基于差异基因cDNA文库基础上耐药性癫痫患者脑内特异性标示蛋白筛选和机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:耐药性癫痫患者脑中差异表达基因的筛选
     目的:利用基因芯片和生物信息学理论筛选耐药性癫痫患者术后脑组织中差异表达基因,通过对其功能和相互关系的分析,探讨建立耐药性癫痫患者脑内差异表达基因的cDNA文库,同步了解耐药性癫痫患者脑内是否存在耐药性癫痫新的致病基因,进一步完善对耐药性癫痫基因机制的认识。
     方法:收集耐药性癫痫患者和对照组脑组织,常规病理学检查(HE染色、硝酸银染色、尼氏染色)后,抽提两组脑组织RNA,纯化mRNA,分别逆转录合成荧光分子掺入cDNA-链做探针;将含4096条人类基因PCR产物按微矩阵点样于化学涂层的栽玻片上,制成基因芯片,芯片杂交和洗片后,用ScanArray4000荧光扫描仪扫描芯片荧光信号图象,计算机分析耐药性癫痫患者和对照组脑组织差异表达的基因;生物信息学筛选出与耐药性癫痫发病相关的差异候选基因,采用RT-PCR对酪蛋白激酶2(CSNK2A1),层粘连蛋白β1(LAMB1),肌红蛋白1E(MYO1E),微管蛋白δ1(TUBD1),微管蛋白γ1(TUBG1),钙粘蛋白18,type 2(Cadherin 18 type2),微管相关蛋白1A(MAP1A),微管相关蛋白1B( MAP1B),微管相关蛋白2(MAP2),周期性依赖蛋白激酶5(CDK5),分裂素激活蛋白激酶14(MAPK14),糖原合成激酶-(GSK-)基因进行验证;实时荧光PCR(FQ-PCR)对MAP1A, MAP1B,MAP2,WDR3, CDK5 ,MAPK14 , GSK-, HSPBAP1, REDD1, EML5, MARK1, TRAP220 ,小脑变性相关蛋白(CDR2) mRNA水平进行检测。
     结果:1、耐药性癫痫患者术后脑组织常规病理学检查提示神经元坏死、凋亡、胶质细胞增生,神经纤维增多,走行紊乱是耐药性癫痫最常见的病理改变;2、耐药性癫痫患者脑内有142条基因与对照组比效表达有显著差异(104条(73.2%)表达上调,38条(26.8%)表达下调),按生物学功能分类,发现这些差异表达的基因主要集中在信号传导(20条)、离子通道(3条)、细胞骨架基因(9条)、凋亡(7条)、细胞受体(3条)、代谢(6条)、癌基因(4条)及发育(9条)等,提示耐药性癫痫的发生可能与细胞骨架、凋亡、离子通道、代谢、免疫等。3 RT-PCR验证的12条基因结果与基因芯片一致;除MARK1外,FQ-PCR检测结果与基因芯片相符,从另一个侧面支持基因芯片检测结果。
     结论: 1、耐药性癫痫发病机制可能与多个不同功能的基因组相互作用有关,而非单一基因作用;2、差异表达基因主要集中在离子通道、凋亡、细胞骨架、信号传导及其肿瘤相关基因等;3、耐药性癫痫患者脑组织中存在人类尚不清楚的耐药性癫痫新致病基因;4、基因芯片技术具有高通量、高灵敏度的优点,能发现新致病基因,但存在假阳性,需结合传统分子生物学技术验证。
     第二部分:基于差异cDNA文库基础上耐药性癫痫患者脑内特异性蛋白筛选和机制研究
     目的:蛋白是基因功能的执行单位,本文研究的目的就是希望在差异表达基因cDNA文库基础上通过研究其相关蛋白,筛选出耐药性癫痫患者脑内特异性,标示性的蛋白质,进而探讨耐药性癫痫患者新的发病机制,提出耐药性癫痫防治的新观点,为抗癫痫新药的开发提供新的作用靶点。
     方法:收集耐药性癫痫患者和对照组颞叶标本,采用免疫组化、免疫荧光、western blot分别对细胞外信号传导激酶(extracellular signal-regulated kinase,ERK1), ERK2,磷酸化细胞外信号传导激酶1/2(P-ERK1/2),TAU蛋白、P-TAU蛋白(ser202,ser404)、糖原合成激酶-3Beta(GSK-)、磷酸化糖原合成激酶(ser9)(P-GSK-(ser9))、微管相关蛋白2(microtubular- associated protein,MAP2)、T细胞死亡相关基因51 ( T cell death-associated gene 51,TDAG51)、胰岛素样生长因子-1(Insulin-like growth factor-I,IGF-I)、MAPK14和磷酸化MAPK14(thr182 /tyr184)、CDR2总共14个蛋白的表达部位和表达量进行测定,进一步探讨其在耐药性癫痫发病机制中的作用。
     结果:IGF-1、TDAG51、MAPK14、磷酸化MAPK14 (Thr180 /Tyr182)、MAP2、TAU蛋白、磷酸化TAU蛋白(ser202,ser404)、CDK5、GSK-、P-GSK-(ser9)、ERK1、ERK2、P-ERK1/2(Thr202 /Tyr204)免疫反应产物均为棕黄色点状或颗粒状沉积,神经元胞体和细胞核均有表达,部分胶质细胞也存在表达。各组脑组织间,可见着色深浅有明显差异,阴性对照组未见免疫反应产物表达。除TAU蛋白无改变和P-GSK- (ser9)耐药性癫痫组降低外,癫痫患者脑组织中上述蛋白的表达较正常对照组高。CDR2见于实验组脑组织中,对照组中未见明显阳性细胞。ERK1、ERK2不同病理改变即神经元丢失组和胶质细胞增生组之间无明显改变,而P-ERK1/2(Thr202/Tyr204)在胶质细胞增生组明显高于非胶质细胞增生组。免疫荧光与免疫组化结果类似,western blot检测显示各个蛋白在相应的分子量处表达,其表达量的高低与免疫组化相符。
     结论:1耐药性癫痫患者基因表达有差异,其基因的表达产物亦有类似结果;2差异表达的不是单一蛋白,而是具有相互作用的蛋白如TDAG51相关蛋白(IGF-1,MAPK14,CDR2)和TAU蛋白相关蛋白(GSK-,P-GSK-,CDK5,ERK1,ERK2,P-ERK1/2,P-MAPK14(thr182 /tyr184), MAPK14); 3研究耐药性癫痫患者脑组织中差异基因和蛋白的表达,提示耐药性癫痫新的异常发病途径,为新药开发提供理论依据。
PART ONE: SCREEN THE DIFFERENTIAL GENE EXPRESSION IN THE TEMPORAL NEOCORTEX OF PATIENTS WITH INTRACTABLE EPILEPSY
     Objectives: In search for the molecular basis of drug-resistance epilepsy(DRE), we applied a genomic-transcriptomic approach and bioinformatics to identify genes involved in the pathogenesis of DRE. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help to establish differential gene cDNA library and find out the new epilepsy associated genes, and then identify the molecular targets for drugs which could prevent epilepsy.
