GSK-活性对卵巢癌细胞耐药性的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌的耐药性问题是其临床治疗效果欠佳的主要原因之一。明确卵巢癌耐药的分子机制,寻找有效的耐药逆转剂或有效的治疗靶标已成为国内外妇科肿瘤学界密切关注的研究热点。
     糖原合成激酶3β(glycogen synthesis kinase-,GSK-)是一多功能丝氨酸/苏氨酸类激酶,广泛的分布在迄今研究过的所有真核生物中,是糖原代谢过程中的重要限速酶,可以在胰岛素调控下磷酸化肝糖原合成酶(glycogen synthesis)使之失活。业已证实,除此功能之外,GSK-在多个重要信号通路中扮演了关键角色,例如PI3’-Kinase、Wnt/wingless以及Hedgehog三条信号转导通路,在蛋白合成、细胞增殖、细胞分化、细胞运动以及肿瘤发生等方面都扮演了重要角色。
     已有研究报道,相对于正常卵巢组织,卵巢癌中存在GSK-的高表达。2006年,Qi Cao等证明:来源于卵巢上皮性癌的细胞系SKOV3中GSK-活性高于来源于卵巢透明细胞癌的细胞系ES-2;利用LiCl抑制SKOV3中GSK-活性会抑制SKOV3细胞增殖能力,认为其可能成为新的卵巢癌治疗靶标。但按照Qi Cao等的结论逆推,ES-2细胞中GSK-活性较低,理应增殖能力较低,恶性程度也应较低。可事实并非如此,临床实践证明,卵巢透明细胞癌虽然早期患者居多,但其易复发,化疗耐药性发生率高于其它卵巢肿瘤。且已有报道,抑制GSK-活性会增加一些肿瘤细胞的耐药性。这些证据令我们对抑制GSK-活性治疗卵巢癌的可能性提出质疑。经过文献回顾,有关GSK-与卵巢癌耐药机制之间的研究尚未见报道,因此,我们决定对GSK-活性与卵巢癌耐药性之间的联系进行研究,以进一步探讨抑制GSK-活性治疗卵巢癌的可能性。
     研究目的:
     1.明确GSK-表达及活性改变是否参与了卵巢癌耐药性的发生; 2.探讨外源性改变GSK-活性或表达对卵巢癌细胞耐药性的影响。
     研究方法:
     1. western bllot、免疫细胞化学染色检测A2780、CP70细胞中GSK-蛋白及其磷酸化蛋白的表达、定位情况;western bllot检测顺铂处理后A2780、CP70细胞中GSK-蛋白表达及定位的改变。
     2. LiCl抑制GSK-活性后,MTT法检测A2780、CP70细胞IC50的改变。
     3. DAPI染色、Annexin V/PI染色流式细胞仪检测LiCl抑制GSK-活性对顺铂诱导A2780、CP70细胞凋亡的影响。
     4.利用pcDNA -GSK--S9A质粒瞬时转染CP70细胞,观察GSK-活性增强对CP70细胞耐药性的影响。
     5.利用特异性GSK-siRNA瞬时转染CP70细胞,观察GSK-表达及活性受到抑制后,CP70细胞耐药性的改变。
     6.改变CP70细胞内GSK-活性后,利用HGA700原子吸收光谱仪测定顺铂处理后细胞中DNA-铂结合量,观察其DNA修复能力的改变。
     7.改变CP70细胞内GSK-活性后,westernblot检测GSK-下游相关分子的表达变化情况,初步探讨CP70细胞内GSK-活性改变导致DNA修复能力变化的分子机制。
     研究结果:
     1.细胞总蛋白提取物中,A2780、CP70细胞中总的GSK-蛋白表达无明显差异(1:1.08±0.13,P>0.05);而CP70细胞中,处于活性抑制状态的pGSK--ser9表达量明显高于A2780细胞(1:2.34±0.21,P<0.01)。
     2. A2780细胞中,GSK-主要定位于胞浆中,胞核中几乎没有;而CP70细胞中,GSK-胞浆、胞核中均有表达;使用相应浓度顺铂处理A2780、CP70细胞后,无论A2780细胞还是CP70细胞,顺铂处理均会导致胞浆中GSK-移位至胞核中。
     3.未用顺铂处理时,A2780、CP70细胞胞浆中GSK-表达及活性状态未见明显差异;顺铂处理后,两种细胞胞核内均出现GSK-移位,且pGSK--ser9表达量增加明显。
     4. LiCl预处理A2780、CP70细胞6小时可明显增加其顺铂耐药性(IC50值如下:A2780细胞,0.51±0.13μM:3.04±0.28μM,P<0.001;CP70细胞,5.43±0.15μM:13.28±0.34μM,P<0.001)。
     5. DAPI染色及Annexin V/PI染色证明LiCl预处理A2780、CP70细胞6小时可明显降低顺铂诱导的细胞凋亡发生。
     6. pcDNA -GSK--S9A质粒瞬时转染CP70细胞可明显增加GSK-的表达,但GSK-ser9的磷酸化过程受到阻断,致使CP70细胞耐药性降低(2.78±0.09μM:5.38±0.12μM,P<0.01)。
     7.利用特异性GSK-siRNA瞬时转染CP70细胞可明显抑制GSK-蛋白的表达,致使CP70细胞耐药性增加(9.36±0.14μM:5.38±0.12μM,P<0.01)。
     8. GSK-活性受到抑制后,CP70细胞DNA修复功能明显增强;而GSK-活性增强后,CP70细胞DNA修复功能减弱。
     9. GSK-活性受到抑制后,p53、p21、GADD45等蛋白表达增强是CP70细胞DNA修复功能增强的原因之一,细胞免于顺铂诱导的凋亡;cleaved caspase-3表达受到抑制可能也参与其中。
     研究结论:
     1.胞核内pGSK--ser9表达增强,是CP70细胞区别于A2780细胞的生物学特征之一。
