高迁移率族蛋白1在糖尿病心肌病中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病心肌病(diabetic cardiomyopathy, DCM)是由糖尿病状态所导致的一种心脏疾病,与高血压、冠心病和心脏瓣膜病的病理改变无关,早期表现为心室顺应性下降和无症状的舒张功能障碍;后期将进一步发展为收缩功能受损和有症状的充血性心力衰竭。心肌病理结构的异常改变主要表现为心肌细胞肥厚、凋亡和心肌间质纤维化,其中心肌间质纤维化是糖尿病心肌病的主要病理特征。糖代谢异常是糖尿病心肌病的关键始动因素,但引起糖尿病心肌病的具体分子机制仍然不明确,因此研究糖尿病心肌病的病理新机制,寻找作用靶点,成为临床治疗中亟待解决的重要问题。
     高迁移率族蛋白(HMGB1)是一种高度保守的DNA结合蛋白,广泛存在于哺乳动物体内。在核内,HMGB1参与核小体的构建和稳定,调节基因的转录;在核外,HMGB1可由免疫细胞(如单核细胞、巨噬细胞等)在受到刺激活化后主动释放到细胞质或由坏死细胞破裂被动释放至胞外,引起炎症反应和介导相关信号通路的传导。近来发现,除外免疫细胞外,HMGB1也可被某些非免疫细胞主动分泌,如肿瘤细胞、垂体细胞、肠上皮细胞、心肌细胞、脂肪细胞等,参与炎症反应、肿瘤发生、细胞增殖及分化等病理过程。以往研究发现,HMGB1在胞外可通过与晚期糖基化终产物受体(RAGE)、套样受体(TLR2、TLR4)等受体结合,通过激活丝裂原活化蛋白激酶(MAPK)途径,介导炎症反应以及促进细胞因子活化。近年,越来越多的研究表明,HMGB1在多种心血管疾病的发生与发展中发挥重要作用,包括心肌缺血/再灌损伤、心肌梗死、动脉粥样硬化、肺动脉高压等。目前研究发现,1型糖尿病患者血清中HMGB1水平较健康人群显著增高,提示我们HMGB1可能在糖尿病心肌病的发病过程中起重要作用。因此,本研究利用链脲佐菌素(STZ)诱导小鼠1型糖尿病模型,探讨HMGB1在糖尿病诱导心肌重构中的作用及其机制。
     研究目的
     1.研究高糖是否能诱导心肌细胞和成纤维细胞HMGB1的核转位,并进一步分泌至胞外;
     2.研究心肌组织中HMGB1在糖尿病诱导心肌纤维化中的作用及其机制;
     3.探讨重组HMGB1蛋白刺激对心肌成纤维细胞增殖、迁移及合成胶原能力的影响。
     研究方法
     1.慢病毒shRNA-HMGB1载体构建:
     设计3对HMGB1基因的shRNA质粒,根据每个序列的干扰效率,选择效率最高的序列构建含有绿色荧光蛋白(GFP)报告基因的慢病毒载体。针对HMGB1的干扰序列为5'-GGCTCGTTATGAAAGAGAAAT-3',同时应用5'-GTTCTCCGAACGTGTCACGT-3'作为阴性对照序列。
     2.动物模型建立及HMGB1shRNA慢病毒体内转染
     将8周龄雄性C57BL/6J小鼠(约25-30g)随机分为模型组(60只)和对照组(15只)。模型组小鼠连续5天腹腔内注射链脲佐菌素(STZ)溶液,剂量为50mg/kg.d。对照组小鼠注射相应体积的0.1mmol/l无菌柠檬酸缓冲液(pH4.5)。建模当天禁食4h,不禁水。STZ注射1周后取尾静脉血测随机血糖,将随机血糖>16.7mmol/l的小鼠纳入糖尿病模型组。于糖尿病12周末将模型组小鼠随机分为3组:模型组、shHMGB1慢病毒干预组、shN.C慢病毒对照组。小鼠体内慢病毒转染采用心肌注射的局部转染方式,每只小鼠转染病毒量为1×107UT/30μ1,并选择多点注射入左室壁中。病毒转染4周后取材,并于显微镜下观察心肌组织中GFP的阳性率分析病毒转染效率。
     3.超声心动图检测心功能
     采用二维、M超、脉冲多普勒和组织多普勒超声成像技术评价小鼠左室功能。
     4.组织学染色
     收集各组小鼠心脏,制备石蜡切片,进行H&E、Masson、天狼星红染色,分别显示心脏的大体形态结构和心肌内胶原的含量。应用免疫组织化学染色,观察心肌组织内HMGB1、胶原I、胶原III、转化生长因子β1(TGF-β1)的分布及表达情况。
     5.细胞培养
     本实验采用新生1-3天的Wistar乳鼠心脏分离和培养心肌原代细胞和心肌成纤维细胞作为研究对象,以正常糖浓度培养的细胞为对照组,应用不同浓度及不同时间的高糖分别刺激细胞,观察其对细胞的影响。
     6.激光共聚焦显微镜检测
     应用细胞免疫荧光法检测细胞中HMGB1和Ki67的分布与表达水平。
