Nrf2-ARE抗氧化通路及GSK-在冠状动脉粥样硬化性心脏病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:目前研究发现氧化应激在冠心病的发生发展中起到了重要的作用,同时新观点认为冠心病心肌重构的过程中也存在着心肌细胞的分裂及增殖。如何有效的遏制氧化应激、调节心肌细胞的细胞周期变化是治疗冠心病的新思路。目前研究证实白藜芦醇及瑞舒伐他汀等药物对冠心病有确切的保护作用,同时在分子研究领域人们发现Nrf2-ARE抗氧化通路在抗氧化应激过程中起到了至关重要的作用。而GSK-是一种调节细胞周期的重要蛋白,它的活性可影响细胞分化、增殖、凋亡等多个环节。本实验通过给予ApoE-/-小鼠高脂饮食,再分别给予白藜芦醇、瑞舒伐他汀灌胃,对比观察标本心血管的损害,研究核因子相关因子2(Nrf2)、总糖原合成激酶3β(GSK-)、磷酸化的GSK-等蛋白变化,进一步明确Nrf2-ARE抗氧化通路及GSK-在冠状动脉粥样硬化性心脏病发生、发展中的作用。
     目的:建立白藜芦醇及瑞舒伐他汀对冠状动脉粥样硬化性心脏病的保护模型,检测Nrf2及GSK-的活性,以明确Nrf2-ARE抗氧化通路及GSK-在冠状动脉粥样硬化性心脏病发生、发展中的作用。
     方法:将30只雄性体成熟8周龄清洁级ApoE-/-小鼠随机分成3组(每组10只),分别为:高脂饮食同时给予生理盐水灌胃组(在论文中简称对照组)、高脂饮食同时规律给予白藜芦醇灌胃组(简称白藜芦醇组)、高脂饮食同时规律给予瑞舒伐他汀灌胃组(简称瑞舒伐他汀组),各组小鼠其它生活环境相同。约每7天测量各个小鼠的体重,13周后处死小鼠,对心脏组织做病理切片,显微镜观察冠状动脉粥样硬化斑块的形成、心肌重塑的发生,同时用Western blot方法分别半定量测量各组心肌标本Nrf2、总GSK-、磷酸化的GSK-
     结果:
     (1)体重变化:与对照组相比,白藜芦醇组与瑞舒伐他汀组表现出明显的体重控制作用。
     (2)病理切片示:白藜芦醇组、瑞舒伐他汀组主动脉粥样硬化程度及心肌细胞损伤程度均小于对照组。
     (3)通过与内参GADPH对比分析,对照组、白藜芦醇组及瑞舒伐他汀组总的GSK-表达变化不大;而白藜芦醇组磷酸化的GSK-表达与对照组相比上调,瑞舒伐他汀组磷酸化的GSK-表达与对照组相比下调;白藜芦醇组、瑞舒伐他汀组Nrf2表达均高于对照组,白藜芦醇组及瑞舒伐他汀组无统计学差异(P>0.05)。
     结论:
     (1)证明高脂饮食是诱发冠心病的危险因素之一。
     (2)白藜芦醇与瑞舒伐他汀均有抗动脉粥样硬化及心肌细胞保护作用。
     (3)白藜芦醇与瑞舒伐他汀均可影响高脂饮食所导致小鼠体重变化。
     (4)白藜芦醇及瑞舒伐他汀可能通过Nrf2途径发挥抗动脉粥样硬化及心肌细胞保护作用。
Background: Recent studies have suggested oxidative stress play a critical role in theinitiation and progression of coronary arterioscleotic heart disease. In the new views, thereare also myocardial cell division and proliferation in the process of coronary heart diseasemyocardial remodeling. How to effectively defend against oxidative stress and regulate cellcycle of myocardial cells are new ideas to treat coronary heart disease. Untill present,resveratrol and rosuvastatin are demonstrated with the exactly protective effects on coronaryarterioscleotic heart disease and in the field of molecular studies, it was found thatNrf2-ARE antioxidant pathway plays the crucial role in antioxidant stress. Glycogensynthase kinase(GSK-) is a regulator of cell cycle proteins, its activity can affectnumerous aspects of cell differentiation, proliferation, and apoptosis. In this study,apolipoprotein(ApoE) knockout mice fed a high-fat diet, then given by gastric lavage toresveratrol and rosuvastatin respectively. We observed comparatively the specimens ofcardiovascular damage and research the changes of Nrf2, total GSK- and phosphorylatedGSK- to further clarify the cardiovascular effects and molecular mechanisms ofresveratrol.