     2.顺铂刺激可以引起A2780、CP70细胞中,GSK-蛋白的核移位及胞核内pGSK--ser9表达的增强。
     3. LiCl预处理A2780、CP70细胞可以增强两种细胞的耐药性。
     4. LiCl引起的细胞耐药性增强与LiCl引起细胞内pGSK--ser9表达增强有关。
     5.在CP70细胞中过度表达GSK-S9A突变体蛋白可以降低CP70细胞耐药性。
     6. RNAi技术沉默CP70细胞中GSK-蛋白的表达可以增强CP70细胞耐药性。
     7. p53蛋白及其下游产物p21、GADD45表达增加介导了GSK-活性受抑引起的肿瘤细胞耐药性改变;caspase-3激酶失活可能也参与其中。
     综上所述,卵巢癌耐药机制十分复杂,GSK-活性受到抑制后引起p53蛋白及其下游产物p21、GADD45表达增加是卵巢癌耐药性产生的可能机制之一。虽然有证据表明,抑制GSK-活性可抑制肿瘤细胞增殖能力,但鉴于抑制GSK-活性会导致肿瘤细胞耐药性增加,GSK-抑制剂能否作为卵巢癌治疗用药仍值得商榷。
Ovarian carcinoma is a leading cause of death from gynecological cancer in China and many other countries. The major reason for the mortality of this cancer is the high metastatic ability and the resistance to chemotherapy. The response of the primary tumor to taxane and platinum-based chemotherapy is high, but about 20% of patients never achieve a clinical response and the majority of the patients will relapse and eventually die of drug-resistant disease. Although great improvement has been made in standard therapy for ovarian cancer, the mechanism of the drug-resistant and relapses is not clear yet. Identifying the molecules that differentially expresses in the drug-resistant cells is a hot field for exploring the target for new drugs.
     Glycogen synthase kinase-3 beta (GSK-), a serine/threonine kinase active in resting cells, is now recognized as a key component of a surprisingly large number of cellular processes, such as cellular structure, growth ,motility and apoptosis. Dysregulation of the expression and activity of GSK-has been linked to several prevalent pathological conditions, including tumorigenesis.
     It has been reported that the level of expression of GSK-is significantly high in ovarian carcinoma tissue.Because of the importance of GSK-in apoptotic procedure, it is plausible that the pharmacological inhibiton of GSK-should cure ovarian carcinoma. And the latest report also indicated that GSK-positively regulates the proliferation of ovarian carcinoma cell line SKOV3, via the upregulation of cyclin D1, which can be inhibited by lithium chloride, an approved GSK-inhibitor(12). However, in this context, we offered the contrary evidence that the inhibiton of GSK-by lithium chloride offered the chemoresistance of ovarian carcinoma cells to cisplatin, and the molecular mechanisms responsible for the chemoresistance focused on the induction of p53, p21 and GADD45.