     7.实时定量逆转录PCR
     提取各组细胞及组织RNA,进行逆转录和实时定量PCR,检测细胞及组织中HMGB1的mRNA表达水平。
     8.蛋白印迹
     收集各组细胞及组织,提取蛋白,分别检测HMGB1、乳酸脱氢酶(LDH)、I型胶原、III型胶原、TGF-β1、MMP-2、MMP-9、ERK、p-ERK、JNK、p-JNK、p38和p-p38等蛋白的表达水平。
     9.明胶酶谱法
     采用明胶酶谱法检测心肌成纤维细胞中MMP-2和MMP-9的活性。
     10.免疫酶联吸附法(ELISA)
     收集各组细胞上清,检测细胞HMGB1的分泌水平。
     11.细胞的增殖和迁移实验
     采用细胞计数试剂盒CCK8检测心肌成纤维细胞的增殖情况。利用Transwell小室观察成纤维细胞在不同刺激下的迁移情况。
     12.碘化丙啶染色检测
     利用Annexin V/PI试剂盒检测细胞坏死的情况。
     13.统计学分析
     应用SPSS18.0软件分析处理数据,并以均数±标准差(Mean±SD)表示。
     研究结果
     1.高血糖促进小鼠心肌组织HMGB1表达并向组织间隙分泌
     糖尿病小鼠心肌组织与正常小鼠相比,HMGB1蛋白和mRNA表达水平明显升高,且能观察到HMGB1由胞核向组织间隙分泌。而在正常小鼠心肌组织中,HMGB1的表达主要分布于细胞核中,未见明显的移位。
     2.抑制HMGB1改善糖尿病引起的左室重构及心功能异常
     HMGB1'慢病毒干扰shRNA转染小鼠心肌组织4周后,观察各组小鼠心脏左室重构的情况。与正常小鼠相比,糖尿病小鼠心脏形态明显增大、心尖变圆钝。与糖尿病模型组小鼠相比,抑制HMGB1能够明显改善糖尿病引起的心肌结构及形态的改变,降低了心脏重量(HW)和心身重量之比(HW/BW),减小了心肌细胞的体积,但对小鼠体重没有明显影响。
     STZ注射16周后,糖尿病小鼠心功能损害主要为舒张功能异常,表现为E/A、 E'/A'的降低,左室后壁舒张期增厚;同时伴有收缩功能障碍,表现为EF、FS值减低。抑制HMGB1能够显著改善糖尿病所引起的心功能舒张和收缩异常。
     3.抑制HMGB1明显减轻糖尿病小鼠心肌纤维化程度
     Masson染色和天狼猩红染色显示糖尿病小鼠心肌间质纤维化程度较正常小鼠明显增加;免疫组织化学和western blot检测显示心肌组织Ⅰ、Ⅲ型胶原和TGF-β1蛋白表达水平显著增高。与模型组和慢病毒干预对照组相比,抑制HMGB1明显降低心肌组织胶原沉积以及胶原Ⅰ、Ⅲ和促纤维化因子TGF-β1的水平。
     4.高糖刺激能增加原代心肌细胞和心肌成纤维细胞中HMGB1的表达及分泌
     应用不同浓度的高糖(15mM,20mM,25mM)分别刺激原代心肌细胞和心肌成纤维细胞48h后,与对照组(普通培养)相比,培养基上清液中HMGB1含量呈浓度依赖性明显升高,且细胞未发生坏死。细胞免疫荧光染色显示,对照组HMGB1主要定位于细胞核,而高糖刺激48h后,HMGB1由细胞核向细胞浆移位。同时测定HMGB1mRNA表达水平,显示高糖刺激心肌细胞和心肌成纤维细胞8h后,HMGB1mRNA水平开始增加,并于24h达高峰。
     5. HMGB1能增强心肌成纤维细胞的胶原合成、增殖及迁移能力
     分别用不同浓度的重组HMGB1蛋白(50ng/ml、100ng/ml、200ng/ml、400ng/ml)刺激心肌成纤维细胞48h,与正常对照组相比,rHMGB1能够显著增加细胞中Ⅰ、Ⅲ型胶原和TGF-β1蛋白的表达量。与对照组相比,应用rHMGB1刺激心肌成纤维细胞后,细胞增殖能力明显增强,核增殖相关抗原Ki67阳性率明显增加。此外,应用rHMGB1刺激心肌成纤维细胞24h能明显增强细胞的迁移能力。在高糖刺激条件下,通过中和抗体或基因沉默方式抑制HMGB1后,心肌成纤维细胞合成胶原及增殖能力明显下降。
     6.抑制HMGB1能减少心肌成纤维细胞中MMP-2、MMP-9的表达与活性
     高糖刺激心肌成纤维细胞后,western blot检测发现MMP-2和MMP-9的蛋白表达水平明显增高;而通过中和抗体或基因沉默抑制HMGB1后,心肌成纤维细胞中MMP-2和MMP-9的蛋白表达水平降低。应用明胶酶谱法检测发现,高糖刺激可以增加细胞中MMP-2的活性,抑制HMGB1后MMP-2的活性显著降低,但在该实验中未能检测出MMP-9的活性。此外,应用rHMGB1蛋白刺激心肌成纤维细胞亦能增加细胞中MMP-2、MMP-9的蛋白表达水平及MMP-2的活性。