     Objective: To establish the protection models of resveratrol and rosuvastatin tocoronary arterioscleotic heart disease, and detect the activity of nuclear factor-erythroid2-related factor-2(Nrf2) and glycogen synthase kinase(GSK-) as to clear the the effectsof Nrf2-ARE antioxidant pathway and GSK- in coronary arterioscleotic heart disease.
     Methods: Thirty male apolipoprotein(ApoE) knockout mice of age8weeks wererandomly divided into three groups(n=10,for each), including high-fat diet control group,high-fat diet-received resveratrol groups and high-fat diet-received rosuvastatin groups.Other living environment of all groups was same. Mice of the three groups were measuredweight every7days and were sacrificed after13weeks. The pathological slides made bymice heart tissues were abserved the formation of atherosclerotic lesions and development ofcardiac remodeling. Western blotting assay was used to detect Nrf2, total GSK- andphosphorylated GSK- by microscopy. We selected glyceraldehyde-3-phosphatedehydrogenase(GAPDH) as internal reference when detect.
     Results:
     1)Weight change: in comparison to the high-fat diet control group, a significant weightcontrol effect was abserved in high-fat diet-received resveratrol groups and high-fatdiet-received rosuvastatin groups.2)The pathological slides reveal: degree of aortic sclerosisand myocardial cells injury in high-fat diet-received resveratrol groups and high-fatdiet-received rosuvastatin groups are less than in the high-fat diet control group.3) All theresults of western blot are adjusted by GADPH. Total GSK- in the three groups has nosignificant difference; the gene expression of phosphorylated GSK- in high-fatdiet-received resveratrol groups was enhanced,but in high-fat diet-received rosuvastatingroups was decreased;the gene expression of Nrf2in high-fat diet-received resveratrolgroups and in high-fat diet-received rosuvastatin groups were higher than in the controlgroup, while no significant differences in the levels of Nrf2in high-fat diet-receivedresveratrol groups and in high-fat diet-received rosuvastatin groups(P>0.05).
     Conclusion:
     1)These results demonstrate that high-fat diet can act as one of risk factors for coronaryartery disease.2)Resveratrol and rosuvastatin have effects on anti-atherosclerosis andprotection of myocardial cells.3)Resveratrol and rosuvastatin can both regulate the increaseddegree of weight caused by high-fat diet.4)The effects on anti-atherosclerosis and protectionof myocardial cells of resveratrol and rosuvastatin are probably via Nrf2-ARE molecularpathway.
引文
[1] Ross R.Atherosclerosis an inflammatory disease[J].N Engl J Med,1999,340(2):115-126.
    [2] Stocker R, Keaney J F, Jr. Role of oxidative modifications in atherosclerosis [J]. PhysiolRev,2004,84(4):1381-1478.
    [3] Ley K,Huo Y.VCAM-1is critical in atherosclerosis.J Clin Invest.2001,107(10):1209–1210.
    [4] Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms ofactivation[J]. Cardiovasc Res,2005,65(1):16-27.
    [5] Li D, Chen H, Rom eo F, et al. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: roleof LOX-1[J]. J Pharmacol Exp Ther,2002,302(2):601-605.
    [6] Miller YI,Chang MK,et al.Oxidized low density lipoprotein and innate immunereceptors[J].Curr Opin Lipidol,2003.13:437.
    [7] Francesco C,Maria LF, Andrea M. Oxidative stress, inflammation and atheroscleroticplaque development [J]. Int Congr Ser,2007,1303(8):35-40.
    [8] Lee J Y,Jung G Y,Heo H J,et al.4-Hydroxynonenal induces vascular smooth muscle cellapoptosis through mitochondrial generation of reactive oxygen species[J].ToxicalLett,2006,166:212.