     AIM:
     Detect the role of GSK-in the cisplatin chemoresistance of ovarian cancer cells.
     METHODS:
     Our research work was divided into two parts. The first, we detected total protein and its phosphoralation isform expression of GSK-in A2780 and CP70 cells by western blot and immunofluorescence. Then we detect the change of cisplatin chemoresistance of A2780 and CP70 cells pretreated with LiCl by MTT, DAPI staining and flow cytometry.
     The second, after transient transfection of S9A mutant GSK-vector and GSK-siRNA in CP70 cells, the change of cisplatin chemoresistance and the ability of DNA repairment were detected by MTT and DAPI staining, flow cytometry and atomic absorption spectroscopy. And then, the possible molecular mechanism was detected by western blot.
     At last, the data was analyzed with SPSS 13.0 statistical software.
     RESULTS:
     First, we detected the expression and localization of total GSK-and its inhibitive phosphorylated isoforms, pGSK-ser9 in A2780 and CP70 cells. Western blot analysis showed that both A2780 and CP70 expressed GSK-, and the levels of total GSK-in two cell lines were almost aequalis (1:1.08±0.13,P>0.05), however, the level of pGSK-ser9 isoforms in A2780 was lower than in CP70 (1:2.34±0.21,P<0.01). As we know, the function of GSK-is closely correlated with its localization. So the localization of GSK-was detected by immunofluorescence. We found that GSK-almost localized in cytoplasmic in A2780, but in cytoplasmic and nucleus in CP70. After treatment of cisplatin, GSK-translocated obviously into the nucleus of the two cell lines ,and pGSK-ser9 is the main composition of GSK-in the nucleus.
     To confirm whether the increase of pGSK-ser9 contributes to the cisplatin-resistant of A2780, CP70 cell lines, we examined the inhibitory concentration 50% (IC50) of cisplatin to A2780 and CP70 pretreated with lithium chloride. IC50 of A2780 and A2780/CP70 respectively significantly increased from 0.51±0.13μm, 5.43±0.15μm to 3.04±0.28μm , 13.28±0.34μm after lithium pretreatment. The results of DAPI and flow cytometry confirmed these consequence.
     To further verify that the effect of lithium was due to inhibition of GSK-, CP70 cells were transiently transfected with pcDNA3-GSK--S9A and GSK-short interfering RNA (siRNA), respectively. We observed that overexpression of GSK--S9A resulted in the depression of cisplatin chemoresistance in CP70 cell, on the contrary, inhibition of GSK-expression by siRNA led to the increase of cisplatin chemoresistance.
     It has been demonstrated that the cytotoxicity of cisplatin is thought to be due to the formation of intrastrand and interstrand cross-links in the DNA and cisplatin-DNA adducts, which may induce cell cycle arrest or apoptosis. So platinum cotent was measured by atomic absorption spectroscopy to determine the ability of removal of platinum-DNA adducts. The results of atomic absorption spectroscopy indicated that overexpression of GSK--S9A resulted in the reduction of DNA repairment ability.
     As we know, in A2780 and CP70 cells, the resistance to cisplatin correlates with prolonged p53 protein stabilization and accumulation. Therefor, we examined the expression of p53 protein in CP70 cells, in which GSK-S9A mutant overexpressed or GSK-expression was inhibited by siRNA. The results demonstrated that the inhibition of GSK-expression resulted in an obvious increase of p53 expression, compared with those transfected with pcDNA3-GSK--S9A, and this increase was associated with up-regulation of p21 and GADD45, two target genes of p53, which were correlated with cell cycle arrest and DNA repair. Furthermore, we found the expression of cleaved caspase-3 was reduced when p53 was induced by the inhibition of GSK-.
     CONCLUSIONS:
     Our results shows high level expression and nuclear location of pGSK-ser9 in CP70 cells is associated with its resistance to cisplatin and lithium is able to promote the chemoresistance to cisplatin through induction of inactive phosphoralation of GSK-at serine 9 and p53. Therefore, the administration of lithium to ovarian cancer patients should be scrupulous.
