人源糖原合成酶激酶-3β(Human Glycogen Synthase Kinase-3β)的性质研究及其抑制剂的高通量筛选模型建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖原合成酶激酶-3(GSK-3)是一个多功能的丝氨酸/苏氨酸类激酶,在真核生物中普遍存在。在哺乳动物中包括两个亚型,即GSK-3α和GSK-3β。GSK-3至少在三条细胞通路上有作用:Wnt/wingless,PI-3'Kinase以及Hedgehog信号通路,该酶的作用主要包括调节糖原的合成代谢,参与细胞的分化与增殖等。研究发现,GSK-3在某些疾病,例如阿尔茨海默尔氏病症以及非胰岛素依赖型糖尿病(NIDDM)中,其活性会异常升高。现已发现了几种针对该酶的抑制剂,例如aloisine,paullones和马来酰胺类化合物等。这些抑制剂的确在分子水平特异性地抑制GSK-3的活性,而对其他激酶几乎没有作用;关于这些抑制剂的研究工作也已经在细胞水平和动物模型上开展起来,为开发以GSK-3为靶点的新的治疗药物创造了良好的基础。
     本论文的目的是克隆表达纯化重组人源GSK-3β(HsGSK-3β)并研究其酶学性质;在此基础上,建立HsGSK-3β抑制剂的高通量分子筛选模型。并通过对国家新药筛选中心化合物库的筛选,寻找高亲和力的HsGSK-3β抑制剂,期望能进一步成为治疗二型糖尿病以及神经退行性疾病的先导化合物。
     本论文的研究内容主要包括通过PCR方法获得HsGSK-3β的编码序列,克隆至原核表达载体pGEX-KG上;将重组质粒pGEX-KG/HsGSK-3β转化大肠杆菌BL21(DE3)/codon plus后,经IPTG诱导表达,蛋白以可溶形式存在。GST融合重组蛋白经过谷胱甘肽亲和层析纯化,凝血酶切割,SP阳离子交换层析去处GST蛋白,超滤离心,Q-Sepharose阴离子交换层析纯化,得到较纯净的HsGSK-3β。
     随后,我们确定了包括同位素的用量,酶反应的线性范围以及反应时间。对HsGSK-3β进行了一系列的酶学性质的考查,对测活条件进行了优化。考察了包括Mg~(2+)、DTT、金属螯合剂、离子强度等因素对酶活性的影响,确定了测活反应的体系为30ul反应体系,在酶反应体系中含有50mM Tris-HCl pH7.5,10mM MgCl_2,2mM DTT,50uM ATP,0.2uCiγ-~(33)PATP,50uM CREB,100nMHsGSK-3β,反应时间为15分钟。随后,进行了pH依赖性、酶动力学分析、酶抑制作用分析以及酶的稳定性分析。pH依赖性实验表明HsGSK-3β属于中性蛋白激酶。分析了HsGSK-3β特异性多肽底物CREB以及激酶共同底物ATP的酶动力学性质,以及阳性抑制剂Aloisine A对HsGSK-3β的抑制作用,结果表明重组HsGSK-3β具有天然HsGSK-3β的激酶活性。酶稳定性分析说明酶能够长期保存在-80℃,贮存溶液为50mM Hepes pH7.2,100mM NaCl,1mM DTT,1mM
    