     7. HMGB1能促进心肌成纤维细胞中ERK、JNK和Akt的磷酸化水平
     rHMGB1刺激能明显增加心肌成纤维细胞内ERK、JNK和Akt的磷酸化水平。通过中和抗体或基因沉默方式抑制HMGB1后,能够显著降低高糖刺激后心肌成纤维细胞内ERK、JNK和Akt的磷酸化水平。而各组间p38的磷酸化水平无明显差异。同时,在糖尿病小鼠中,抑制HMGB1也能降低心肌组织中ERK和JNK的磷酸化水平。该实验结果提示ERK和JNK的激活参与了HMGB1介导的糖尿病心肌病
     研究结论
     1.高糖促进小鼠心脏组织中HMGB1表达增加,且向胞外分泌;
     2.下调心肌组织中HMGB1表达可改善糖尿病小鼠心肌重构、心肌纤维化及心功能障碍;
     3.下调HMGB1减轻糖尿病心肌病的机制可能与抑制ERK和JNK磷酸化有关。
     研究背景
     糖尿病是一种由多种因素引起的以慢性高血糖为特征的全身代谢性疾病,可导致机体多种脏器损害,其中心血管疾病是其最主要的死因。糖尿病的发病率在全世界急剧上升,已成为威胁人类健康最主要的慢性疾病之一。心力衰竭在糖尿病患者中发生的比例是非糖尿病患者的2~3倍,将其中发生不依赖于高血压、冠心病及瓣膜性心脏病等疾病的心衰称为糖尿病心肌病
     糖尿病心肌病的主要病理改变表现为心肌细胞肥大、凋亡及间质纤维化,整个病程过程中伴随着心肌重构的发生。细胞凋亡是由基因调控的细胞程序性死亡,心肌细胞凋亡在糖尿病心肌病的发生发展中起着关键性作用,心肌细胞数目改变与心室重构和心脏功能密切相关。研究发现糖尿病患者早期即可出现心肌细胞凋亡,但糖尿病诱导心肌细胞凋亡的机制仍不明确。
     高迁移率族蛋白1(HMGB1)是调控基因转录和维持核小体稳定的非染色体核蛋白,它可被活化的免疫细胞或坏死细胞由细胞核释放到胞外,发挥致炎作用。HMGB1可通过与TLRs及RAGE受体激活MAPK信号通路介导炎症因子产生和细胞凋亡,导致炎性反应及组织损伤。以往研究发现,抑制HMGB1可减轻化疗药物引起的心肌细胞凋亡。我们前期实验研究发现,高糖可刺激心肌细胞主动分泌HMGB1,并参与糖尿病心肌病心肌纤维化的发生。基于以上研究结果,提示HMGB1可能参与了高糖诱导的心肌细胞凋亡过程,并促进糖尿病心肌病的发生与发展。
     研究目的
     1.研究HMGB1对高糖诱导心肌细胞凋亡的影响;
     2.探讨HMGB1介导高糖环境下心肌细胞凋亡的信号分子机制。
     研究方法
     1.细胞培养及模型建立:
     本实验采用新生的Wistar乳鼠心脏分离和培养心肌原代细胞,应用正常糖浓度(5.5mM) DMEM培养大乳鼠原代心肌细胞,用高糖(33mM) DMEM刺激细胞;以5.5mM葡糖糖+27.5mM甘露醇作为高渗对照。
     2.基因表达的干预:
     体外实验,采用慢病毒转染HMGB1shRNA的方式抑制HMGB1的基因表达;应用瞬时转染Ets-1siRNA的方式抑制Ets-1的基因表达。
     3.激光共聚焦显微镜:
     采用细胞免疫荧光染色法检测原代心肌细胞内p-Ets-1的含量及分布。
     4.TUNEL检测凋亡:
     检测各刺激组心肌细胞及组织的凋亡水平。
     5.蛋白印迹(western blot analysis):
     收集各组细胞及组织,提取蛋白,分别检测HMGB1、caspase-3、Bcl-2、Bax、 Ets-1、p-Ets-1、ERK、p-ERK蛋白水平。
     6.实时定量逆转录PCR (Real-time RT-PCR):
     收集各组细胞,提取RNA,进行逆转录和实时定量PCR,检测HMGB1的mRNA表达水平。
     7.糖尿病动物模型建立及HMGB1shRNA慢病毒体内转染:
     模型组小鼠采用腹腔注射链脲佐菌素(STZ)建立1型糖尿病模型。1周后测量血糖,将随机血糖>16.7mmol/l的小鼠纳入实验模型组。在8周末将模型组小鼠随机分为3组:模型组(15只)、shHMGB1漫病毒干预组(15只)、shN.C慢病毒对照组(15只)。小鼠体内慢病毒转染采用心肌注射的局部转染方法,选择多点注射入左室壁中。病毒转染4周后取材。
     8.组织学检测:
     应用免疫组织化学染色,观察心肌组织内p-Ets-1的蛋白表达水平。
     9.统计学分析:
     应用SPSS18.0软件分析处理数据,并以均数±标准差表示。
     研究结果
     1.抑制HMGB1能够减少高糖诱导的心肌细胞凋亡
     应用慢病毒HMGB1shRNA转染心肌细胞,检测各组心肌细胞的凋亡情况。结果显示,与正常对照组和高渗对照组相比,高糖能够增加细胞的凋亡水平;抑制HMGB1能够降低高糖诱导增加的cleaved caspase-3、Bax/Bcl-2水平及细胞凋亡率。
     2. HMGB1介导高糖诱导的Ets-1活化
     在体外实验中,我们进一步研究了高糖增加细胞凋亡的可能机制。应用高糖刺激心肌细胞6h、8h、12h、24h, western blot结果显示,Ets-1的表达在6h较正常对照有所增加,其余时间点Ets-1水平均无明显变化;与正常对照组相比,Ets-1磷酸化(p-Ets-1)水平在6h、8h、12h和24h均明显升高;细胞免疫荧光检测结果发现,高糖刺激主要增加细胞核中p-Ets-1的表达。高糖刺激心肌细胞也能够增加细胞核中p-Ets-1水平;而抑制HMGB1可降低高糖诱导增加的Ets-1磷酸化水平。
     3.抑制Ets-1能减少高糖诱导的心肌细胞凋亡
     应用Ets-1siRNA转染心肌细胞抑制Ets-1基因表达,检测Ets-1对细胞凋亡的影响。Western blot及TUNEL检测结果显示,高糖能增加心肌细胞凋亡,而抑制Ets-1可降低高糖刺激增加的cleaved caspase-3、Bax/Bcl-2水平及细胞凋亡率。
     4. HMGB1通过磷酸化ERK促进Ets-1的活化
     高糖刺激心肌细胞能促进ERK磷酸化,在60min时效果最显著。抑制HMGB1能够降低高糖诱导的ERK磷酸化。为进一步研究ERK磷酸化在高糖诱导Ets-1活化中的作用,我们应用U0126抑制ERK磷酸化,western blot及细胞免疫荧光染色检测结果发现,抑制ERK磷酸化能降低高糖诱导的Ets-1活化。
     5.抑制HMGB1能够减少糖尿病小鼠心肌细胞凋亡
     心肌组织western blot及TUNEL检测结果显示,糖尿病小鼠心肌组织中cleave caspase-3、Bax/Bcl-2及细胞凋亡数目较正常小鼠明显增加;然而,与模型组和慢病毒干预对照组相比,抑制]3MGB1明显降低糖尿病心肌组织中cleave caspase-3、Bax/Bcl-2及细胞凋亡数目。
     6.抑制HMGB1能够抑制糖尿病小鼠心肌组织中ERK及Ets-1的磷酸化水平
     Western blot检测心肌中p-ERK及t-ERK水平,结果显示抑制HMGB1能够显著降低糖尿病小鼠心肌组织中ERK磷酸化水平;免疫组织化学检测心肌中p-Ets-1水平发现,抑制HMGB1能够降低糖尿病小鼠心肌组织中Ets-1的活化。
     研究结论
     1.抑制HMGB1能够减少高糖诱导的心肌细胞凋亡;
     2.抑制HMGB1减少心肌细胞凋亡的作用是通过阻断ERK/Ets-1信号通路实现的。
Background
     Diabetes mellitus is associated with increased risk of heart failure, independent of hypertension and underlying coronary artery disease, called diabetic cardiomyopathy (DCM). DCM is characterized by functional and structural cardiac changes, including myocardial cell death and accumulation of extracellular matrix (ECM) protein. In particular, myocardial fibrosis is the most frequently proposed mechanism responsible for the cardiac changes in DCM. Although chronic hyperglycemia plays an important role in the pathogenesis of diabetic complications, the molecular mechanisms underlying cardiac fibrosis are not clear, and factors contributing to the cardiac dysfunction remain to be elucidated.