引文
1. Embi, N. Glycogen synthase kinase-3 from rabbit skeletal muscle, Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 1980,107: 519-527.
    2. Woodgett, J. R. Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase II (glycogen synthase kinase-5). Biochim Biophys. Acta.1984,788: 339-347.
    3. Frame, S. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J.2001, 359: 1-16.
    4. Grimes, C. A. The multifaceted roles of glycogen synthase kinase-3 beta in cellular signaling. Prog, Neurobiol.2001, 65: 391-426.
    5. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004 Feb;29(2):95-102
    6. Woodgett, J. R. Judging a protein by more than its name: GSK-3.Sci. STKE. 2001, RE12.
    7. Adrian, J. Harwood. Regulation of GSK-3: A Cellular Multiprocessor. Cell. Minireview. 2001,105: 821-824.
    8. Cohen, Philp.The renaissance of GSK3. Nat. Rev Mol. Cell Biol.2001,2: 769-776.
    9. Esther, Siegfried. Wingless Signaling Acts through zester-white 3,the Drosophila Homolog of glycogen synthase kinase-3, to Regulate engrailed and Establish Cell Fate. Cell, 1992, 71: 1167-1179
    10. Trevor, C. Dale. Signal transduction by the Wnt family of ligands. Biochem. J. 1998, 329: 209-223
    11. Kim, L. GSK-3, a master switch regulating cell-fate specification and tumorigenesis. Curr. Opin. Genet. & Develop. 2000,10: 508-514
    12. Jia, J. Shaggy/GSK-3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature. 2002, 416: 548-452.
    13. Price, M. A. Proteolysis of the Hedgehog signaling effector: Cubitus interruptus requiresphosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase I.Cell. 2002, 108: 823-835.
    14. Hagit, Eldar-Finkelman.Glycogen synthase kinase-3: an emerging therapeutic target. Trends in Mol. Med. 2002, 8 (3): 126- 132.
    15. Ratan, V. Bhat. Glycogen synthase kinase-3: a drug target for CNS therapies. J. Neurochem. 2004,10: 471-475.
    16. Bradley, W . GSK-3:tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 2003, 116:1175 一 1186.
    17. Hagit, Eldar-Finkelman. Increased Glycogen Synthase Kinase-3 Activity in Diabetes and Obesity-Prone C57B116J Mice. Diabetes. Rapid Publication. 2002, 48: 1-5.
    18. Svetlana, E. Nikoulina. Potential Role of Glycogen Synthase Kinase-3 in Skeletal Muscle Insulin Resistance of Type2 Diabetes.Diabetes.2000, 49: 263-271.
    19. Pamela,A.Lochead.Inhibition of GSK-3 Selectively Reduces Glucose-6- Phosphatase and Phosphoenolpyruvate Carboxykinase Gene Expression. Diabetes. Rapid Publication. 2001, 50: 937-946.
    20. Polakis, P. Wnt signaling and cancer. Genes. Dev 2000,14:1837-1851.
    21. Huelsken, J. The Wnt signalling pathway. J. Cell. Sci. 2002,115:3977-3978.
    22. Seidensticker, M. J. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta. 2000,1495: 168-182.
    23. Sharpe, C. Wnt signalling: a theme with nuclear variations.Bioessays. 2001,23: 311-318.
    24. Van Noort, M. Wnt signaling controls the phosphorylation status of beta-Catenin. J. Biol. Chem. 2002,277:17901 一 17905.
    25. Ali, A. Glycogen synthase kinase-3: properties, functions, and regulation. Chem. Rev 2001,101: 2527-2540.
    26. Isabel, Domingeuz. Missing Links in GSK-3 Regulation. Develop Biol. 2001, 235:303-313.
    27. Mukai, F. Alternative splicing isoform of tau protein kinase Ilglycogen synthase kinase 3beta. J. Neurochem. 2002, 81:1073-1083.
    28. Hoeflich, K. P. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 2000,406: 86-90.
    29. Kai-Fai, Lee. Molecular cloning and expression analysis of human glycogen synthase kinase-3 a promoter. Brain. Res.2000, 84:150-157.
    30. Miho, Takahashi.Distribution of tau protein kinase I/glycogen synthase kinase-3,phosphatase 2A and 2B, and phosphorylated tau in the developing rat brain. Brain Research. 2000,857: 193-206.