     Methods: Using a cDNA microarray representing 4096 human genes, we identified that those genes were altered in the temporal neocortex of the patients with DRE and control tissues. Standard stains included H&E,nissl staining and modified bielschowsky silver stains. Total RNA was extracted with UNIzol reagent following the manufacturer's protocol and methods. Scans were performed with the ScanArray4000. The expression value for each gene was then calculated using ImaGene3.0 software (BioDiscovery,Inc). Each experiment was duplicated so that the mean of two ratios for each gene could be used for further analysis. To validate these results, we performed real-time fluorescence quantitative polymerase chain reaction (FQ-PCR) on optional thirteen differentially expressed genes, including MAP1A(microtubular-associated protein1A), MAP1B(microtubular- associated protein 1B),MAP2(microtubular associated protein 2),WDR3 (WD repeat domain 3),CDK5 (cyclin-dependent kinase 5),MAPK14 (mitogen-activated protein kinase 14),GSK-(glycogen synthase kinase 3 beta), HSPBAP1 (HSPB associated protein 1), REDD1 (regulated in development and DNA damage responses 1), EML5 (echinoderm microtubule associated protein like 5), MARK1 (microtubule affinity-regulating kinase 1), TRAP220 (thyroid hormone receptor- associated protein), CDR2 (cerebellar degeneration-related protein2)). And we also tested 12 gene by reverse transcription PCR (RT-PCR) (CSNK2A1(casein kinase 2, alpha 1),LAMB1(lamin beta1), MYO1E(myoglobin 1E), TUBD1(tublin deta1), TUBG1(tublin gama1), Cadherin 18(type2), MAP1A,MAP1B,MAP2, CDK5,MAPK14,GSK-).
     Results: 1. Nissl-, H&E and silver- stained neurons showed that the number was significantly decreased in DRE. Patients had cortical neuronal loss and gliosis. Silver-stains showed that there were sprouting of the axon and dendrite and no senile plaques and neurofibrillary tangle formation in the neocortex of patients with DRE; 2. 142 (3.47 %) of 4096 genes significantly altered in the DRE brains. Among the 142 genes, 38(26.8%)genes were down-regulated while 104(73.2%)genes were up-regulated (>2-fold change over controls). These differentially genes included in immune, cell signal transmission, apoptosis, stress-associated, synapse plasticity, structural and cellular reorganization, and so on. Some genes had been reported in previous studies while others had never been reported. 3. Twelve of thirteen by FQ-PCR were coincidence well with the results of microarray scanning. Within the same population, Most of them were found to be significantly increased in the temporal neocortex of DRE comparing to those in the control tissue. 12 genes by RT-PCR were coincidence well with the results of genechip.
     Conclusions: 1 Multiple genes were associated with DRE, but not a single gene;2 These differentially genes mainly related with immune, cell signal transmission, apoptosis, stress-associated, synapse plasticity, structural and cellular reorganization, and so on; 3 Some genes had never been reported in previous study. It was still unknown to the mechanism of DRE;4 Gene chip had the merits of high-flux and high sensitivity. However, there are some false positive. It was important to test the results by traditional molecular biological technique.
     PART TWO: SCREEN THE SPECIFIC MARKED PROTEIN AND APPROACH THE MECHANISM IN THE TEMPORAL LOBE OF DRUG-RESISTANCE EPILEPSY ON THE BASE OF CDNA LIBRARY
     Purpose: The protein is the gene function unit. Make use of the temporal lobe of DRE patients to detect the gene expression of candidate genes. We analyzed the relation of gene and the protein expression and clarify the possible mechanism of DRE.
     Methods:Used western blot to evaluate and level of extracellular signal-regulated kinase 1(ERK1 ) , ERK2, phosphorylated- ERK1/2(P-ERK1/2),tau protein,phosphorylated-tau protein(ser202, ser404), GSK-, phosphorylated-GSK -(ser9),MAP2,T cell death- associated gene 51(TDAG51), Insulin-like growth factor-I(IGF-I),CDR2 in 40 surgically resected temporal neocortex of patients with DRE and 20 normal control. Immunohistochemistry (IHC) and immunofluorescence was also used to explore the protein expression and location in DRE.