     High-mobility group box1(HMGB1) is a nuclear protein existing widely in almost all eukaryotic cells. In addition to its nuclear role, HMGB1is also released from activated macrophages, monocytes and necrotic cells but not apoptotic cells, which results in an inflammatory reaction and signal transduction pathway. In addition to its secretion by macrophages and monocytes, HMGB1can be secreted by other viable non-immune cells, including cancer cells, pituicytes, enterocytes, and cardiomyocytes. Therefore, it may participate in other pathological processes such as oncogenesis, proliferation and differentiation, which challenges the limited role of HMGB1as an important mediator in inflammatory cellular processes. Increasing evidence has demonstrated the multiple functions of HMGB1in various heart diseases.
     Serum HMGB1levels in patients with type1diabetes are significantly higher than in healthy controls so HMGB1may be a newly identified cytokine associated with DCM.
     Objectives
     1. To investigate whether high glucose could induce HMGB1translocation and secretion in mice heart.
     2. To investigate the role and mechanism of cardiac HMGB1in diabetic cardiomyopathy.
     3. To study the effect of recombinant HMGB1on cardiac fibroblasts collagen synthesis, proliferation and migration.
     Methods
     1. Lentivirus vector RNA interference
     Designing and synthesizing3pieces of short-hairpin RNAs (shRNAs) against HMGB1according to RNAi principle. We used a lentivirus vector containing a green fluorescent protein (GFP) reporter and a U6promoter upstream of the cloning site for the most effective shRNA. The target sequence for HMGB1was5'-GGCTCGTTATGAAAGAGAAAT-3' and negative control sequence5'-GTTCTCCGAACGTGTCACGT-3'.