    [9] D.D. Thomas, L.A. Ridnour, J.S. Isenberg, et al, The chemical biology of nitric oxide:implications in cellular signaling[J], Free Radic. Biol. Med.2008,45:18–31.
    [10]D.K. Dowling, L.W. Simmons, Reactive oxygen species as universal constraints inlife-history evolution[J], Proc. Biol. Sci.2009,276:1737–1745.
    [11]C. Nathan, A. Ding, SnapShot: reactive oxygen intermediates[J],Cell.2010,140:951-951.
    [12]R. Scherz-Shouval, Z. Elazar, Regulation of autophagy by ROS: physiology andpathology[J].Trends Biochem.Sci.2011,36:30–38.
    [13]D. Trachootham, J. Alexandre, P. Huang. Targeting cancer cells by ROS-mediatedmechanisms: a radical theraperapeutic approach[J]. Nat. Rev. Drug Discov.2009,8:579–591.
    [14]V. Shukla, S.K. Mishra, H.C. Pant.Oxidative stress in neurodegeneration[J].AdvPharmacol Sci.2011(2011)572634.
    [15]J.K. Andersen.Oxidative stress in neurodegeneration: cause or consequence? Nat.Med.2004,10:18–25.
    [16]T.M. Paravicini, R.M. Touyz. Redox signaling in hypertension.Cardiovasc[J]. Res.2006,71:247–258.
    [17]G. Roos, J. Messens. Protein sulfenic acid formation: From cellular damage to redoxregulation[J]. Free Radic.Biol. Med.2011,51:314–326.
    [18]M.C.Haigis,B.A.Yankner.The aging stress response[J].Mol.Cell.2010,40:333–344.
    [19]Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascularhomeostasis[J]. Circ Res2003;93:1029–33.
    [20]Tao Yin,Rongrong Hou,et al.Nitrative inactivation of thioredoxin-1increasesvulnerability of diabetic hearts to ischemia/reperfusion injury[J].Journal of Molecularand Cellular Cardiology.2010,49:354-361.
    [21]Paul D.Ray,Bo-Wen Huang,Reactive oxygen species(ROS) homeostasis and redoxregulation in cellular signaling[J],Cellular Signalling.2012,24:981-990.
    [22]Cuevas BD,Alell AN,et al.Role of mitogen-activated protein kinase kinase kinases insignal interation[J].Oncogene,2007,26(22):3159-3171.
    [23]Geng YJ.Libby P.Progression of atheroma:A struggle between death and proceation.Arterioscler Thromb Vasc Biol,2002,22:1370.
    [24]Bcyle JJ.Weissberg PL,et al.Tumor necrosis factor-alpha promotes macrophage-inducedvascular smooth muscle cell apoptosis by direct and autocrine mechanisms[J].Arterioscler Thromb Vasc Biol,2003,23:1553.
    [25]Magdalena L Circu,Tak Yee Aw.Reactive oxygen species,cellular redox systems,andapoptosis[J].Free Radic Biol Med.2010,48(6):749.
    [26]J.A.Baur,D.A.Sinclair,et al.Therapeutic potential of resveratrol:the in vivo evidence[J].Nat.Rev.Drug Discov.2006,5:493-506.
    [27]Q.Yuan,L.Chen,et al.Effect of resveratrol derivative BTM-0512on highglucose-induced dysfunction of endothelial cells:role of SIRT1[J].Canadian Journal ofPhysiology and Pharmacology,2011,89(10):713-722.
    [28]Drenan RM,Lin X,et al.FKBP12-rapamycin-associated protein or mammalian target ofrapamycin(FPAP/mTOR) localization in the endoplasmic reticulum and the Golgiapparatux[J].J Biol Chem,2004,279(1):772-778.
    [29]Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase[J]. J CellSci2003;116:1175-86.
    [30]Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J. TheAktglycogen synthase kinase3pathway regulates transcription of atrial natriureticfactor induced by-adrenergic receptor stimulation in cardiac myocytes[J]. J BiolChem.2000;275:14466–75.