     Restuls:As compared with the control group, there appeared significant increased protein expressions of IGF-1,TDAG51,MAPK14, P-MAPK14 (Thr180/Tyr182), MAP2,P-TAU(ser202,ser404),CDK5,GSK-, significant decreased expressions of P-GSK-(ser9). ERK1,ERK2,and p-ERK in DRE was significant higher than those of controls. They were mainly expressed in the cytoplasm of neuron and glial cell. At the same time, p-ERK expression in the gliosis of DRE was higher than that in the non-gliosis. Western blot analysis showed the results of protein were coincidence with was found in DRE when compared with the normal control brain tissues by immunohistochemistry and immunofluorescence.
     Conclusion:1, Our work showed that differential mRNA and protein levels may be involved in the pathophysiology of DRE and may be associated with impairment of the brain caused by frequent seizures; 2 , DRE was not caused by a single gene, but many differential genes and proteins,such as TDAG51 associated protein(IGF-1,CDR2,MAPK14, etc), tau associated protein(MAP1A,MAP1B,MAP2,CDK5,etc); 3, these differential genes and proteins expression suggested that DRE have new onset pathway and provide the theory basis of new AEDs.
引文
[1] Stefan R,Heinz Beck .Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain .2006,129:18–35
    [2] Shetty AK, Zaman V, Hattiangady B.Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy[J]. J Neurosci. 2005,25(37):8391-8401.
    [3] Kwan P, Brodie MJ. Potential.role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia.2005, 46: 224–235
    [4] Volk HA, Loscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures[J]. Brain.2005, 128: 1358–1368
    [5] Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance[J]. J Neurosci.2002, 22: 5833–5839.
    [6] Sisodiya SM, Lin WR, Squier MV, Thom M. Multidrug-resistance protein 1 in focal cortical dysplasia[J]. Lancet. 2001,357: 42–43.
    [7] Lu Y, Yan Y,Wang XF. Antiepileptic drug-induced multidrug resistance P-glycoprotein. overexpression in astrocytes cultured from rat brains[J]. Chin Med J (Engl).2004, 117:1682-1686.
    [8] Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. [J] Science.2002, 298: 1418–1421
    [9] Gulledge AT, Stuart GJ. Excitatory actions of GABA in the cortex. Neuron. 2003, 37: 299–309.
    [10] Jung KH, Chu K, Kim M, et al.. Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus[J].J Neurosci. 2004, 24(33):7215-24.
    [11] Wozny C, Kivi A, Lehmann TN, et al. Comment on ‘On the origin of interictal activity in human temporal lobe epilepsy in vitro’ [J]. Science. 2003, 301: 463.
    [12] Andrade-Valenca LP, Valenca MM, Velasco TR, et al Mesial temporal lobe epilepsy: Clinical and neuropathologic findings of familial and sporadic forms[J].Epilepsia. 2008, Feb 18(in press).
    [13] Gabriel S, Njunting M, Pomper JK,et al.. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis[J]. J Neurosci. 2004 ,24(46):10416-10430.
    [14] DavidJ S, Allan VJ. Light Microscopy Techniques for Live Cell Imaging[J]. Science.2003,300:82-86.
    [15] Jaime G,Narayanan K,WenBiao G. Longterm dendritic spine stability in the adult cortex[J]. Nature. 2002,420:812-816.
    [16] Sazio PJ,Amezcua-Correa A,Finlayson CE,et al.Microstructured optical fibers as high-pressure microfluidic reactors[J]. Science.2006,311(5767):1583-1586.
    [17] H oltmaat, AJ, Gorter JA, De wit, et al. Trasient downregulation of Sema3A mRNA in a rat model for temporal lobe epelepsy, A novel molecular event potantial contributing to mossy fiber sprouting[J]. Exp Neurol.2003,182: 142-150.
    [18] Gregory B, Ram SP, Yuling L, et al. Temporal specific patterns of semaphoring gene expression in rat brain after kainic acid-induced status epilepticus[J]. Hippocampus. 2003, 13: 1-20.
    [19] 曾可斌; 王学峰. cDNA 芯片检测耐/非耐苯妥英钠癫痫鼠脑线粒体基因的差异表达[J].中华神经外科杂志.2002,18(4): 234-237.
    [20] 汪建华,王学峰,龚云,等.DRE 患者术后脑组织中 Tau 蛋白的表达[J].中华神经科杂志.2005,9:543-546.
    [21] 郭珍立,柯贤军,王学峰等.微管相关蛋白 2 在 DRE 患者颞叶中的表达[J].中国临床神经科学杂志.14(4):368-370.
    [22] Arabella M, Silke H, Heinz W. MAP1B Is Required for Axon Guidance and Is Involved in the Development of the Central and Peripheral Nervous System[J]. J Cell Bio.2000,151(6):1169-1178
    [23] Waterman-Storer C, Salmon E. Positive feed-back interactions between microtubules and actin dynamics during cell motility[J]. Curr Opin Cell Biol. 1999,11:61–67.
    [24] Popa-Wagner A, Fischer B, Platt D,et al. Delayed and Blunted Induction of mRNA for Tissue Plasminogen Activator in the Brain of Old Rats Following Pentylenetetrazole-Induced Seizure Activity[J]. J. Gerontol. 2000,55: 242
    [25] Wu LJ, Leenders AG, Cooperman S, et al. Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier[J]. Brain Res. 2004,1001(1-2):108-117.
    [26] Schmoll H, Badan I, Grecksch G,et al. Kindling Status in Sprague-Dawley Rats Induced by Pentylenetetrazole[J]. Am J Pathol. 2003,162:1027-1034.