     2. Animal model and RNA interference
     C57BL/6J wild-type (WT) mice8weeks-old (25~30g) were divided into2groups:control (n=60) and diabetes (n=15). Diabetes was induced by injecting streptozotocin dissolved in0.1ml citrate buffer (pH4.5) intraperitoneally (i.p.) at50mg/kg per mouse for5consecutive days. Control mice were injected with citrate buffer only. After7days, whole blood was obtained from the tail vein, and random glucose levels were measured. Diabetes was determined as blood glucose at least16.7mmol/1. After the induction of diabetes (12weeks), mice were divided into3groups for treatment:control, shRNA-HMGBl and shRNA-N.C for the following experiments. An amount of1×107UT/30μl of lentivector with HMGB1shRNA or the same volume of lenti-vehicle was injected into various sites of the left ventricle.
     3. Cardiac function measurement
     Cardiac diameter and function was measured by use of the Vevo770imaging system.2D echocardiography, M-mode echocardiography, pulsed-wave Doppler echocardiography and tissue Doppler imaging were used to evaluate cardiac function.
     4. Histology and immunohistochemistry
     Tissue was paraffin-embedded and sectioned (4μm) for staining with hematoxylin and eosin (H&E), Masson's trichome and Picrosirius red to examine heart size and extracellular matrix (ECM) deposition. Immunohistochemistry was used to determine the levels of HMGB1, collagen Ⅰ, collagen Ⅲ and transforming growth factor-β1(TGF-β1) in myocardial tissues.
     5. Cell culture
     Cardiomyocytes and cardiac fibroblasts (CFs) were isolated from neonatal rat ventricular tissues. When cell populations reached60%confluence, cultures were exposed to high glucose (HG;15-25mM). Some cell cultures were exposed to normal glucose (NG;5.5mM) as controls.
     6. Laser scanning confocal microscopy
     Immunofluorescence analysis was used to evaluate HMGB1and Ki67expression levels and disposition.
     7. Real-time RT-PCR
     Total RNA was extracted from cardiomyocytes and CFs. In the experiment, the mRNA expression of HMGB1in cardiomyocytes and CFs was analyzed.
     8. Western blotting
     Proteins were extracted from cardiomyocytes and CFs. The protein expression of HMGB1, lactate dehydrogenase (LDH), collagen I, collagen Ⅲ, TGF-β1, matrix metalloproteinase (MMP-2), MMP-9, ERK, p-ERK, JNK, p-JNK, p38and p-p38was analyzed in our experiment.
     9. Gelatin zymography
     The activity of MMP-2and MMP-9in CFs was determined by zymography.
     10. Enzyme-linked immuno sorbent assay (ELISA)
     HMGB1released into cell culture supernatants was evaluated by Elisa in CFs in vitro.
     11. Assessment of cell proliferation and migration assay:
     CFs proliferation assays were determined by use of the Cell Counting Kit-8(CCK-8). CFs migration assays were performed in Transwell chambers.
     12. Propidium iodide staining for necrosis:
     Necrotic cells were stained positive for propidium iodide and negative for Annexin-V.
     13. Statistical analysis:
     All statistical analyses involved use of SPSS18.0. Data are reported as mean±standard deviation.
     Results
     1. Hyperglycemia increased the level of HMGB1and induced HMGB1translocation and secretion in mice heart
     Diabetic mice showed significantly increased myocardial HMGB1mRNA level and protein level. Immunohistochemistry analysis revealed HMGB1expression in nuclei of normal heart, while hyperglycemia induced HMGB1to diffuse from the nucleus to the myocardial interstitium in diabetic heart.
     2. HMGB1inhibition prevented diabetes-induced myocardial remodeling and cardiac dysfunction
     After shRNA-HMGB1treatment for4weeks, we measured cardiac structure and function. Inhibition of HMGB1mitigated heart structural alterations in type1diabetic mice. Heart weight and ratio of heart weight to body weight were lower with shRNA-HMGB1than vehicle treatment. HMGB1gene silencing attenuated the enlarged cardiomyocytes as compared with vehicle treatment. shRNA-HMGB1and vehicle-transfected diabetic mice did not differ in body weight.