    31. Bax, B.The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure. 2001, 9:1143-1152.
    32. Dajani, R. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001,105: 721-732.
    33. Ter Haar. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat. Struct. Biol. 2001,8: 593-596.
    34. Masaaki, Aoki.Expression, puficcation and crystallization of human tau-protein kinase I/glycogen synthase kinase-3 beta. Acta Cryst. 2000,56: 1464-1465.
    35. Fiol, C. J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J.Biol. Chem. 1987, 262: 14042-14048.
    36. Fiol, C. J. A secondary phosphorylation of CREB341 at Serl29 is required for the cAMP mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J.Biol.Chem. 1994,269:32187-32193.
    37. Kirschenbaum, F. Glycogen synthase kinase-3beta regulates presenilin I C-terminal fragment levels. J.Biol.Chem. 2001, 276: 30701-30707.
    38. Kirschenbaum,F. Substitution of a Glycogen Synthase Kinase-3 Phosphorylation Site in Presenilin 1 Separates Presenilin Function from β-Catenin Signaling. J. Biol. Chem. 2001,276: 7366-7375.
    39. Bellon, S. The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation. Structure Fold. 1999,Dec. 7:1057-1065.
    40. Brown, N. R.The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1999,1: 438-443.
    41. Canagarajah, B. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997,90: 859-869.
    42. Hughes, K. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBD. 1993, 12: 803-808.
    43. Woodgett, J. R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO. J.1990,9: 2431-2438.
    44. Adrian, J. Harwood. Signal transduction: Life, the universe and development. Cur. Biol. 2000,10:116-119.
    45. Krause, U. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 2002,269: 3742-3750.
    46. Kim, L. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 1999,99: 399-408.
    47. Hartigan. A. Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem Biophys Res Commun. 2001,284: 485-489.
    48. Ballou, L. M. Dual regulation of glycogen synthase kinase-3beta by the alphalAadrenergic receptor. J. Biol. Chem. 2001,276: 40910-40916.
    49. Armstrong, J. L. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J. Biol. Chem. 2001,276: 952-956.
    50. Frame, S. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation.Mol.Cell,2001,7: 1321-1327.
    51. Scott, A. Summer. The Role of Glycogen Synthase Kinase 3beta in Insulin-stimulated Glucose Metabolism. J Biol Chem. 1999,274: 17934-17940
    52. Ding, V W. Differential regulation of glycogen synthase kinase-3beta by insulin and Wnt signaling. J. Biol. Chem. 2000,275: 32475-32481.
    53. Manoukian, A.S. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adu Cancer Res. 2002,84: 203-229.
    54. Langdon SP,Hirst GL,Miller EP,et a1.Tregulation of growth and protein expression by estrogen in vitro:a study of 8 human ovarian carcinoma cell line.J Steroid Biochem Mol Biol,1994,50(3-4):131
    55. Medunjanin S,Hermani A,De Servi B.Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor alpha and is involved in the regulation of receptor activity.J Biol Chem. 2005 Sep 23;280(38):33006-14.
    56. Farago M, Dominguez I, Landesman-Bollag E. Seldin DC. Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis.Cancer Res. 2005 Jul 1;65(13):5792-801.
    57. Shakoori A, Ougolkov A, Yu ZW, Zhang B. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation.Biochem Biophys Res Commun. 2005 Sep 9;334(4):1365-73.
    58. Ghosh JC, Altieri DC. Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells.Clin Cancer Res. 2005 Jun 15;11(12):4580-8.
    59. Tan J, Zhuang L, Leong HS, Iyer NG. Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells.
    60. Gamallo C, Palacios J, Moreno G. beta-catenin expression pattern in stage I and II ovarian carcinomas :relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol. 1999 Aug;155(2):527-36
    61. Rask K, Nilsson A, Brannstrom M, Carlsson P.Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer. 2003 Oct 6;89(7):1298-304.