    [27] Kato K,Masa T,Tawara Y,et al. Dendritic aberrations in the hippocampal granular layer and the amygdalohippocampal area following kindled-seizures[J]. Brain Res. 2001,901:281-295
    [28] Okada M, Zhu G, Yoshida S. Exocytosis mechanism as a new targeting site for mechanisms of action of antiepileptic drugs. Life Sci. 2002,72(4-5):465-473.
    [29] Dubois T, Kerai P, Learmonth M, et al. Identification of syntaxin-1A sites of phosphorylation by casein kinase I and casein kinase II. Eur J Biochem.2002, 269: 909-914.
    [30] Hao W, Luo Z, Zheng L, et al. AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J Biol Chem. 1999,274:22785-22794
    [31] Suzuki SC, Inoue T, Kimura Y, et al. neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains[J]. Mol. Cell. Neurosci.1997,9:433-447
    [32] Togashi H, Abe K, Mizoguchi A, et al. Cadherin regulates dendritic spine morphogenesis. Neuron.2002, 35(1):77-89
    [33] Bozdagi O, Valcin M, Poskanzer K, et al. Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol Cell Neurosci. 2004, 27(4):509-21
    [34] Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle[J]. Neuron.2001,29: 131-143
    [35] Burdo JR,Menzies SL,Simpson IA,et a1.Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat[J].J Neurosci Res.2001,66:1198-1207.
    [36] Jeong SY, David S. Glycosylphosphatidylinositol-anchored Ceruloplasmin Is Required for Iron Efflux from Cells in the Central Nervous System[J]. J Biol Chem.2003, 278(29):27144-27148.
    [37] 王 学 峰 , 肖 波 , 孙 红 斌 , 主 编 . 难 治 性 癫 痫 [M]. 上 海 : 上 海 科 技 出 版社.2003,137-139.
    [38] Callenbach PMC, Der Zijde CMJ,Geerts AT,et al. Immunoglobulins in children with epilepsy: the Dutch study of epilepsy in childhood[J].Clinic Exper Immun. 2003,132( 1): 144-151.
    [39] Tan Z,Levid J,Schreiber SS,et al.1ncreased expression 0f Fas(CD95/APO-I)in adult rat brain after kainite-induced seizures[J]. Neuroreport.2001,I2(9): 1979-1982.
    [40] Henshall DC, Schindler CK, So NK, et al. Death-associated protein kinase expression in human temporal lobe epilepsy[J].Ann Neurol.2004,55(4):485-494.
    [41] Ekdahl CT, Zhu C, Bonde S, et al. Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival[J].Neurobiol Dis.2003,14(3): 513-523.
    [42] Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis[J]. Molec Cell Biol. 2002,22: 2283-2293.
    [43] Reiling JH,Hafen E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila[J]. Genes Dev.2004, 18: 2879-2892.
    [44] Corradetti MN, Inoki K, Guan K, et al. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway[J].J Biol Chem. 2005,280(11):9769-9772.
    [45] Brugarolas J, Lei K, Hurley RL, et al.Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex[J]. Genes Dev.2004,18(23):2893-2904.
    [46] Ellisen LW, Ramsayer KD, Johannessen CM, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species[J]. Mole Cell.2002,10: 995-1005.
    [47] Fingar DC, Richardson CJ, Tee AR, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E[J]. Mol Cell Biol.2004, 24:200–216
    [48] Schwarzer R, Tondera D, Arnold W,et al.REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase[J].Oncogene. 2005, 24(7) :1138-1149.
    [49] Charriaut-Marlangue C, Aggoun-Zouaoui D, Represa A, et al. Apoptotic features of selective neuronal death in ischemia .epilepsy and gp 120 toxicity[J]. Trends Neurosci.1996,19: 109 114.
    [50] Roux PP, Colicos MA, Barker PA, et al. p75 Neurotrophin receptor expression is induced in apoptotic neurons after seizure[J]. J Neurosci.1999,19: 6887 6896.
    [51] Sloviter RS, Dean E, Sollas AL, et al. Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat[J]. J Comp Neurol.1996,366: 516 533
    [52] Annamaria V.Inflammation and epilepsy[J].Epilepsy Currents. 2005, 5(1):1-6.
    [53] Hatazaki S, Bellver-Estelles C, Jimenez-Mateos EM, et al.Microarray profile of seizure damage-refractory hippocampal CA3 in a mouse model of epilepticpreconditioning. Neuroscience. 2007;150(2):467-477. Dropcho, Edward J. Update on paraneoplastic syndromes[J]. Curr Opin Neurol.2005,18(3): 331-336.
    [54] Shields LB, Hunsaker DM, Hunsaker JC,et al.Sudden unexpected death in epilepsy: neuropathologic findings[J].Am J Forensic Med Pathol. 2002,23(4):307-314.
    [55] Jaeckle KA. Autoimmune mechanisms in the pathogenesis of paraneoplastic nervous system disease. Clin Neurol Neurosurg.1995,97(1):82-8.
    [56] Vianello M, Vitaliani R, Pezzani R, Nicolao P, Betterle C, Keir G, Thompson EJ, Tavolato B, Scaravilli F, Giometto B. The spectrum of antineuronal autoantibodies in a series of neurological patients. J Neurol Sci. 2004,220(1-2):29-36.
    [57] Al-Bassam J, Ozer RS, Safer D. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments[J]. J Cell Bio.2002, 157(7): 1187-1196.
    [58] Baas PW, Qiang L. Neuronal microtubules: when the MAP is the roadblock[J]. Trends Cell Biol.2005, 15(4):183-187.
    [59] Zhou FQ,William DS.GSK- and microtubule assembly in axons[J].Science.2005, 308: 211-214.