    华东师范大学硕士毕业论文
    EDI人的条件下。
     考察了DMso以及测活体系改变(体积改变而导致ATP:Y一,3P ATP掺入比
    的改变)对活性的影响,确定进行分子水平高通量抑制剂筛选的50ul酶反应体
    系为50 mM Tris一HCI pH 7.5,10 mM MgC12,2 mMD盯,25 uMATp,0.15uCi
    竹3,P灯P,50 uMe咫B,100咖价osK一邓,4%DMSO和40 ug加l样品。建立
    了HsGsK一3p抑制剂高通量筛选的标准化操作流程。对国家新药筛选中心化合物
    库中的2720个纯化合物样品进行筛选,筛选在2天内完成,其中有145个样品
    的抑制率在50%以上。挑选这些样品进行了两孔原浓度复筛以及稀释5倍后的两
    孔筛选,对稀释5倍的两孔的抑制率都在50%以上的化合物进行多浓度的抑制测
    定,计算ICS。值。
     筛选得到ICS。大于10 uM而小于20 tlM的化合物共有6个,IC50小于10 uM
    的化合物有3个。其中抑制效果最好的化合物编号为SH00011738,分子量330.36,
    IC50为2.24u加1,是结构新颖的化合物。筛选到这些化合物,为进一步进行细胞
    水平检测其抑制凋亡,降低血糖等作用以及化合物结构改造打下了良好的基础。
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase, highly conserved and has been identified in every eukaryote investigated to date. It is encoded by two isoforms in mammals, termed GSK-3 and GSK-3 . GSK-3 plays an important role in at least three signal transductory systems, namely, the Wnt/wingless, Hedgehog and PI' 3 -kinase pathways, which influence proliferation and cell survival, respectively, highlighted by the wide array of substrates controlled by this enzyme that includes cytoplasmic proteins and nuclear transcription factors. Several diease such as in Non-insulin dependent diabetes metillus (NIDDM), Alzheimer's disease, neurological disorders, and cancer have been related to GSK-3, as a potential therapeutic target. Several new GSK-3 inhibitors, such as the aloisines, the paullones and the maleimides, have been developed. Although they are just starting to be characterized in cell culture and animal model experiments, these new inhibitors hold promise as therapeutic agents.
    Here we reported the cloning, expression, purification and characterization of molecule-based assay for high-throughput inhibitor screening. By screening the compound library of National Center for Drug Screening, we found some hits with novel structure skeleton which should be further studied in cell functions.
    The coding region of HsGSK-3 was amplified by PCR method from an EST clone containing the HsGSK-3 gene and cloned into the vector pGEX-KG. The recombinant plasmid pGEX-KG/HsGSK-3 was then transformed into E.coli BL21(DE3)/codon plus cells. The GST-HsGSK-3P was overexpressed in the supernatant after IPTG induced. After sonicating, it was first purified by the Glutathione Chromatophy (5 ml) and thrombin cleavage overnight. Then the protein was loaded onto the SP column (5 ml) and eluted by 50 mM - 1 M NaCl gradient. The eluent was hyperfiltered with centrifuge tube and load onto the Q column (1ml). The flow through collected was the purified enzyme.
    
    
    First we ensured the dose-depedent and time-depedent of the enzyme, then optimized the reaction system by Mg2+, DTT dependence, metal chelating agents, ion strength. By these, the opitimized reaction system containes 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 2 mMDTT, SOuMATP, 0.2uCi -33PATP, SOuMCREB, 100 nM /&GSK-3P in 30 ul as the activity assay system. The characterization of the HyGSK-3(3 includes, pH dependence, the kinetics of enzyme reaction and inhibition analysis and enzyme stability. The pH profile data shows that #sGSK-3p is a neutral kinase while the analyses of kinetic constants for synthesized substrates CREB and ATP, inhibition by Aloisnine A indicate that recombinant /M}SK-3p activity retains the enzyme characters of natural /ftGSK-3p\ Enzyme stability analysis shows that the enzyme can be stored at -80 掳C for long time with the solution 50 mM Hepes pH7.2, 100 mM NaCl,. 1 mM DTT and 1 mM EDTA as the storage buffer.
    According to characterization of HsGSK-3 , the model of high-throughput screening was developed. The 50 ul reaction system included 50 mM Tris-HCl pH7.5, 10 mM MgCl2, 2 mM DTT, 50 uM CREB, 25 uM ATP and 0.15 uCi y-33P ATP, 4% DMSO and 2 ul compound (the final concentration is 40 ug/ml). We established the standard operation procedure of high-throughput screening for GSK-3 inhibitors. 2720 samples of National Center for Drug Screening were screened in 2days and there were 145 samples are higher than 50% inhibition. They were selected to do the second screening with the same compound concentration and 5-fold dilution. While one's inhibitories are both higher than 50%, we calculated 50% inhibitory concentration (IC50) by 3-fold compound dilution up to 0.549ug/ml.
    From this screening we obtained 6 compounds whose IC50 values are between 10uM and 20uM while 3 compounds whose IC50 values are lower than 10uM. The best inhibitor of HsGSK-3p is named SH00011738, whose IC50 value is 2.24uM and whose molecular mass is 330.36. As the result showed that the screening model is reliable and effective, offering clues for further research on drug discovery and d
引文
1) Embi, N. (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519-527.
    2) Woodgett, J. R. (1984). Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase Ⅱ (glycogen synthase kinase-5). Biochim Biophys. Acta. 788, 339-347.
    3) Frame, S. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16.
    4) Grimes, C. A. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391-426.
    5) Woodgett, J. R. (2001). Judging a protein by more than its name: GSK-3. Sci. STKE, 2001, RE 12.
    6) Adrian, J. Harwood. (2001). Regulation of GSK-3: A Cellular Multiprocessor. Cell. Minireview. 105, 821-824.
    7) Cohen, Philp. (2001). The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769-776.
    8) Esther, Siegfried. (1992) Wingless Signaling Acts through zester-white 3, the Drosophila Homolog of glycogen synthase kinase-3, to Regulate engrailed and Establish Cell Fate. Cell, 71, 1167-1179
    9) Trevor, C. Dale. (1998). signal transduction by the Wnt family of ligands. Biochem. J. 329, 209-223
    10) Kim, L. (2000). GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curt. Opin. Genet. & Develop. 10, 508-514
    11) Jia, J. (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature. 416, 548-452.
    12) Price, M. A. (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823-835.
    13) Hagit, Eldar-Finkelman. (2002). Glycogen synthase kinase 3: an emerging therapeutic target. Trends in Mol. Med. 8, 3, 126-132.
    14) Ratan, V. Bhat. (2004). Glycogen synthase kinase 3: a drug target for CNS therapies. J. Neurochem. 10, 471-475.
    