    [31]Kerkela R, Kockeritz L, et al. Deletion of GSK-3beta in mice leads to hypertrophiccardiomyopathy secondary to cardiomyoblast hyperproliferation[J]. J Clin Invest Nov2008;118(11):3609–18.
    [32]Force T, Woodgett JR. Unique and overlapping functions of GSK-3isoforms in celldifferentiation and proliferation and cardiovascular development[J]. J Biol Chem Apr102009;284(15):9643–9647.
    [33]Das S,Wong R,et al,Glycogen synthase kinase3inhibition slows mitochon drial adeninenucleotide transport and regulates voltage-dependent anion channel phosphorylation[J].Circ Res,2008,103(9):983-991.
    [34]A.Parkinson,B.W.Oliver,Biotransformation of xenobiotics, in:C.D.Klaaseen(Ed),Casarett&Doull’s Toxicology:The Basic Science of Posions,7thedition,McGrawHill,New York,2008,pp.161-304.
    [35]Jaiswal, A. K. Nrf2signaling in coordinated activation of antioxidant gene expression[J].Free Radic. Biol. Med.2004,36:1199–1207.
    [36]Kobayashi, M.; Yamamoto, M. Nrf2–Keap1regulation of cellular defense mechanismsagainst electrophiles and reactive oxygen species[J]. Adv. Enzyme Regul.2006,46:113–140.
    [37]Copple,I.M.;Goldring,C.E.;Kitteringham,N.R.;Park, B. K.The Nrf2–Keap1defensepathway:role in protection against drug-induced toxicity[J].Toxicology2008,246:24–33.
    [38]Huige Li,Ning Xia, et al.Cardiovascular effects and molecular targets of resveratrol[J].Nitric Oxide.2012.26:102-110.
    [39]Chun-Juan Chen,Wei Yu,Yu-Cai Fu, Xin Wang, Ji-Lin Li, Wei Wang. Resveratrolprotects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1–FoxO1pathway[J]. Biochemical and Biophysical Research Communications.2009,378:389–393.
    [40]Ying Xu,Ling Nie,Yang-Guang Yin,Jian-Lin Tang,Ji-Yin Zhou,Dan-Dan Li, Shi-WenZhou.Resveratrol protects against hyperglycemia-induced oxidative damage tomitochondria by activating SIRT1in rat mesangial cells[J].Toxicology and AppliedPharmacology.2012,259(3):395–401.
    [41]G.SPANIER, H XU, et al. Resveratrol reduces endothelial oxidative stress by modulatingthe gene espression of superoxide dismutase1(SOD1), glutathione peroxidase1(GPX1)and nadph oxidase subunit(NOX4). Journal of physiology and pharmacology.2009,60:111-116.
    [42]Rubiolo J A,Mithieux G,Vega F V.Resveratrol protects primary rat hepatocytes againstoxidative stress damage: Activation of the Nrf2transcription factor and augmentedactivities of antioxidant enzymes[J].Eur J Phanmacol,2008,91(1-3):66-72.
    [43]Ishii T,Itoh K,Takahashi S,et al.Transcription factor Nrf2coordinately regulates a groupof oxidative stress inducible genes in macrophages[J].J Biol Chem,2000,275(21):16023-16029.
    [44]Jain A K,Bloom D A,Jaiswal A K,Nuclear import and export signals in control ofNrf2[J].J Biol Chem,2005,280(32):29158-29168.
    [45]L.G.Higgins, M.O.Kelleher, et al,Transcription factor Nrf2mediates an adaptiveresponse to sulforaphane that protects fibroblast in vitro against the cytotoxic effect ofeletrophiles,peroxides and redox-cycling agents[J], Toxicol.Appl.Pharmacol.2009,237:267-280.
    [46]Jailwal.A.K,et al.Nrf2signaling in coordinated activation of gene expression[J].FreeRadic.Biol,Med.2004,36:1199-1207.
    [47]Paul Nioi, Truyen Nguyen, et al. The Carboxy-Terminal Neh3Domain of Nrf2IsRequired for Transcriptional Activation[J].Molecular of Cellular Biology.2005,25(24):10895-10906.