    [60] Veeranna, Kaji T, Boland B,et al.Calpain Mediates Calcium-Induced Activation of the Erk1,2 MAPK Pathway and Cytoskeletal Phosphorylation in Neurons[J]. Am J Pathol.2004,165:795-805.
    [61] Lambourne SL,Sellers LA,Bush TG.. Increased tau Phosphorylation on Mitogen-Activated Protein Kinase Consensus Sites and Cognitive Decline in Transgenic Models for Alzheimer's Disease and FTDP-17: Evidence for Distinct Molecular Processes Underlying tau Abnormalities[J].Mol Cell Biol.2005, 25( 1): 278-293.
    [62] Ching YP, Pang ASH, Lam WH. Identification of a Neuronal Cdk5 Activator- binding Protein as Cdk5 Inhibitor[J].J Biol Chem.2002, 277(18): 15237-15240.
    [63] Jeon SH, Kim YS, Bae CD,et al. Activation of JNK and p38 in rat hippocampus after kainic acid induced seizure[J].Exp Mol Med.2000,32(4):227-230.
    [64] Lee MS, Kwon YT, Li M, et al. Neurotoxicity induces cleavage of p35 to p25 by calpain[J]. Nature.2000,405:360-364.
    [65] Deanna S, Smith, Paul L,et al. Cdk5 on the Brain[J]. Cell Growth Differ. 2001,12: 277-283.
    [66] Patrick GN, Zukerberg L, Mikolic M,et al.Conversion of p35 to p25 deregulates cdk5 activity and promotes neurodegeneration[J]. Nature.1999, 402 (6762):615-622.
    [67] Tarricone C, Dhavan R, Peng J, et al. A. Structure and regulation of the CDK5-p25 ( nck5a) complex[J]. Mol Cell . 2001,8:657~669.
    [68] Patel LS,Wenzel HJ,Schwartzkroin PA.Physiological and Morphological Characterization of Dentate Granule Cells in the p35 Knock-Out Mouse Hippocampus: Evidence for an Epileptic Circuit[J]. J Neurosci.2004, 24(41):9005-9014.
    [69] Shea TB, Yabe JT, Ortiz D,et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons[J]. J Cell Sci.2004,117: 933-941.
    [70] Sen A, Thom M, Martinian L, Jacobs T,et al. Deregulation of cdk5 in Hippocampal Sclerosis[J]. J Neuropathol Exp Neurol.2006,65(1):55-66 .
    [71] Grant P, Sharma P, Pant HC. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism[J]. Eu J Biochem.2001,268: 1534-1546.
    [72] Dashiell SM,Tanner SL, Pant HC,et al.Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases[J]. J Neurochem.2002,81(6): 1263-1272.
    [73] Maccioni RB, Otth C, Concha II. The protein kinase Cdk5 :Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology[J]. Eur J Biochem.2001, 268:1518-1527.
    [74] Suemaru S, Sato K, Morimoto K,et al. Increment of synapsin I immunoreactivity in the hippocampus of the rat kindling model of epilepsy[J].Neuroreport.2000, 11(6):1319-1322.
    [75] Lucas JJ, Hernandez F,Gomez-Ramos P,et al.Decreased nuclear beta-catenin,tau hyperphosphorylation and neurodegeneration in GSK-3-beta conditional transgenic mice[J]. EMBO J.2001,20: 27-39.
    [76] Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction[J] . J Cell Sci.2004,117( 24):5721-5729.
    [77] Goold RG, Gordon-Weeks PR. The MAP kinase pathway is upstream of the activation of GSK that enables it to phosphorylate MAP1B and contributes to the stimulation of axon growth[J]. Mol Cell Neurosci.2005, 28(3):524-534
    [78] Goold RG, Gordon-Weeks PR. NGF activates the phosphorylation of MAP1B by GSK3beta through the TrkA receptor and not the p75(NTR) receptor[J]. J Neurochem.2003 ,87(4):935-946.
    [79] Bate H,Eldridge P,Varma T,et al.The seizure outcome after amygdalohippocampectomy and temporal lobectomy[J].Eur J Neurol. 2007,14(1):90- 94.
    [80] Cohen-Gadol AA,Wilhelmi BG, Collignon F, et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis[J].J Neurosurg.2006,104(4): 513-524.
    [81] Hoeflich KP,Luo J,Rubie EA,et al.Requirement for glycogen synthase kinase-3-beta in cell survival and NF-kappa-B activation[J]. Nature.2000,406: 86-90.
    [82] Linseman DA,Butts BD, Precht TA,et al.Glycogen Synthase Kinase-3 Phosphorylates Bax and Promotes Its Mitochondrial Localization during Neuronal Apoptosis[J]. J Neurosci.2004,24(44):9993-10002.
    [83] Trivedi N, Marsh P, Goold RG,et al. Glycogen synthase kinase-3beta phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons[J]. J Cell Sci.2005,118(5):993-1005.
    [84] Watcharasit P, Bijur GN, Song L, et al. Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53[J].J Biol Chem.2003,278(49): 48872-48879.
    [85] Zhou FQ, Snider WD. Cell biology. GSK-3beta and microtubule assembly in axons[J].Science.2005 ,308(5719):211- 214.
    [86] Bate H, Eldridge P, Varma T,et al. The seizure outcome after amygdalohippocampectomy and temporal lobectomy[J].Eur J Neurol.2007,14(1): 90-94.
    [87] Cohen-Gadol AA, Wilhelmi BG, Collignon F, et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis[J]. J Neurosurg.2006,104(4): 513-524.