    
    15) Bradley, W. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116 1175-1186.
    16) Hagit, Eldar-Finkelman. (1999) Increased Glycogen Synthase Kinase-3 Activity in Diabetes and Obesity-Prone C57Bl/6J Mice. Diabetes. Rapid Publication. 48, 1-5.
    17) Svetlana, E. Nikoulina. (2000). Potential Role of Glycogen Synthase Kinase-3 in Skeletal Muscle Insulin Resistance of Type2 Diabetes. Diabetes. 49, 263-271.
    18) Pamela, A. Lochead. (2001). Inhibition of GSK-3 Selectively Reduces Glucose-6-Phosphatase and Phosphoenolpyruvate Carboxykinase Gene Expression. Diabetes. Rapid Publication. 50, 937-946.
    19) Ali, A. (2001). Glycogen synthase kinase-3: properties, functions, and regulation. Chem. Rev. 101, 2527-2540.
    20) Isabel, Domingeuz. (2001). Missing Links in GSK3 Regulation. Develop. Biol. 235, 303-313.
    21) Hoeflich, K. R (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90.
    22) Mukai, F. (2002). Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. J. Neurochem. 81, 1073-1083.
    23) Kai-Fai, Lee. (2000). Molecular cloning and expression analysis of human glycogen synthase kinase-3α promoter. Mol. Brain. Res. 84, 150-157.
    24) Miho, Takahashi. (2000). Distribution of tau protein kinase I/glycogen synthase kinase-3β, phosphatase 2A and 2B, and phosphorylated tau in the developing rat brain. Brain Research. 857, 193-206.
    25) Bax, B. (2001). The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure (Camb) 9, 1143-1152.
    26) Dajani, R. (2001). Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 105, 721-732.
    27) ter Haar. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat. Struct. Biol. 8, 593-596.
    28) Masaaki, Aoki. (2000). Expression, puficcation and crystallization of human tau-protein kinase I/glycogen synthase kinase-3 beta. Acta Cryst 56, 1464-1465.
    29) Fiol, C. J. (1987). Formation of protein kinase recognition sites by
    
    covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase Ⅱ and glycogen synthase kinase 3. J. Biol. Chem. 262, 14042-14048.
    30) Fiol, C. J. (1994). A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J. Biol. Chem. 269, 32187-32193.
    31) Kirschenbaum, F. (2001). Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J..Biol. Chem. 276, 30701-30707.
    32) Kirschenbaum, F. (2001). Substitution of a Glycogen Synthase Kinase-3 Phosphorylation Site in Presenilin 1 Separates Presenilin Function from β-Catenin Signaling. J. Biol. Chem. 276, 7366-7375.
    33) Bellon, S. (1999). The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation. Structure Fold Des. 7, 1057-1065.
    34) Brown, N. R. (1999). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438-443.
    35) Canagarajah, B. J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell, 90, 859-869.
    36) Hughes, K. (1993). Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO. J. 12, 803-808.
    37) Woodgett, J. R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO. J. 9, 2431-2438.
    38) Fiol, C. J. (1988). Phosphoserine as a recognition determinant for glycogen synthase kinase-3: phosphorylation of a synthetic peptide based on the G-component of protein phosphatase-1. Arch. Biochem. Biophys. 267, 797-802,
    39) Fiol, C. J. (1990). Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J. Biol. Chem. 265, 6061-6065.
    40) Adrian, J. Harwood. (2000). Signal transduction: Life, the universe and...development. Cur. Biol. 10, 116-119.
    41) Kim, L. (1999). The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99, 399-408.
    42) Yu, Jau-song. (1994). Okadaic Acid, a Serine/Threonine Phosphatase Inhibitor, Induces Tyrosine Dephosphorylation/Inactivation of Protein
    