     After16weeks of diabetes, cardiac function features were mainly diastolic dysfunction, which showed deceased E/A and E'/A'as well as thickened LVPWd. Cardiac systolic function lightly lower in diabetic than control mice, showed that deceased EF and FS. ShRNA-HMGB1treatment attenuated diabetes-induced cardiac dysfunction.
     3. HMGB1inhibition limited diabetes-induced myocardial fibrosis
     Masson's trichome and Picrosirius red staining of heart sections revealed greater ECM in the interstitial regions of the diabetic than control myocardium. Diabetes enhanced the expression of the fibrotic markers collagen Ⅰ, Ⅲ and fibrotic TGF-β1as compared with the control. While ShRNA-HMGB1treatment reduced collagen deposition, the expression of collagen Ⅰ, Ⅲ and TGF-β1as compared with vehicle treatment
     4. HG induced HMGB1translocation and secretion in viable primary cardiomyocytes and CFs
     Cardiomyocytes and CFs were exposed to various concentrations (15mM,20mM,25mM) of high glucose for48h. High glucose significantly increased levels of extracellular HMGB1in both cardiomyocytes and CFs and these effects were not due to cell necrosis. Immunofluorescence analysis revealed HMGB1expression in nuclei of both cardiomyocytes and CFs cultured under NG. As compared with NG, HG induced HMGB1to diffuse from the nucleus to the cytoplasm. HMGB1mRNA activity began to increase in cardiomyocytes after8h, peaking at24h with HG.
     5. HMGB1increased cardiac fibroblasts collagen systhesis, proliferation and migration
     With physiological glucose concentration, rHMGB1dose-dependent increased the protein level of collagen I, III and TGF-β1in as compared with NG with maximum effect at200ng/ml. CFs showed fast growth rate with rHMGB1treatment, which was simliar to CFs with HG. We used Transwell migration assay to evaluate CFs migration. After24h, we found prominent dose-dependent HMGB1chemotaxis of CFs. Meanwhile, pharmacological or genetic inhibition of HMGB1inhibited the HG-induced increase in cell collagen systhesis, proliferation.
     6. HMGB1inhibition reduced the MMP-2and MMP-9expression and activity in CFs
     HG increased the expression of MMP-2and MMP-9. These effects were significantly downregulated by Ab-HMGB1or shRNA-HMGB1treatment. HG had a similar effect of HMGB1as compared with NG. Gelatin zymography showed that HG increased the activity of MMP-2, and inhibition of HMGB1downregulated this effect. However, MMP-9activity was not detected. rHMGB1treatment had a similar effect of HG on MMP-2and MMP-9.
     7. HMGB1increased activation of ERK, JNK and Akt in CFs
     rHMGBl treatment increased ERK, JNK and Akt phosphorylation in CFs as compared with NG alone. While HMGB1inhibition reduced the HG-induced phosphorylation of ERK, JNK and Akt. HMGB1had no effect on the expression of p-p38. In vivo, HMGB1inhibition reduced diabetes-induced myocardium phosphorylation of ERK and JNK.
     Conclusion
     1. Hyperglycemia induced HMGB1translocation and secretion in type1diabetes mice heart.
     2. Silencing HMGB1gene could attenuate myocardial remodeling, fibrosis and cardiac dysfunction.
     3. Inhibition of HMGB1improved diabetic cardiomyopathy via ERK and JNK signal pathway.
     Background
     Diabetes mellitus is an increasing worldwide systemic metabolic disease. Hyperglycemia is the major feature of diabetes mellitus and can induce organ damage such as cardiovascular disease, the most frequent cause of death in the diabetic population. The sharp rise in the incidence of diabetes in the world has become one of the major threats to human health. The rate of heart failure in diabetic patients is2-3times as large as it in non-diabetic patient. Heart failure in diabetes, which occurs independent of changes in blood pressure and coronary artery disease, is called diabetic cardiomyopathy.