    [88] Borges K, Gearing M, McDermott DL,et al. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model[J].Exp Neurol.2003,182(1):21-34.
    [89] Yang JW, Czech T, Felizardo M,et al. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy[J].Amino Acids.2006,30(4):477-493.
    [90] Impey S,Obrietan K,Storm DR.Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity[J].Neuron.1999, 23(1):11-14.
    [91] Berkeley JL, Decker MJ, Levey AI. The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinase 1/2 in pilocarpine-induced seizures[J].J Neurochem. 2002,82(1):192-201.
    [92] Chu CT, Levinthal DJ, Kulich SM,et al. Oxidative neuronal injury.The dark side of ERK1/2[J].Eur J Biochem.2004,271: 2060-2066.
    [93] Adams JP, Anderson AE,Varga AW, et a1.The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK[J].J Neurochem. 2000,75(6): 2277-2287.
    [94] Jiang W, Van Cleemput J, Sheerin AH, et al Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance[J].J Neurosci Res.2005,81(4):581-588.
    [95] Reynolds CH, Betts JC, Blackstock WP,et al. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry:differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta[J].J Neurochem.2000,74(4):1587-1595.
    [96] Sawamura N, Gong JS, Garver WS, et al. Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice[J].J Biol Chem.2001, 276(13): 10314-10319.
    [97] Rapoport M, Ferreira A. PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons[J].J Neurochem.2000, 74(1): 125-133.
    [98] olzer M, Rodel L, Seeger G,et al. Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. II.Cytoskeletal proteins and dendritic morphology[J]. Neuroscience.2001,105(4):1041-1054.
    [99] Otani N, Nawashiro H, Yano A,et al. Characteristic phosphorylation of the extracellular signal-regulated kinase pathway after kainate-induced seizures in the rat hippocampus[J]. Acta Neurochir Suppl.2003,86:571-573.
    [100] Lechner C,Zahalka MA,Giot JF,et al.ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation[J].Cell Biology.1996,93(9)::4355-4359.
    [101] Jiang Y,Gram H,Zhao M,et al.Characterization of the Structure and Function of the Fourth Member of p38 Group Mitogen-activated Protein Kinases, p38δ[J].J Bio Chem.1997,272(48): 30122-30128.
    [102] Mielke K,Brecht S, Dorst A,et al. Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in theadult rat brain following kainate-induced seizures[J]. Neuroscience. 1999,91(2):471-83.
    [103] Che Y,Yu YM,Han PL,et al.Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure[J]. Mol Brain Res. 2001,94(1-2):157-165.
    [104] Park CG,Lee SY, Kandala G,et al. A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death[J]. Immunity.1996,4:583-591.
    [105] Toyoshima Y,Karas M,Yakar S,et al. TDAG51 mediates the effects of insulin-like growth factor I (IGF-I) on cell survival[J]. J Biol Chem. 2004,279(24):25898-25904.
    [106] Hossain GS, Thienen JV, Werstuck GH, et al.TDAG51 Is Induced by Homocysteine, Promotes Detachment-mediated Programmed Cell Death, and Contributes to the Development of Atherosclerosis in Hyperhomocysteinemia[J]. J Biol Chem.2003, 278(32):30317-30327.
    [107] Hinz T, Flindt S, Marx A,et al.Inhibition of protein synthesis by the T cell receptor-inducible human TDAG51 gene product[J]. Cell Signal.2001,13(5):345-352.
    [108] Meier-Noorden M, Flindt S, Kalinke U,et al. A CpG-rich bidirectional promoter induces the T-cell death-associated gene 51 and downregulates an inversely oriented transcript during early T-cell activation[J].Gene. 2004,338 (2): 197-207.
    [109] Oberg HH,Sipos B,Kalthoff H,et al. Regulation of T-cell death-associated gene 51 (TDAG51) expression in human T-cells.Cell Death Differ.2004,11(6):674-684.
    [110] Gomes I, Xiong W, Miki T,et al. A proline- and glutamine-rich protein promotes apoptosis in neuronal cells[J]. J Neurochem.1999, 73: 612-622.
    [111] Frank D, Mendelsohn CL, Ciccone E, et al. A novel pleckstrin homology-related gene family defined by Ipl/Tssc3. TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting[J]. Mamm Genome.1999,10: 1150-1159.
    [112] Rho J, Gong S, Kim N,et al. TDAG51 Is Not Essential for Fas/CD95 Regulation and Apoptosis In Vivo[J]. Mol Cell Biol.2001, 21(24): 8365–8370.
    [113] Hattiangady B, Rao MS, Shetty AK. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus[J]. Neurobiol Dis.2004,17(3):473-490
    [114] Brywe KG,Leverin AL,Gustavsson M,et al.Growth hormone-releasing peptide hexarelin reduces neonatal brain injury and alters Akt/glycogen syntheses kinase-3beta phosphorylation[J].Endocrinology.2005,146(11):4665-4672
    [115] Aberg ND, Brywe KG, Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain[J].ScientificWorld Journal. 2006, 6: 53-80.
    [116] Torres-Aleman I,Villalba M,Nieto-Bona MP.Insulin-like growth factor-1 modulation cerebellar cell population is developmentally stage-dependent and mediated by specific intracellar pathway[J]. Neuroscience.1998,83(2):321-334.
    [117] Yamada M,Tanabe K,Wada K, et al.Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons[J]. J Neurochem. 2001,78(5):940-951.
    [118] Thimmaiah KN, Easton J, Huang S, et al. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways[J].Cancer Res.2003, 63(2): 364-374.
    [119] Zha XM, Green SH, Dailey ME. Regulation of hippocampal synapse remodeling by epileptiform activity[J].Mol Cell Neurosci. 2005, 29(4): 494-506.