    Kinase F_A/GSK-3 inA431 Cells. Journ. Biol. Chem. 20, 14341-14344.
    43) Hartigan, J. A. (2001). Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem. Biophys. Res. Commun. 284, 485-489.
    44) Ballou, L. M. (2001). Dual regulation of glycogen synthase kinase-3beta by the alphalAadrenergic receptor. J. Biol. Chem. 276, 40910-40916.
    45) Wang, Q. M. (1994). Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 269, 14566-14574.
    46) Armstrong, J. L. (2001). Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J. Biol. Chem. 276, 952-956.
    47) Hughes, K. (1992). Identification of multifunctional ATP-citrate lyase kinase as the alphaisoform of glycogen synthase kinase-3. Biochem. J. 288, 309-314.
    48) Hughes, K. (1992). Identification of multifunctional ATPcitrate lyase kinase as the α-isoform of glycogen synthase kinase-3. Biochem. J. 288, 309-314.
    49) Welsh, G. I. (1993). Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem. J. 294, 625-629.
    50) Cohen, P. (1978) How does insulin stimulate glycogen synthesis? Biochem. Soc. Symp. 43, 69-95
    51) Cohen, P. (1999). The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Phil. Trans. R. Soc. Lond. B. 354,485-495
    52) Cross, D. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
    53) Frame, S. (2001). A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Ceil 7, 1321-1327.
    54) Scott, A. Summer. (1999). The Role of Glycogen Synthase Kinase 3beta in Insulin-stimulated Glucose Metabolism. Joun. Biol. Chem. 274,17934-17940
    55) Krause, U. (2002). Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 269, 3742-3750.
    56) Lesort, M. (1999). Insulin transiently increases tau phosphorylation:
    
    involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J. Neurochem. 72, 576-584.
    57) Miller, J. R. (2002). The Wnts. Genome. Biol. 3, REVIEWS3001.
    58) Polakis, P. (2000). Wnt signaling and cancer. Genes. Dev. 14, 1837-1851.
    59) Smalley, M. J. (1999). Wnt signalling in mammalian development and cancer. Cancer. Metastasis. Rev. 18, 215-230.
    60) Huelsken, J. (2002). The Wnt signalling pathway. J. Cell. Sci. 115, 3977-3978.
    61) Seidensticker, M. J. (2000). Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta. 1495, 168-182.
    62) Sharpe, C. (2001). Wnt signalling: a theme with nuclear variations. Bioessays. 23, 311-318.
    63) Amit, S. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes. Dev. 16, 1066-1076.
    64) Novak, A. (1999). Signaling through beta-catenin and Lef/Tcf. Cell Mol. Life Sci. 56, 523-537.
    65) Barker, N. (2000). The Yin-Yang of TCF/beta-catenin signaling. Adv. Cancer. Res. 77, 1-24.
    66) van Noort, M. (2002). Wnt signaling controls the phosphorylation status of beta-Catenin. J. Biol. Chem. 277, 17901-17905.
    67) Brantjes, H. (2002). TCF: Lady Justice casting the final verdict on the outcome of Wnt signaling. Biol. Chem. 383,255-261.
    68) Dierick, H. (1999). Cellular mechanisms of wingless/Wnt signal transduction. Curt Top. Dev. Biol. 43, 153-190.
    69) Ding, V. W. (2000). Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling.. J. Biol. Chem. 275, 32475-32481.
    70) Manoukian, A. S. (2002). Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv. Cancer Res. 84, 203-229.
    71) Martinek, S. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769-779.
    72) Siegfried, E. (1994). Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. Bioessays. 16, 395-404.
    73) Siegfried, E. (1990). Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. Nature. 345, 825-829.
    74) Bourouis, M. (1990). An early embryonic product of the gene shaggy
    
    encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily. EMBO. J. 9, 2877-2884.
    75) Hinoi, T. (2000). Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependent phosphorylation of beta-catenin and down-regulates beta-catenin. J. Biol. Chem. 275, 34399-34406.
    76) Hagit, Eldar-Finkelman. (1996). Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Pro. Natl. Acad. Sci. USA. 93, 1996.
    77) Ikeda, S. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO. J. 17, 1371-1384.
    78) Hagen, T. (2002). Characterisation of the phosphorylation of beta- catenin at the GSK-3 priming site Ser45. Biochem. Biophys. Res. Commun. 294, 324-328.
    79) Liu, C. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847.
    80) McKay. (2001). The casein kinase I family in Wnt signaling. Dev. Biol. 235, 388-396.
    81) Hagen, T. (2002). Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J. Biol. Chem. 277, 23330-23335.
    82) Jho, E. (1999). A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression. Biochem. Biophys. Res. Commun. 266, 28-35.
    83) Sakanaka, C. (2002). Phosphorylation and regulation of beta-catenin by casein kinase I epsilon. J. Biochem. (Tokyo) 132, 697-703.
    84) Yanagawa, S. (2002). Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO. J. 21, 1733-1742.
    85) Hartigan, J. A. (1999). Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J. Biol. Chem. 274, 21395-21401.
    86) Murai, H. (1996). Tyrosine dephosphory-lation of glycogen synthase kinase-3 is involved in its extracellular signaldependent inactivation.
    
    FEBS. Lett. 392, 153-160.
    87) Gao, Z. H. (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc. Natl. Acad. Sci. USA 99, 1182-1187.
    88) Schwarz-Romond, T. (2002). The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes. Dev. 16, 2073-2084.
    89) Farr, G. H. (2000). Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J. Cell Biol. 148, 691-702.
    90) Fraser, E. (2002). Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J. Biol. Chem. 277, 2176-2185.
    91) Lee, E. (2001). Physiological regulation of beta-catenin stability by Tcf3 and CKlepsilon. J. Cell Biol. 154, 983-993.
    92) Franca-Koh, J. (2002). The regulation of glycogen synthase Kinse-3 nuclear export by Frat/GBP. J. Biol. Chem. 277, 43844-43848.
    93) Freemantle, S. J. (2002). Characterization and tissue specific expression of human GSK-3-binding proteins FRAT1 and FRAT2. Gene. 291, 17-27.
    94) Yamamoto, H. (1999). Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J. Biol. Chem. 274, 10681-10684.
    95) Dajani, R. (2003). Structural basis for recruitment of glycogen synthase kinase 3b to axin-APC scaffold Complex. EMBO. Journ. 22,
    96) Ingham, P. W. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059-3087.
    97) Taipale, J. and Beachy, P. A. (2001). The Hedgehog and Wnt signaling pathways in cancer. Nature 411,349-354.
    98) Johnson, R. L. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668-1671.
    99) Ruiz i Altaba, A. (1999) Gli proteins and Hedgehog signaling: development and cancer. Trends Genet. 15, 418-425.
    100) Neil, G. Anderson. (1990). Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Letters To Nature. 343,651-653
    101) Saito, Y. (1994). The mechanism by which epidermal growth factor inhibits glycogen synthase ldnase 3 in A431 cells. Biochem. J. 303,
    
    27-31.
    102) Fang, X., Yu, S. X., Lu, Y., Bast, R. C., Jr, Woodgett, J. R. and Mills, G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA. 97, 11960-11965.
    103) Tanji, C. (2002). A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. 277, 36955-36961.
    104) Fang, X. (2002). Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway. Mol. Cell. Biol. 22, 2099-2110
    105) Kaidanovich, O. (2002). The role of glycogen synthase kinase-3 in insulin resistance and Type 2 diabetes. Expert Opin. Ther. Targets. 6, 555-561.
    106) Brady, M. J. (1998). The activation of glycogen synthase by insulin switches from kinase inhibition to phosphatase activation during adipogenesis in 3T3-L1 cells. J. Biol. Chem. 273, 14063-14066.
    107) Terruzzi, I. (2002). Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms. Mol. Cell. Endocrinol. 190, 135-145.
    108) Bei, B. Zhang. (2000). New approaches in the treatment of type 2 diabetes. Curr. Opin. in Chem. Biol. 4, 461-467.
    109) Benjamin, W. B. (1994). ATP citrate-lyase and glycogen synthase kinase-3 beta in 3T3-L1 cells during differentiation into adipocytes. Biochem. J. 300, 477-482.
    110) Nuria, Morral. (2003). Novel targets and therapeutic strategies for type 2 diabetes. Trends. in Endocr. and Metabol. 14, 169-175.
    111) van Huijsduijnen. (2002). Selecting protein tyrosine phosphatases as drug targets. Drug Discov. Today. 19, 1013-1019.
    112) Michael, J. Reed. (1999). In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes. 1, 75-86
    113) Bhat, R. V. (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3b in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. U.S.A. 97, 11074-11079
    114) Li, M. (2000). Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol. Cell. Biol. 20,
    
