吡格列酮对AD大鼠模型学习记忆及GSK-、p-tau蛋白的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:将吡格列酮用于阿尔茨海默病(AD)大鼠模型,观察其对AD大鼠模型学习记忆能力及糖原合成激酶-(GSK-)、tau蛋白磷酸化(p-tau)的影响,初步探讨吡格列酮对AD大鼠模型的疗效及可能的作用机制。
     方法:
     1.AD大鼠模型的制备。根据大鼠脑立体定位图谱,用脑立体定位仪定位,向大鼠右侧海马CA1区微量注射冈田酸(OA),隔日一次,共4次,制备AD大鼠模型。
     2.吡格列酮制成混悬液灌胃,各组大鼠分别于灌胃前、后尾静脉采血,微量血糖仪测定外周血糖。
     3.用Morris水迷宫行大鼠行为学检测。
     4.GSK-与tau蛋白磷酸化表达的研究。采用免疫组化法观察大鼠海马内GSK-的表达及tau蛋白磷酸化的表达。
     结果:
     1.外周血糖测定:各组大鼠灌胃前、后血糖相比较无显著差异(P>0.05)。
     2.Morris水迷宫检测结果:模型组大鼠平均逃避潜伏期较对照组明显延长(P<0.05),且较对照组游泳平台象限的路径长度占总路径长度的百分比明显减少(P<0.05);低、高吡格列酮组大鼠平均逃避潜伏期较模型组明显缩短(P<0.05),且较模型组游泳平台象限的路径长度占总路径长度的百分比明显增大(P<0.05),但低、高吡格列酮组大鼠二者比较无显著差异(P>0.05)。
     3.大鼠海马GSK-的表达:模型组大鼠较对照组GSK-的阳性表达明显增多,平均灰度值明显降低(P<0.05);低、高吡格列酮组大鼠较模型组GSK-的阳性表达明显减少,平均灰度值明显增高(P<0.05),但二者比较无显著差异(P>0.05)。
     4.大鼠海马tau蛋白磷酸化的表达:模型组大鼠较对照组tau蛋白磷酸化的阳性表达明显增多,平均灰度值明显降低(P<0.05);低、高吡格列酮组大鼠较模型组tau蛋白磷酸化的阳性表达明显减少,平均灰度值明显增高(P<0.05),但二者比较无显著差异(P>0.05)。
     结论:
     1.大鼠右侧海马CA1区多次微量注射OA制备AD动物模型,成功模拟了AD学习记忆能力的减退及tau蛋白过度磷酸化的病理改变。
     2.吡格列酮用于AD大鼠模型,对其血糖无显著影响,但提高了其学习记忆能力,减少了GSK-及tau蛋白过度磷酸化的表达,可认为AD的发生与胰岛素信号传导系统异常有关。吡格列酮通过调整胰岛素信号传导系统功能,增加胰岛素敏感性,降低GSK-的活性,可减少tau蛋白的过度磷酸化。
     3.吡格列酮用于AD大鼠模型有效,可为AD的临床防治提供一条新的思路。
Objective:To investigate the effect of Pioglitazone on the learning memory and glycogensynthase kinase-、tau protein phosphorylation in model of Alzheimer’s disease rats, andexplore the therapeutical effect on AD rats and the potential mechanism of action ofPioglitazone.
     Methods:
     1. Establishment of AD rats model. Okadaic acid (OA) was injected into the hippocampus CA1region overnight, four times totally.
     2. Pioglitazone made suspension to intragastric administration; the rats were measured bloodglucose.
     3. Behavior was tested by the Morris water maze.
     4. Research the relationship between GSK-and tau protein phosphorylation. The GSK-andtau protein hyperphosphorylation were detected by immunohistochemistry staining.
     Results:
     1. Determination of peripheral blood glucose: blood glucose of rats compared with before andafter using medicine were no significant difference(P>0.05).
     2. The Morris water maze test manifested: compared with the control group, the model grouprats have longer escape latency(P<0.05), moreover, the percentage of terrace quadrantswimming path length occupying total path length is the shorter than the control group(P<0.05);compared with the model group, low and high dose of Pioglitazone group rats have shorterescape latency(P<0.05), the percentage of terrace quadrant swimming path length occupyingtotal path length is the longer than the model group(P<0.05), but there is no significantdifference between two groups rats(P>0.05).