    [48]Michael McMahon, Nerys Thomas et al. Redox-regulated Turnover of Nrf2IsDetermined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2Degron and the Redox-insensitive Neh6Degion[J].THE JOURNAL OF BIOLOGICALCHEMISTRY,2004,279(30):31556–31567.
    [49]Cullinan S B, Zhang D, Hannik M, Arvisais E, Kaufman R J, Diehl J A. Nrf2is a directPERK substrate and effecter of PERK-dependent cell survival[J]. Mol. Cell. Biol.2003,23:7198–7209.
    [50]Lo, S.C., Li, X., Henzl, M.T., Beamer, L.J., Hannink, M.,Structure of the Keap1:Nrf2interface provides mechanistic insight into Nrf2signaling[J].Embo. J.2006,25:3605–3617.
    [51]Tong, K.I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., Yamamoto, M., Keap1recruitsNeh2through binding to ETGE and DLG motifs: characterization of the two-sitemolecular recognition model[J]. Mol. Cell. Biol.2006,26:2887–2900.
    [52]Lee,J.,Johnson,J.A.,An important role of Nrf2-ARE pathway in cellular defensemechanism[J]. J. Biochem. Mol. Biol.2004,37:139–143.
    [53]Lee,J.,Johnson,J.A.,Identification of the NF-E2-related factor-2-dependent genesconferring protection against oxidative stress in primary cortical astrocytes usingoligonucleotide microarray analysis[J]. J. Biol. Chem.2003,278(14):12029-12038.
    [54]Lee, J.M., Shih, A.Y., Murphy, T.H., Johnson, J.A., NF-E2-related factor2mediatesneuroprotection against mitochondorial complex I inhibitors and increasedconcentrations of intracellular calcium in primary cortical neurons[J]. J. Biol. Chem.2003b,278:37948–37956.
    [55]S.E.Purdom-Dickinson,Y.Lin,M.Dedek,et al,Induction of antioxidant and detoxificationresponse by oxidants in cardiomyocytes:evidence from gene expression profiling andactivation of Nrf2transciption factor[J].Mol.Cell.Cardiol,2007,42:159-176.
    [56]Larry G.Higgins,John D.Hayes,The cap’n’collar transcription factor Nrf2mediates bothintrinsic resistance to environmental stressors and an adaptive response elicited byChemopreventive agents that determines susceptibility to electrophilic xenobiotics[J].Chemico-Biological Interactions.2011.192:37-45.
    [57]Iida K,Itoh K,Kumagai Y,et al.Nrf2is essential for the chemopreventive efficacy ofoltipraz against urinary bladder carcinogenesis[J]. Cancer Res,2004,64(18):6424-6231.
    [58]Ishikawa M, Numazawa S, Yoshida T. Redox regulation of the transcriptional repressorBach1[J]. Free Radic Bio Med,2005,38(10):1344-1352.
    [59]Katsuoka,F.,Motohashi, H., Ishii, T., Aburatani, H.,Engel,J.D.,Yamamoto,M.,Geneticevidence that small maf proteins are essential for the activation of antioxidant responseelement-dependent genes[J].Mol.Cell Biol.2005,25:8044–8051.
    [60]J.M.Lee,J.A.Johnson,An important role of Nrf2-ARE pathway in the cellular defensemechanism[J].Biochem.Mol.2004,37:139-143.
    [61]Cullinan,S.B.,Zhang,D.,Hannik,M.,Arvisais,E.,Kaufman,R.J.,Diehl,J.A.,Nrf2is a directPERK substrate and effecter of PERK-dependent cell survival[J].Mol.Cell. Biol.2003.23:7198–7209.
    [62]Bloom,D.A.;Jaiswal,A.K.Phosphorylation of Nrf2at Ser(40) by protein kinase C inresponse to antioxidants leads to the release of Nrf2from INrf2, but is not required forNrf2stabilization/accumulation in the nucleus and transcriptional activation ofantioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1geneexpression[J].J.Biol. Chem.;2003,278:44675–44682.
    [63]Huang,H.C.;Nguyen,T.; Pickett, C. B. Phosphorylation of Nrf2at Ser-40by proteinkinase C regulates antioxidant response element-mediated transcription[J].J.Biol.Chem.2002,277:42769–42774.