    [120] Halevy O,Cantley LC. Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells[J].Exp Cell Res.2004, 297(1):224-234.
    [121] Beck KD,Powell-Braxton L,Widmer HR,et al.IGF-1 gene disruption results in reduced brain size,CNS hypomyelination,and loss of hippocampal granule and stratal paralbumin-containing neurons[J]. Neuron.1995,14(4):717-730.
     [122] Nahm SS,Frank TC,Browing MD,et al.Insulin-like growth factor-1 improves cerebella dysfunction but does not prevent cerebella neurodegeneration in the calcium channel mutant mouse,leaner[J]. Neurobiol dis.2003,14(2):157-165.
    [1] 吴逊,沈鼎烈.耐药性癫痫[J].中华神经科杂志.1998,1:4-5.
    [2] Bates SE, Mickley LA, Chen YN,et al. Expression of a drug resistance gene in human neuroblastoma cell lines: modulation by retinoic acid-induced differentiation[J].Mol Cell Biol. 1989 9(10):4337-44.
    [3] Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain ofpatients with medically intractable epilepsy[J]. Epilepsia. 1995,36:1– 6.
    [4] Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs[J].J Clin Invest. 1996,97(11):2517-24.
    [5] Begley DJ. ABC transporters and the blood-brain barrier[J]. Curr Pharm Des. 2004; 10: 1295– 1312.
    [6] Huai-Yun H, Secrest DT, Mark KS, et al. Expression of multidrug resistance- associated protein (MRP) in brain microvessel endothelial cells[J]. Biochem Biophys Res Commun .1998, 243: 816– 820.
    [7] Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy[J]. Epilepsia. 2005, 46: 224– 235.
    [8] L?scher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs[J]. J Pharmacol Exp Ther. 2002,301: 7– 14.
    [9] Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS[J]. Adv Drug Deliv Rev .2003, 55: 83– 105.
    [10] Sisodiya SM, Martinian L, Scheffer GL, et al. Major vault protein, a marker of drug resistance, is upregulated in refractory epilepsy[J]. Epilepsia. 2003,44: 1388– 1396.
    [11] 肖争,王学峰,晏勇,栾国明,阎丽. 难治性癫痫患者脑组织中 5 种耐药基因产物同步表达及临床意义[J]. 中华神经科杂志.2004,37(6): 500-503
    [12] Marchi N, Hallene KL, Kight KM, et al.Significance of MDR1 and multiple drug resistance in refractory human epileptic brain[J]. BMC Med. 2004, 2: 37.
    [13] Batrakova EV, Li S, Miller DW, Kabanov AV. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers[J]. Pharm Res. 1999,16: 1366–1372.
    [14] Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance[J]. J Neurosci. 2002,22: 5833–5839.
    [15] Lu Y, Yan Y, Wang XF. Antiepileptic drug-induced multidrug resistance P-glycoprotein overexpression in astrocytes from rat brain[J]. Chinese MedicalJournal [Engl] .2004,117(11): 1682-1686.
    [16] Stefan R,Heinz Beck .Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain.2006,129, 18–35.
    [17] Lazarowski A, Czornyj L, Lubienieki F, et al. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007;48 Suppl 5:140-149.
    [18] Volk HA, Loscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures[J]. Brain.2005,128: 1358–1368
    [19] Robey RW, Lazarowski A, Bates SE. P-glycoprotein--a clinical target in drug-refractory epilepsy? [J] .Mol Pharmacol. 2008,73(5):1343-1346
    [20] Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats[J]. Epilepsia. 2001,42: 1231–1240.
    [21] Potschka H, Loscher W. Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain[J]. Neuroreport. 2001,12: 2387– 2389.
    [22] Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance[J]. J Neurosci. 2002,22: 5833– 5839.
    [23] Potschka H, Fedrowitz M, Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity[J]. J Pharmacol Exp Ther. 2003,306: 124– 131.
    [24] Potschka H, Fedrowitz M, Loscher W. P-Glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain[J]. Neuroreport. 2001,12: 3557– 3560.
    [25] Sills GJ, Kwan P, Butler E, et al. P-glycoprotein-mediated efflux of antiepileptic drugs: preliminary studies in mdr1a knockout mice[J]. Epilepsy Behav.2002, 3: 427– 432.
    [26] Frey H-H, Loscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid[J]. Neuropharmacology.1978, 17: 637– 642.
    [27] Gibbs JP, Adeyeye MC, Yang Z, et al. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport[J]. Epilepsy Res.2004, 58: 53– 66.
    [28] Potschka H, Fedrowitz M, L?scher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats[J]. Neurosci Lett. 2002, 327: 173–176.
    [29] Potschka H, Fedrowitz M, L?scher W. Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR- rats[J]. Epilepsia. 2003, 44: 1479– 1486.
    [30] Luer MS, Hamani C, Dujovny M, et al. Saturable transport of gabapentin at the blood-brain barrier. [J] Neurol Res. 1999, 21: 559– 562.
    [31] Potschka H, Baltes S, L?scher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats[J]. Epilepsy Res. 2004,58: 85– 91.
    [32] Tishler DM, Weinberg KT, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy[J]. Epilepsia.1995,36: 1– 6.
    [33] Sisodiya SM, Heffernan J, Squier MV. Over-expression of P-glycoprotein in malformations of cortical development[J]. Neuroreport.1999,10: 3437– 3441.
    [34] Sisodiya SM, Lin W-R, Harding BN, et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy[J]. Brain.2002, 125: 22– 31.
    [35] Dombrowski SM, Desai SY, Marroni M, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy[J]. Epilepsia.2001, 42: 1501–1506.