     3. The activity of GSK-: compared with the control group, the model group rats haveobviously positive cells, the grey scale is lower(P<0.05); compared with the model group, lowand high dose of Pioglitazone group rats have not obviously positive cells, the grey scale ishigher(P<0.05), but there is no significant difference between two groups(P>0.05).
     4. The activity of tau protein phosphorylation: compared with the control group, the model grouprats have obviously positive cells, the grey scale is lower(P<0.05); compared with the modelgroup, low and high dose of Pioglitazone group rats have not obviously positive cells, the grey scale is higher(P<0.05), but there is no significant difference between two groups(P>0.05).
     Conclusion:
     1. AD rats were successfully induced by injected OA into the hippocampus CA1 region.
     2. Pioglitazone can improve the learning and memory ability of AD rats, it may reduce tauprotein phosphorylation by reducing the activity of GSK-, AD may be related with insulinsignal transduction.
     3. Pioglitazone is effective for AD rats, moreover it provide a new idea for Alzheimer’s disease.
引文
[1] Dermaut B, Kumar-Singh S, Rademakers R, et al. Tau is central in the genetic Alzheimerfrontotemporaldementia spectrum[J]. Trends Genet, 2005, 21(12): 664-672
    [2] George P, Charles W. The rat brain in stereotaxic coordinates[M]. Academic Press 2007:98-116
    [3]高凤花,张生林,张毅,等.2型糖尿病合并Alzheimer病大鼠模型的研究[J].中西医结合心脑血管病杂志,2009,7(4):446-447
    [4]杨晓娟,袁耀,张生林.健脑益智汤对阿尔茨海默病大鼠学习记忆和氧化应激的影响[J].山西医科大学学报,2006,37(5):456-458
    [5] Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on proteinphosphatases-Specificity and kinetics[J]. Biochem J, 1988, 256: 283-290
    [6] Tanimukai H, Grundke-Iqbal I, Iqbal K. Up-regulation of inhibitors of proteinphosphatase-2A in Alzheimer’s disease[J]. Am J Pathol, 2005, 166(6): 1761-1771
    [7] Arendt T, Holzer M, Fruth R, et al. Paired helical filament-like phosphorylation of tau,deposition ofβ/A4-amyloid and memory impairment in rat induced by chronic inhibition ofphosphatase 1 and 2A[J]. Neuroscience, 1995, 69: 691-698
    [8] Morris R GM, Garrud P, Rawlins J NP, et al. Place navigation impaired in rats withhippocampal lesions[J]. Nature, 1982, 297-681
    [9] Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition andmodulates beta-amyloid in early AD[J]. Neurology, 2008, 70(6): 440-448
    [10] Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolismfrom normal cognition to pathologically verified Alzheimer’s disease[J]. Eur J Nucl MedMol Imaging, 2009, 36(5): 811-822
    [11]魏建设,张玲妹,黄娅琳,等.冈田酸诱导大鼠脑tau蛋白磷酸化和神经细胞退化[J].中国神经科学杂志,2002,18(3):577-582
    [12]吕心瑞,潘娅,李清春,等.神经生长因子对拟AD大鼠脑内NFT的影响[J].贵阳医学院报,2006,31(3):208-212
    [13] Hoyer S, Lee Sk, Loffler T, et al. Inhibition of the neuronal insulin receptor, an in vivomodel for sporadic Alzheimer’s disease? Ann N Y Acad Sci, 2000, 920: 256-258
    [14]张钦传,袁泉,林水森,等.胰岛素在阿尔茨海默病中的作用[J].中华内分泌代谢杂志,2004,20(2):176-177
    [15] Dong XC, Park S, Lin XY. Irs1 and Irs2 signaling is essential for hepatic glucosehomeostasis and systemic growth [J]. J Clin Invest, 2006, 1: 32-36
    [16] Cao DF, Lu HL, Lew TL, et al. Intake of sucrose-sweetened water induces insulinresistance and exacerbatesmemory deficits and amyloidosis in a transgenic mouse modelof Alzheimer disease[J]. J Biol Chem, 2007, 282(50): 275-282
    [17] DE LA MONTE SM, TONG M, LESTER-COLL N, et al. Therapeutic rescue of neurodegenerationin experimental type 3 diabetes: Relevance to Alzheimer's disease[J]. Journalof Alzheimers Disease, 2006, 10(1): 89-109