    62. Cao Q, Lu X, Feng YJ. Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells.Cell Res. 2006 Jul;16(7):671-7
    63. Li D. GSK-3beta as a driving force in ovarian cancer.Cell Res. 2006 Jul;16(7):609.
    64. 石敏,张羽,沈铿. 卵巢透明细胞癌的临床特点. 中华妇产科杂志, 2002 Vol.37No.3 :161-163
    65. Heintz AP, Odicino F, Maisonneuve P, et al. Carcinoma of the ovary. Int J Gynaecol Obstet 2003;83(Suppl 1):135–166.
    66. Ferlay J, Bray F, Pisani P, Parkin D. GLOBCAN2000: Cancer incidence, mortality and prevalence worldwide. Io IARC Cancerbase 5, 2001.
    67. Timothy F. Kirn. Five-Year Ovarian Cancer Survival Rate Pegged at 44%. OB/GYN News, 2001, July 15.
    68. Eltabbakh GH and Awtrey CS: Current treatment for ovarian cancer.Expert Opin Pharmacother ,2001, 2:109-124
    69. Rebbeck TR, Lynch HT, Neuhausen SL, et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 2002;346:1616–1622.
    70. Trimbos JB, Vergote I, Bolis G, et al. Impact of adjuvant chemotherapy and surgical staging in early-stage ovarian carcinoma: European Organisation for Research and Treatment of Cancer-Adjuvant ChemoTherapy in Ovarian Neoplasm trial. J Natl Cancer Inst2003;95:113–125.
    71. Schilder JM, Thompson AM, DePriest PD, et al. Outcome of reproductive age women with stage IA or IC invasive epithelial ovarian cancer treated with fertility-sparing therapy. Gynecol Oncol 2002;87:1–7
    72. Zanetta G, Chiari S, Rota S, et al. Conservative surgery for stage I ovarian carcinoma in women of childbearing age. Br J Obstet Gynaecol 1997;104:103 0–103 5.
    73. Young RC, Walton LA, Ellenberg SS, et al. Adjuvant therapy in stage I and stage II epithelial ovarian cancer. Results of two prospective randomized trials. N Engl J Med 1990;322:1021–1027.
    74. Ahmed FY, Wiltshaw E, A’Hern RP, Nicol B, Shepherd J, Blake P, et al. Natural history and prognosis of untreated stage I epithelial ovarian carcinoma. JClin Oncol 1996;14:2968–2975.
    75. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era:a meta-analysis. J Clin Oncol 2002;20:1248–1259
    76. du Bois A, Luck HJ, Meier W, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 2003;95:1320–1329.
    77. Piccart MJ, Bertelsen K, James K, et al. Randomized intergroup trial of cisplatin–paclitaxel versus cisplatin–cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst 2000;92:699–708
    78. Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet 2002;360:505–515.
    79. NICE. Guidance on the use of paclitaxel in the treatment of ovarian cancer. National Institute of Clinical Excellence Technology Appraisal Guidance, 2003:55.
    80. Markman M, Zanotti K, Webster K.Phase 2 trial of single agent docetaxel in platinum and paclitaxel-refractory ovarian cancer, fallopian tube cancer, and primary carcinoma of the peritoneum. Gynecol Oncol. 2003 Dec;91(3):573-6.
    81. Cure H.Management of a patient with cancer during all stages of the disease.Symptomatic treatment. Modalities of surveillance. Psychological, ethical and social problems.Rev Prat. 2004 Nov 15;54(17):1949-55
    82. Pfisterer J, Du Bois A. Pharmacotherapy in ovarian carcinoma,MMW Fortschr Med. 2005 Oct 27;147(43):34-6
    83. De Placido S. A randomised factorial trial of sequential doxorubicin and CMF vs CMF and chemotherapy alone vs chemotherapy followed by goserelin plus tamoxifen as adjuvant treatment of node-positive breast cancer.Br J Cancer. 2005 Feb 14;92(3):467-74
    84. Siddik ZH.Cisplatin mode of cytotoxic action and molecular basis of resistance. Oncogene . 2003 Oct 20 ; 22 (47) :7265-79.
    85. Giaccone. Clinical perspectives on platinum resistance. Drugs. 2000;59 (Suppl. 4) : 9-17
    86. Nakayama K,Kanzaki A, Terada K, et al. Prognostic value of the Co-transportingATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin. Cancer Res.2004; 10:2804-2811
    87. Brabec V,Kasparkova J. Molecular aspects agents. Drug Resist. 2002 Update 5;147-161
    88. Kuang J,He G,Huang Z, et al. Bimodal effects of 1R, 2R-diaminocyclohexane (trans-diacetato) (dichloro)platinum(IV) on cell cycle checkpoints. Clin Cancer Res.2001 Nov; 7(11):3629-39.