    [64]Buckley,B.J.;Marshall,Z.M.;Whorton,A.R.Nitric oxide stimulates Nrf2nucleartranslocation in vascular endothelium[J].Biochem. Biophys.Res.Commun.2003,307:973–979.
    [65]Yu, R; Mandlekar, S.; Weber, M. J.; Der, C. J.; Wu, J.; Tony-Kong, A. N. Role ofmitogen-activated protein kinase pathway in the induction of phase II detoxifyingenzymes by chemicals[J]. J. Biol. Chem.1999,274:27545–27552.
    [66]Zipper, L. M.; Mulcahy, R. T. Inhibition of ERK and p38MAP kinases inhibits bindingof Nrf2and induction of GCS genes[J]. Biochem. Biophys. Res. Commun.2000,278:484–492.
    [67]Jain A K, Jaiswal A K, GSK-3beta acts upsteam of Fyn kinase in regulation of nuclearexport and degradation of Nrf2[J]. J Biol Chem,2007,282:16502-16510.
    [68]Nicolas Mercado,Rajesh Thimmulappa,et al. Decreased histone deacetylase2impairsNrf2activation by oxidative stress[J].Biochemical and Biophysical ResearchCommunications.2011,406:292-298.
    [69]Salazar, M., Rojo, A.I., Velasco, D., de Sagarra, R.M., Cuadrado, A., Glycogen synthasekinase-3beta inhibits the xenobiotic and antioxidant cell response by directphosphorylation and nuclear exclusion of the transcription factor Nrf2[J]. J. Biol.Chem.2006.281,14841–14851.
    [70]Jain, A.K, Jaiswal, A.K, GSK-3b acts upstream of Fyn kinase in regulation of nuclearexport and degradation of NF-E2related factor2[J]. J. Biol. Chem.2007,282:16502–16510.
    [71]Tomobe, K., et al., Age-related changes of Nrf2and phosphorylated GSK-3b in a mousemodel of accelerated aging (SAMP8)[J]. Arch. Gerontol. Geriatr.2011,10:1016-1022.
    [72]Miao Yu, Hui Li, Qiongming Liu, Fang Liu,et al.Nuclear factor p65interacts with Keap1to repress the Nff2-ARE pathway[J]. Cellular Signalling.2011.23:883-892.
    [73]Song HJ,Shin CY,et al.The protective effect of cupatilin on indomethacin induced celldamagve in cultured feline ileal smooth muscle cells:Involvement of HO1and ERK[J].JEthophamacol,2008,118(1):94-101.
    [74]Valerio Orlando and Katherine A. Jones. Wild chromatin: regulation of eukaryotic genesin their natural chromatin context[J]. Genes Dev.2002,16:2039-2044.
    [75]Shinsuke Homma, Yukio Ishii, Yuko Morishima, et al. Nrf2Enhances Cell Proliferationand Resistance to Anticancer Drugs in Human Lung Cancer[J]. Clin Cancer Res2009;15:3423-3432.
    [76]Lavu. S,Boss. O,Elliott, P. Z, Lambert, P. D. Sirtuins-novel therapeutic targets to treatage-associated diseases[J].Nat.Rev.Drug Discov.2008,7:841-853.
    [77]Michael P. Robich, Robert M. Osipov, Louis M. Chu, et al.Resveratrol modifies riskfactors for coronary artery disease in swine with metabolic syndrome and myocardialischemia[J]. Europan Gournal of Pharmacology.2011,664:45-53.
    [78]B.Agarwal,J.A.Baur,Resveratroland life extension[J].Ann.N.Y.Acad.Sci.2011.12:138-143.
    [79]Houston MC. The role of cellular micronutrient analysis, nutraceuticals, vitamins,antioxidants and minerals in the prevention and treatment of hypertension andcardiovascular disease[J]. Ther Adv Cardiovase Dis.2010,4:165-183.
    [80]S.Bradamante,L.Barenghi,A.Villa,Cardiovascular protective effects of resveratrol.Cardiovasc[J].Drug Rev.2004,22:169-188.