    [18] KIYOTA Y, KONDO T, MAESHIBA Y, et al. Studies on the metabolism of the newantidiabetic agent pioglitazone. Identification of metabolites in rats and dogs[J]. Arzneimittelforschung,1997, 47(1): 22-28
    [19]刘昌孝,王瑞芝,李晶.吡格列酮对正常、高血脂大鼠和模型肥鼠血脂和血糖的影响[J].中国临床药理学与治疗学,2004,9(2):146-148
    [20] Gong CX, Liu F, Grondke-Iqbal I, et a1. Post-translational modifications of tau protein inAlzheimer’s disease[J]. J Neural Transm, 2005, l12(6): 813-838
    [21] Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target[J].Trends Mol Med, 2002, 8(3): 126-132
    [22]李宁,刘耕陶.糖原合成激3:一个治疗阿尔采末病潜在的药物新靶点[J].ChinesePharmacological Bulletin, 2007, 23(12): 1544-1548
    [23] Jope RS, Yuskaitis CJ, Beural E. Glycogen synthase kinase-3: inflammation, diseases, andtherapeutics[J]. Neurochem Res, 2007, 32(4-5): 577-595
    [24] Tanabe K, Liu Z, Patel S, et al. Genetic deficiency of glycogen synthase kinase-corrects diabetes in mouse models of insulin resistance[J]. PLos Biol, 2008, 6(2): e37
    [25] Ram D, Jennifer LR, Yale EG, et al. Differential regulation of dynein and kinesin motorproteins by tau[J]. Science, 2008, 319(5866): 1086-1089
    [26] Iqbal K, Alonso AC EI, Akkad E. Alzheimer neurofibrilary degeneration therapeutictargets and high-throughput assays[J]. Mol Neurosci, 2003, 20: 425
    [27] Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms[J]. Lancet Neurol, 2004, 3(3): 169-178
    [28] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factorexpression and signaling mechanisms in Alzheimer’s disease this type3 diabetes[J]? JAlzheimer’s Dis, 2005, 7(1): 63-80
    [29] De la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression,signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease[J]. J Alzheimer Dis, 2005, 7(1): 45-61
    [30] Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase[J]. J CellSci, 2003, 116(Pt 7): 175-186
    [31]杨雁,胡蜀红,张建华,等.肥胖与2型糖尿病大鼠Alzheimer病样Tau蛋白过度磷酸化修饰及机制探讨[J].生物化学与生物物理进展,2006,33(5):458-464
    [32]符鹏程,杨期东.吡格列酮对痴呆大鼠模型空间记忆及海马结构的影响[J].中国现代医学杂志,2009,19(9):1294-1297
    [1] SONKUSARE S K, KAUL C L, RAMARAO P. Dementia of Alzheimer’s disease andother neurodegenerative disorders—memantine, a new hope[J]. Pharm- acol, 2005, 51(1):1-17
    [2] Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition andmodulates beta-amyloid in early AD[J]. Neurology, 2008, 70(6): 440-448
    [3] Biessls GL, Kappelle LJ. Increased risk of Alzheimer’s disease in type 2diabetes: insulinresistance of the brain or insulin-induced amyloid pathology[J]. Biochemical SocietyTransactions, 2005, 33(5): 1041
    [4] Goedert M, Spillantini M G. Acentury of Alzheimer’s disease[J]. Science, 2006, 314 (5800):777-781
    [5] St George-Hyslop PH, Westaway DA. Alzheimer’s disease. Anti-body clears senile plaques[J]. Nature, 1999, 400: 116-117
    [6] Hashimoto M, Rockenstein E, Crews L, et al. Role of protein aggregation in mitochondrialdysfunction and neuro-degeneration in Alzheimer’s and Parkinson’s diseases[J]. NeuromolMed, 2003, 4(1~2): 21-36
    [7] Dermaut B, Kumar-Singh S, Rademakers R, et al. Tau is central in the genetic Alzheimerfrontotemporaldementia spectrum[J]. Trends Genet, 2005, 21(12): 664-672
    [8] Mocanu MM, Nissen A, Eckermann K, et al. The potential forβ-structure in the repeatdomain of tau protein determines aggregation, synaptic decay, neuronal loss, andcoassembly with endogenous Tau in inducible mouse models of tauopathy[J]. J Neurosci,2008, 28(3): 737-748