    89. Borst P, Evers R, Kool M, et al .A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Ins t. 2000; 92;1295-1302.
    90. Boland MP, Fitzgerald KA, O'Neill LA. Topoisomerase II is required for mitoxantrone to signal nuclear factor kappa B activation in HL60 cells. J Biol Chem. 2000 Aug 18;275(33):25231-8.
    91. Furuta T, Ueda T, Aune G, et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 2002 Sep 1; 62(17) :4899-902.
    92. Papouli E,Cejka P,Jiricny J. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res.2004; 64:3391-3394
    93. Altaha R, Liang X, Yu JJ, Reed E. Excision repair cross complementing-group 1:gene expression and platinum resistance. Int J Mol Med. 2004 Dec;14 (6):959-70
    94. Xiang ST, Zhou SW, Guan W, et al. Expression of MUC1 and distribution of tumor-infiltrating dentritic cells in human bladder transitional cell carcinoma. Di Yi Jun Yi Da Xue Xue Bao. 2005 Sep; 25(9):1114-8
    95. Kigawa J, Sato S, Shimada M, et al. p53 gene status and chemosensitivity in ovarian cancer. Hum. Cell. 2001:14:165-171
    96. Bunz F,Hwang PM,Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin.工 nvest. 1999;104:263-269
    97. Hengstler JG, Lange J, Kett A, et al. Contribution of c-erbB-2 and topoisomerase II alpha to chemoresistance in ovarian cancer. Cancer Res. 1999 Jul 1;59 (13):3206-14
    98. DeHaan RD, Yazlovitskaya EM, Persons DL. Regulation of p53 target gene expressionby cisplatin-induced extracellular signalregulated kinase. Cancer Chemother. Pharmaco1.2001;48:383-388.
    99. Mitsuuchi Y, Johnson SW, Selvakumaran M, et al. The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDIl induced by cisplatin and paclitaxel.Cancer Res. 2000 Oct 1;60(19):5390-4
    100. Hayakawa J, Ohmichi M, Kurachi H, et al. Inhibition of BAD phosphorylation either at serine 1l2 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res. 2000 Nov 1;60 (21):5988-94
    101. Fraser M, Leung B, Jahani-Asl A, et al. Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod. Biol. Endocrino1.2003; 1:66
    102. Schimmer AD, Welsh K,Pinilla C, et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Ce11.2004; 5:25-35.
    103. Green SK, Francia G, Isidoro C, et al.Antiadhesive antibodies targeting E-cadherin sensitize multicellular chemotherapy in vitro. Mol Cancer Ther. 2004; 3:149-159
    104. Sherman-Baust CA, Weeraratna AT, Rangel LBA, et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Ce11.2003; 3:377-386
    105. Luciani F, Spada M, De Milito A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 2004 Nov 17; 96(22):1702-13.
    106. Doillon CJ, Gagnon E, Paradis R, et al. Three-dimensional culture system as a model for studying cancer cell invasion capacity and anticancer drug sensitivity. Anticancer Res. 2004; 24 (4):2169-77
    107. Jensen R, Glazer PM. Cell 一 interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gap junctions. Proc. Natl. Acad. Sci.U. S. A. 2004; 101:6134-6139
    108. Carruba G, Cocciadiferro L, Bellavia V, et a1. Intercellular communication and human hepatocellular carcinoma. Ann N Y Acad Sci. 2004 Dec;1028:202-12