    [81]Z. Cao,Y. Li, et al,Potent induction of cellular ntioxidants and phase2enzymes byresveratrol in cardiomyocytes:protection against oxidative and electrophilic injury[J],Eur.J.Pharmacol.2004,489:39-48.
    [82]Y.Li,Z.Cao,H.Zhu, et al,Upregulation of endogenous antioxidants and phase2enzymesby the red wine ployphenol,resveratrol in cultured aortic smooth muscle cells leads tocytoprotection against oxidative and electrophilic stress[J],Pharmacol.Res.2006,53:6-15.
    [83]S.Ka,L.Zhan, et al,Resveratrol enhances neovascularization in the infarcted ratmyocardium through the induction of thioredoxin-1,heme oxygenase-1and vascularendothelial growth factor[J],J.Mol.Cell.Cardiol.2005,39:813-822.
    [84]J.Dudley,S.Das, et al,Resveratrol,a unique phytoalexin present in red wine,delivers eithersurvival signal or death signal to the ischemic myocardium depending on dose[J],J.Nutr.Biochem.2009,20:443-452.
    [85]Z.Wang,Y.Chen,Regulation of proliferation and gene expression in cultured humanaortic smooth muscle cells by resveratrol and standardized grape extracts[J], Biochen.Biophys.Res.Commun.346(2006)367-376.
    [86]Z.Ungvari, N. Labinskyy, P.Mukhopadhyay, J. T. Pinto, et al.Resveratrol attenuatesmitochondrial oxidative stress in coronary arterial endothelial cells[J].Am.J.Physiol.Heart Circ.Physiol.2009,297:1876-1881.
    [87]Huang Z,Wang C,et al. Resveratrol inhibits EMMPRIN expression via P38and ERK1/2pathways in PMA-induced THP-1cells[J].J. Biochem Biophys Res Commun,2008,374(3):517-521.
    [88]Chen C Y, Jiang J H, Li M H et al. Resveratrol upragulate hemeoxygenase expressionvia activition of Nrf2in PC12cells[J]. Biochem Biophys Res Commun.2005,331(4):993-1000.
    [89]Huang H M, Liang Y C,Cheng T H, et al.Potential mechanism of blood vessel protectionby Resveratrol, component of red wine[J].Ann N Y Acad Sci.2005,1042:349-356.
    [90]Nagueh, et al.Atorvastatin and cardiac hypertrophy and function in hypertrophic[J].European Journal of clinical Investigation.2010,40(11):976-983.
    [91]Miguel, Guillermo Díaz-Araya,et al. Simvastatin disrupts cytoskeleton and decreasescardiac fibroblast adhesion,migration and viability[J]. Toxicology.2012,294:42-49.
    [92]Planavila A, Rodríguez-Calvo R,et al.Atorvastatin inhibits GSK-3beta phosphorylationby cardiac hypertrophic stimuli[J]. Biochim Biophys Acta.2008,1781(1-2):26-35.
    [93]Akihiro Shirakabe, Kuniya Asai,et al. Immediate administration of atorvastatindecreased the serum MMP-2level and improved the prognosis for acute heart failure[J].J Cardiol.2012,10.1016:9-18.
    [94]Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heartfailure[J]. N Engl J Med.2007,357:2248-2261.
    [95]Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet.2000;356:930–933.
    [96]Masoudi FA. Statins for ischemic systolic heart failure. N Engl JMed.2007;357:2301–2304.
    [97]Webb IG, Nishino Y, Clark JE, Murdoch C, Walker SJ, Makowski MR, etal.Constitutive glycogen synthase kinase-3alpha/beta activity protects against chronicbeta-adrenergic remodelling of the heart[J]. Cardiovasc Res Aug12010;87(3):494–503.
    [98]Webb IG, Sicard P, Clark JE, Redwood S, Marber MS. Myocardial stress remodellingafter regional infarction is independent of glycogen synthase kinase-3inactivation.J MolCell Cardiol Nov2010;49(5):897–900.
    [99]Hui Cheng,James Woodgett,et al. Targeting GSK-3family members in the heart: A verysharp double-edged sword[J]. Journal of Molecular and Cellular Cardiology,2011,51:607–613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700