    [9] Steinhilb ML, Dias-Santagata D, Fulga TA, et al. Tau phosphorylation siteswork in concertto promote neurotoxicity in vivo[J]. Mol Biol Cell, 2007, 18(12): 5060-5068
    [10] Tanimukai H, Grone I, Iqbal K. Upregulation of inhibitors of protein phosphatase inAlzheimer’s disease[J]. Am J Pathol, 2005, 166(6): 1761-1771
    [11] Gasparini L, Gouras GK, Wang R, et al. Stimulation of beta-amyloid precursor proteintrafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activatedprotein kinase signaling. J Neurosci, 2001, 8: 2561-2570
    [12] Gasparini L, Netzer WJ, Greengard P, et al. Does insulin dysfunction play a role inAlzheimer’s disease? Trends Phar -macol Sci, 2002, 6: 288-293
    [13] Boyt AA, Taddei TK, Hallmayer J, et al. The effect of insulin and glucose on the plasmaconcentration of Alzheimer’s amyloid precursor protein. Neuroscience, 2000, 95: 727-734
    [14] Phiel CJ, Wilson CA, Lee VM, et al. GSK-3alpha regulates production of Alzheimer’sdisease amyloid-betapeptides[J]. Nature, 2003, 423(6938): 435-439
    [15] Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer’sdisease[J]. Eur J Pharmacol, 2004, 490(1-3): 115-125
    [16]盛树力.糖尿病脑病与AD.中华内分泌代谢杂志,2001,1:58-59
    [17] Gong C X, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein inAlzheimer’s disease[J]. J Neural Transm, 2005, 112(6): 813-838
    [18] Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target[J]. TrendsMol Med, 2002, 8(3): 126-132
    [19] Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms[J]. Lancet Neurol, 2004, 3(3): 169-178
    [20] Hoyer S, Lee Sk, Loffler T, et al. Inhibition of the neuronal insulin receptor, an in vivomodel for sporadic Alzheimer’s disease? Ann N Y Acad Sci, 2000, 920: 256-258
    [21] Frǒlich L, Blum-Degen D, Riederer P, et a1. A disturbance in the neuronal insulin receptorsignal transduction in sporadic Alzheimer’s disease[J]. Ann N Y Acad Sci, 1999, 893:290-293
    [22] Frǒlich L, Hoyer S. Etiologic and pathogenetic heterogeneity of Alzheimer disease[J].Nervenarzt, 2002, 73(5): 422-427
    [23] Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimerdisease. Causes and consequences: an update[J]. Exp Gerontol, 2000, 35(9-10): 1363-1372
    [24] Kudo T, Imaizumi K, Tanimukai H, et al. Are cerebrovascular factors involved inAlzheimer’s disease? Neurobiol Aging, 2000, 2: 215-224
    [25] Hoyer S. The brain insulin signal transduction system and sporadic (typeII) Alzheimersdisease: an update[J]. J Neural Transm, 2002, 109(3): 341-360
    [26] Blass JP, Gibson GE, Hoyer S. The role of the metabolic lesion in Alzheimer’s disease [J].J Alzheimers Dis, 2002, 4(3): 225-232
    [27] Biessels GJ, Kappelle LJ. Increased risk of Alzheimer’s disease in typeⅡdiabetes: insulinresistance of the brain or insulin-induced amyloid pathology[J]? Biochem Soc Trans, 2005,33(5): 1041-1044
    [28]周翔,魏倩萍.糖尿病与阿尔茨海默病相关性的研究进展[J].医学信息,2010,6(23):2014-2016
    [29] Liolitsa D, Powell J, Lovestone S. Genetic variability in the insulin signalling pathwaymay contribute to the risk of late onset Alzheimer′s disease. J Neurol Neurosurg Psychiatry,2002, 73: 261-266
    [30] Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin -degradingenzyme in brain aging and Alzheimer’s disease. Neural P1ast, 2005, 12: 3l1-328
    [31] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factorexpression and signaling mechanisms in Alzhei mer’s disease-is this type3 diabetes[J]? JAlzheimer’s Dis, 2005, 7(1): 63-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700