    [36] Aronica E, Gorter JA, Jansen GH, et al. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors[J]. Neuroscience.2003,118: 417–429.
    [37] Aronica E, Gorter JA, Ramkema M, et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy[J]. Epilepsia.2004, 45: 441– 451.
    [38] Zhang L, Ong WY, Lee T. Induction of P-glycoprotein expression in astrocytes following intracerebroventricular kainate injections[J]. Exp Brain Res.1999,126: 509– 516.
    [39] Seegers U, Potschka H, Loscher W. Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy[J]. Epilepsy Res.2002, 51: 257–268.
    [40] Volk HA, Burkhardt K, Potschka H, et al. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures[J]. Neuroscience. 2004, 123: 751– 759.
    [41] Volk HA, Potschka H, Loscher W. Increased expression of the multidrug transporter P-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats[J]. Epilepsy Res.2004, 58: 67– 79.
    [42] Potschka H, Volk HA, Loscher W. Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats[J]. Neuroreport 2004,15: 1657– 1661.
    [43] Sisodiya SM, Lin WR, Squier MV, et al. Multidrug-resistance protein 1 in focal cortical dysplasia. Lancet.2001,357: 42– 43.
    [44] 王学峰,晏勇,吕洋.利嗪抗癫痫及逆转难治性癫痫病人多药耐受基因的表达[J].新药与临床杂志.2001,20(5): 363-365.
    [45] Stefan R,Heinz B. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain.129(1):18-35.
    [46] Vreugdenhil M, Vanveelen CWM, Vanrijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy[J].Epilepsy Res.1998, 32: 309– 320.
    [47] Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis[J]. Epilepsia.1999,40: 1512–1522.
    [48] Remy S,Gabriel S,Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy[J]. Ann Neurol.2003,53: 469– 479.
    [49] 49. Remy S, Urban BW, Elger CE, et al. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats[J]. Eur J Neurosci .2003, 17: 2648–2658.
    [50] Isom LL. Beta subunits: players in neuronal hyperexcitability? [J].Novartis Found Symp .2002,241: 124– 138.
    [51] Siddiqui A, Kerb R, Weale ME,et al.Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1[J]. N Engl J Med.2003, 348: 1442–1448.
    [52] Gulledge AT, Stuart GJ. Excitatory actions of GABA in the cortex[J]. Neuron. 2003, 37: 299–309.
    [53] Shetty AK, Zaman V, Hattiangady B.Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy[J]. J Neurosci. 2005,25(37):8391-8401.
    [54] Jung KH, Chu K, Kim M, et al.. Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus[J].J Neurosci. 2004,24(33):7215-7224.
    [55] Wozny C, Kivi A, Lehmann TN, et al. Comment on ‘On the origin of interictal activity in human temporal lobe epilepsy in vitro’ [J]. Science.2003, 301: 463.
    [56] Andrade-Valen?a LP, Valen?a MM, Velasco TR, et al Mesial temporal lobe epilepsy: Clinical and neuropathologic findings of familial and sporadic forms[J].Epilepsia. 2008,(in press).
    [57] Gabriel S, Njunting M, Pomper JK,et al.. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis[J]. J Neurosci. 2004 ,24(46):10416-10430.
    [58] DavidJ S, Allan VJ. Light Microscopy Techniques for Live Cell Imaging[J]. Science.2003,300,82-86.
    [59] Jaime G,Narayanan K,WenBiao G. Longterm dendritic spine stability in the adult cortex[J]. Nature.2002,420,812-816.
    [60] Sazio PJ,Amezcua-Correa A,Finlayson CE,et al.Microstructured optical fibers as high-pressure microfluidic reactors[J]. Science.2006,311(5767):1583-1586.
    [61] H oltmaat, AJ, Gorter JA, De wit, et al. Trasient downregulation of Sema3A mRNA in a rat model for temporal lobe epelepsy, A novel molecular event potantial contributing to mossy fiber sprouting[J]. Exp Neurol.2003, 182: 142-150.
    [62] Gregory B, Ram SP, Yuling L, et al. Temporal specific patterns of semaphoring gene expression in rat brain after kainic acid-induced status epilepticus[J]. Hippocampus.2003, 13: 1-20.
    [63] Elliott RC, Miles MF, Lowenstein DH. Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth[J].J Neurosci. 2003,23(6):2218-2227.
    [64] Xiao B, Wu ZG, Yang XS, Li GL, Xie GJ. Analysis of gene expression in genetic epilepsy-prone rat using a cDNA expression array[J].Seizure.2002,11 (7): 418-422 .
    [65] Li JM, Wang XF, Xi ZQ, Gong Y, Liu FY, Sun JJ, Wu Y, Luan GM, Wang YP, Li YL, Zhang JG, Lu Y, Li HW. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy[J]. Biochem Biophys Res Commun. 2006,348(4):1389-1397.
    [66] Holtmaat AJ, Gorter JA, De wit, et al. Trasient downregulation of Sema3A mRNA in a rat model for temporal lobe epelepsy, A novel molecular event potantial contributing to mossy fiber sprouting[J]. Exp Neurol.2003, 182: 142-150.
    [67] Gregory B, Ram SP, Yuling L, et al. Temporal specific patterns of semaphoring gene expression in rat brain after kainic acid-induced status epilepticus[J]. Hippocampus.2003, 13: 1-20.
    [68] Guan C, Xu H, Jin M,Yuan X, Poo M. Long-Range Ca2+ Signaling from Growth Cone to Soma Mediates Reversal of Neuronal Migration Induced by Slit-2[J]. Cell. 2007,129: 385-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700