    9356-9363.
    115) Bhat, R. V. (2000). Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad Sci. USA. 97, 11074-11079.
    116) Maccioni, R. B. (2001). The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch. Med. Res. 32, 367-381.
    117) De Ferrari, G. V. (2000). Wnt signaling function in Alzheimer's disease. Brain. Res. Rev. 33, 1-12.
    118) Mattson, M. P. (2001). Neuronal death and GSK-3beta: a tau fetish? Trends. Neurosci. 24, 255-256.
    119) Palacino, J. J. (2001). Presenilin 1 regulates beta-catenin-mediated transcription in a glycogen synthase kinase-3 independent fashion. J. Biol. Chem. 276, 38563-38569.
    120) Hanger, D. E (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 147, 58-62.
    121) Bijur, G. N. (2001). Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta.J. Biol. Chem. 276, 37436-37442.
    122) Watcharasit, E (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. USA. 99, 7951-7955.
    123) Gould, T. D.(2002). The Wnt signaling pathway in bipolar disorder. Neuroscientist. 8, 497-511.
    124) Chen, G. (1999). The moodstabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327-1230.
    125) Li, X. (2002). Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar. Disord. 4, 137-144.
    126) Williams, R. S. (2002). A common mechanism of action for three mood-stabilizing drugs. Nature. 417, 292-295.
    127) Hall, A. C. (2002). Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol. Cell. Neurosci. 20, 257-270.
    128) Kim, L. (2002). Receptor-dependent and tyrosine phosphatase-mediated inhibition of GSK3 regulates cell fate choice. Dev. Cell. 3,523-532.
    129) Carmichael, J. (2002). GSK-3beta inhibitors prevent cellular
    
    polyglutamine toxicity caused by the Huntington's disease mutation. J. Biol. Chem. 277, 33791-33798.
    130) Takeda, K. (2000). Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet. 9, 125-132.
    131) Martinez, A. (2002). Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med. Res. Rev.22, 373-384.
    132) Ryves, W. J. (2002). Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem. Biophys. Res. Commun. 290, 967-972.
    133) Ryves, W. J. (2001). Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280, 720-725.
    134) Detera-Wadleigh, S. D. (2001). Lithium-related genetics of bipolar disorder. Ann. Med. 33,272-285.
    135) De Samo, P. (2002). Regulation of Akt and glycogen synthase kinase-3beta phosphorylation by sodium valproate and lithium. Neuropharmacology. 43, 1158-1164.
    136) Klein, P. S. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad Sci. USA. 93, 8455-8459.
    137) Manji, H. K. (1999). Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol. Psychiatry. 46, 929-940.
    138) Stambolic, V. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664-1668.
    139) Ilouz, R. (2002). Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295, 102-106.
    140) Shaw, M. (1997) Further evidence that the inhibition of glycogen synthase kinase-3b by IGF-1 is. mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphory-lation of Tyr-216. FEBS. Lett. 416,307-311
    141) Yost, C. (1998). GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell. 93, 1031-1041.
    142) Coghlan, M. P. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription.
    
    Chem. Biol. 7, 793-803.
    143) Cross, D. A. (2001). Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94-102.
    144) Hers, I., Tavare, J. M. and Denton, R. M. (1999). The protein kinase C inhibitors bisindolylmaleimide Ⅰ (GF 109203x) and Ⅸ (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3 activity. FEBS. Lett. 460, 433-436.
    145) Slingsby, B, P. (2001). 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med Chem. Lett. 11,635-639.
    146) Leost, M. (2000). Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur. J. Biochem. 267, 5983-5994.
    147) Knockaert, M. (2002). Intracellular targets of Paullones. Identification following affinity purification on immobilized inhibitor. J. Biol. Chem. 277, 25493-25501.
    148) Mettey, Y. (2003). Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. J. Med. Chem. 46, 222-236.
    149) Damiens, E. (2001). Anti-mitotic properties of indirubin-3-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene. 20, 3786-37897.
    150) Leclerc, S. (2001). Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. 276, 251-260.
    151) Forlenza, O. V., (2000). Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3beta inhibition and in neurons. J. Neural. Transm. 107, 1201-1212.
    152) Martinez, A. (2002). First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J. Med Chem. 45, 1292-1299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700