    109. Ren J, Agata N, Chen D, et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Ce11.2004; 5:163-175.
    110. Takano M, Fujii K, Kita T, et al. Amplicon profiling reveals cytoplasmic overexpression of MUC1 protein as an indicator of resistance to platinum-based chemotherapy in patients with ovarian cancer. Oncol Rep. 2004 Dec;12 (6):1177-82
    111. Hamann PR, Hinman LM, Beyer CF, et al. An anti-MUC1 antibody calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem. 2005,16 (2):346-53
    112. Salmon SE, Dalton WS, Grogan TM. Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer.Blood. 1991 Jul 1;78(1):44-50
    113. Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs.J Natl Cancer Inst. 1993 Apr 21;85(8):632-9
    114. Kavanagh JJ, Gershenson DM, Choi H.Multi-institutional phase 2 study of TLK286 (TELCYTA, a glutathione S-transferase P1-1 activated glutathione analog prodrug) in patients with platinum and paclitaxel refractory or resistant ovarian cancer.Int J Gynecol Cancer. 2005 Jul-Aug;15(4):593-600
    115. Cucco C, Calabretta B. In vitro and in vivo reversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides. Cancer Res. 1996 Oct 1;56(19):4332-7
    116. 王宝成,郭军,顾广玉.切割 MDR/-RNA 的核酶对肝癌多药耐药细胞株 BEL-7402/ DOX 化疗耐药的逆转作用. 中国肿瘤生物治疗杂志, 1997, 4:106-109
    117. Wu H, Hait WN, Yang JM.Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells.Cancer Res. 2003 Apr 1;63(7):1515-9.
    118. Fraser M, Leung B, Jahani-Asl A. Chemoresistance in human ovarian cancer: the role ofapoptotic regulators Reprod Biol Endocrinol. 2003 Oct 7;1:66
    119. Zeimet AG, Marth C.Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 2003 Jul;4(7):415-22.
    120. Pestell KE,Hobbs SM, Titley JC,et al.Effect of p53 status on sensitivity to platinum complexes in a human ovarian cancer cell line. Mol Pharmacol, 2000, 57(3):503-511
    121. Kim R, Emi M, Matsuura K, Tanabe K. Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy.Cancer Gene Ther.2007 Jan;14(1):1-11.
    122. NAITO M.Enhancement of cellular accumulation of cyclosporine by anti-glycoprotein monoclonal antibody MRK-16 and their synergistic modulation of mutidrug resistance.Gan To Kagaku Ryoho,1994,21(3):395-402.
    123. Yazlovitskaya EM, DeHaan RD, Persons DL.Prolonged wild-type p53 protein accumulation and cisplatin resistance.Biochem Biophys Res Commun. 2001 May 18;283(4):732-7
    124. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem. 2003 Aug 29;278(35):33067-77.
    125. Kulikov R, Boehme KA, Blattner C. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol. 2005 Aug; 25(16) :7170-80
    126. Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ, etc. GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression . Exp Cell Res. 2004 Nov 1;300(2):354-64.
    127. Steinbrecher KA, Wilson W 3rd, Cogswell PC, Baldwin AS. Glycogen synthase kinase 3beta functions to specify gene-specific,NF-kappaB-dependent transcription Mol Cell Biol. 2005 Oct;25(19):8444-55
    128. Helleman J, van Staveren IL, Dinjens WN, van Kuijk PF, Ritstier K, Ewing PC, vander Burg ME, Stoter G, Berns EM. Mismatch repair and treatment resistance in ovariancancer. BMC Cancer. 2006 Jul 31;6:201
    129. Fanucchi M, Khuri FR. Chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck.Semin Oncol. 2004 Dec;31(6):809-15.
    130. M. Fritsche, C. Haessler, G. Brandner, Induction of nuclear accumulation of the tumor suppressor protein p53 by DNA damaging agents, Oncogene 8 (1993) 307–318
    131. K.V. Chin, K. Ueda, I. Pastan, N.M. Gottesman, Modulation of activity of the promoter of the human mdr1 gene by Ras and p53, Science 255 (1992) 459–462
    132. R. Brown, C. Clugston, P. Burns, A. Edlin, P. Vasey, B. Vojtesek, et al., Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines, International Journal of Cancer 55 (1993) 687–694
    133. Blattner, C., T. Hay, D. W. Meek, and D. P. Lane. 2002. Hypophosphorylation of Mdm2 augments p53 stability. Mol. Cell. Biol. 22:6170–6182
    134. Watcharasit P, Bijur GN, Song L. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53.J Biol Chem. 2003 Dec 5;278(49):48872-9.
    135. Watcharasit P, Bijur GN, Zmijewski JW.Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage.Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7951-5
    136. Turenne GA, Price BD.Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity.BMC Cell Biol. 2001;2:12.
    137. King TD, Bijur GN, Jope RS.Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium.Brain Res. 2001 Nov 16;919(1):106-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700