dietary amines may increase plasma 5-hydroxytryptamine in the horse.Equine Vet J.2000 Nov;32(6):497-504.
    22.Marles RJ,Kaminski J,Arnason JT,Pazos-Sanou L,Heptinstall S,Fischer NH,et,al.A bioassay for inhibition of serotonin release from bovine platelets.J Nat Prod.1992 Aug;55(8):1044-56.
    23.Mittra S,Datta A,Singh SK,Singh A.5-Hydroxytryptamine-inhibiting property of Feverfew:role of parthenolide content.Acta Pharmacol Sin.2000,Dec;21(12):1106-14.
    24.于福恩,王振才,杨淑珍.偏头痛发病机制的研究进展。医学综述,2003,9(7):399-401.
    25.Barsby RW,Salan U,Knight DW,Hoult JR.Feverfew extracts and parthenolide irreversibly inhibit vascular responses of the rabbit aorta.J Pharm Pharmacol.1992 Sep;44(9):737-40.
    26.Hay AJ,Hamburger M,Hostettmann K,Hoult JR.Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive alpha-methylenebutyrolactone functions.Br J Pharmacol.1994May;112(1):9-12.
    27.Barsby RW,Salan U,Knight DW,Hoult JR.Feverfew and vascular smooth muscle:extracts from fresh and dried plants show opposing pharmacological profiles,dependent upon sesquiterpene lactone content.Planta Med.1993 Feb;59(1):20-5.
    28.López-Franco O,Hernández-Vargas P,Ortiz-Munoz G,Sanjuán G,Suzuki Y,Ortega L,et,al.Parthenolide modulates the NF-kappaB-mediated inflammatory responses in experimental atherosclerosis.Arterioscler Thromb Vasc Biol.2006Aug;26(8):1864-70.Epub 2006 Jun 1
    29.翁少翔,单江,徐耕,马骥.小白菊内酯抑制胎牛血清诱导的大鼠血管平滑肌细胞增殖及信号转导机理.中国药理学与毒理学杂志2002年10月:16(5):331-335。
    30.Yip KH,Zheng MH,Feng HT,Steer JH,Joyce DA,Xu J.Sesquiterpene lactone parthenolide blocks lipopolysaccharide-induced osteolysis through the suppression of NF-kappaB activity.J Bone Miner Res.2004 Nov;19(11):1905-16.
    31.Basilia Zingarelli,Paul W.Hake,Alvin Denenberg,and Hector R.Wong SESQUITERPENE LACTONE PARTHENOLIDE,AN INHIBITOR OF I κ B KINASE COMPLEX AND NUCLEAR FACTOR- κB,EXERTS BENEFICIAL EFFECTS IN MYOCARDIAL REPERFUSION INJURY.SHOCK,Vol.17,No.2,pp.127-134,2002.
    32.Parada-Turska J,Paduch R,Majdan M,Kandefer-Szerszen M,Rzeski W.Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells.Pharmacol Rep.2007Mar-Apr;59(2):233-7.
    33.Yip-Schneider MT,Wu H,Ralstin M,Yiannoutsos C,Crooks PA,Neelakantan S,Noble S,Nakshatri H,Sweeney CJ,Schmidt CM.Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo.Mol Cancer Ther.2007 Jun;6(6):1736-44.Epub 2007 May 31.
    34.Yip-Schneider MT,Nakshatri H,Sweeney CJ,Marshall MS,Wiebke EA,Schmidt CM.Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells.Mol Cancer Ther.2005 Apt;4(4):587-94.
    35.宋晓凯,吴立军,屠鹏飞,等1观光木根皮的ICR鼠体内抑瘤作用初步研究(J)1沈阳药科大学学报,2001;18(4):283-285。
    36.SONG Xiao-Kai,TU Peng-Fei,WU Li-Jun,et al.A New Sesquiterpene Lactone from T soongiodendron odo rum Chun.J Asia Natural Products Res,2002;3(4):285-291.
    37.宋晓凯,屠鹏飞,吴立军1木兰科植物中生物碱成分研究概况(J).中国中药杂志,1999;增刊:168-169.
    38.宋晓凯,屠鹏飞,吴立军,等1观光木化学成分的研究(J)1中国野生植物资源杂志,1999;(5):110
    39.宋晓凯,吴立军,屠鹏飞等1观光木树皮的生物活性研究[J]1中草药,2002:33(8):283-285.
    40.宋晓凯,吴立军,屠鹏飞,等.近五年来木兰科植物生物活性研究及应用进展[J].中草药,2002;33(10):283-285.
    41.潘福娟,宋晓凯1抑癌基因p16,HPV与肿瘤(J)1吉林医学,1998:19(专刊):110.
    42.Nikhil M Patell,6,Shinichi Nozaki2,6,Nicholas H Shortlel,et al.Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kB is enhanced by IkBa super-repressor and parthenolide.Oncogene(2000) 19,4159-4169.
    43.Cory AH,Cory JG.Augmention of apoptosis responses in p53 deficient L 1210 cells by compound at blocking NF-kappa B activation(J).Anticancer Res,2001:21(6):3807-11.
    44.Matthew C.Ralstin,1 Earl A.Gage,1 Michele T.Yip-Schneider,1,4 Patrick J.Klein,et,al.Parthenolide Cooperates with NS398 to Inhibit Growth of Human Hepatocellular Carcinoma Cells through Effects on Apoptosis and G0-G1 Cell Cycle Arrest.Mol Cancer Res,2006;4(6):387-400).
    45.Kang SN,Kim SH,Chung SW,et al.Enhancement of 1α-25-dihydroxyvitam in D (3)-induced differentiation of human leukaemia HL-60 cells into monocytes by parthenolide via inhibition of NF-kappa B activety(J).Br J Pharmacol,2002;135,(5):1235-44.
    46.Oka D,Nishimura K,Shiba M,Nakai Y,Arai Y,Nakayama M,et,al.Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB.Int J Cancer.2007 Jun 15;120(12):2576-81.
    47.Kim JH,Liu L,Lee SO,Kim YT,You KR,Kim DG.Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis.Cancer Res.2005 Jul 15;65(14):6312-20.
    48.Guzman ML,Rossi RM,Karnischky L,Li X,Peterson DR,Howard DS,Jordan CT.The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells.Blood.2005 Jun 1;105(11):4163-9.
    49.Zunino SJ,Ducore JM,Storms DH.Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells.Cancer Lett.2007 Apr 28。
    50.小白菊内酯对多发性骨髓瘤细胞的生长抑制及其凋亡诱导作用.中华医学杂志,2006,28.
    51.Wang W,Adachi M,Kawamura R,Sakamoto H,Hayashi T,Ishida T,Imai K,Shinomura Y.Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity.Apoptosis.2006 Dec;11(12):2225-35.
    52.林忠宁,林育纯,SHENHan-ming,YANG Cheng-feng,ONG Choon-nam,菊花倍半菇烯内酯诱导人鼻咽癌细胞毒性和凋亡的研究。中草药,2002,33(10):909-912.
    53.Cory AH,Cory JG.Augmention of apoptosis responses in p53-deficient L 1210 cells by compound at blocking NF-kappa B activation.Anticancer Res,2001;21(6):3807-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700