     The process of diabetic cardiomyopathy consists of a series of sequential and interrelated steps, including myocardial apoptosis, hypertrophy and fibrosis. Apoptosis is programmed cell death. Cardiomyocyte apoptosis is the keystone in the process. The loss of cardiomyocytes has been implicated in the development of myocardial remodeling and heart dysfunction. Increased cardiomyocyte apoptosis has been detected in hearts of diabetic patient. However, little is known about the molecular mechanisms that regulate cardiomyocyte apoptosis under hyperglycemia. High mobility group box1protein (HMGB1) is a non-chromosomal nuclear protein that regulates gene transcription and maintains the nucleosome structure; it can be released from necrotic or activated immune cells. Released HMGB1together with its receptor TLRs or RAGE activates mitogen-activated protein kinases (MAPKs), which could mediate inflammatory response and apoptosis. Previous studies have found that inhibition of HMGB1could reduce cardiomyocyte apoptosis induced by chemotherapeutic drugs. Our previous study found that high glucose stimulated cardiomyocyte actively secreted HMGB1, which participated in diabetes-induced myocardial fibrosis and heart dysfunction. We suggested that HMGB1might involve in hyperglycemia-induced cardiomyocyte apoptosis.
     Objectives
     1. To investigate the effect of HMGB1in high glucose-induced cardiomyocyte apoptosis.
     2. To study the signaling pathway involved in HMGB1-mediated cardiomyocyte apoptosis.
     Methods
     1. Cell culture and cell model:
     Cardiomyocytes were isolated from neonatal rat ventricular tissues. Cardiomyocytes were cultured in normal glucose (5.5mM, NG) DMEM and stimulated by high glucose (33mM, HG) in our experiments. High mannose (33mM, OC) was served as osmolarity controls.
     2. Interference of gene expression:
     In vitro, lentivector with HMGB1shRNA transfection was performed to inhibit HMGB1expression; transient transfection with Ets-1siRNA was performed to inhibit Ets-1expression.
     3. Laser scanning confocal microscopy:
     Immunofluorescence analysis was used to evaluate p-Ets-1expression levels and disposition.
     4. TUNEL assay:
     Cardiomyocyte apoptosis is determined by TUNEL assay.
     5. Western blotting:
     Proteins were extracted from cardiomyocytes. The protein expression of HMGB1, cleaved caspase-3, Bax, Bcl-2, Ets-1, p-Ets-1, ERK and p-ERK was analyzed in our experiment.
     6. Real-time RT-PCR:
     Total RNA was extracted from cardiomyocytes and CFs. In the experiment, the mRNA expression of HMGB1in cardiomyocytes and CFs was analyzed.
     7. Animal model:
     Type1diabetes was induced by injecting streptozotocin. Control mice were injected with citrate buffer only. After7days, random glucose>16.7mmol/1was determined as diabetes. After the induction of diabetes (8weeks), mice were divided into3groups for treatment:control (n=8), shRNA-HMGBl (n=8) and shRNA-N.C (n=8) for the following experiments. An amount of1×107UT/30μl of lentivector with HMGB1shRNA or the same volume of lenti-vehicle was injected into various sites of the left ventricle.
     8. Immunohistochemistry:
     Immunohistochemistry was used to determine the levels of p-Ets-1in myocardial tissues.
     9. Statistical analysis:
     All statistical analyses involved use of SPSS18.0. Data are reported as mean±standard deviation.
     Results
     1. Inhibition of HMGB1reduced high glucose-induced cardiomyocytes apoptosis
     HMGB1shRNA was used to inhibit HMGB1expression. The cell apoptosis was determined by western blot and TUNEL assay. Results showed that HG increased the apoptosis of cardiomyocyte compared with the control; while HMGB1inhibition could significantly reduce the cleaved caspase-3, Bax/Bcl-2and apoptotic cells induced by HG.
     3. HMGB1mediated high glucose-induced activation of Ets-1in neonatal cardiomyocytes
     To investigate the underlying mechanism of HG-induced apoptosis, we cultured cardiomyocytes in HG medium for6h,8h,12h,24h. After HG treatment for6h, the protein level of total Ets-1protein expression was slightly increased and p-Ets-1was significantly elevated at6h up to24h. Our results demonstrated that HG but not high media osmolarity enhanced the activation of Ets-1and accumulation of p-Ets-1in the nucleus; inhibition of HMGB1effectively reversed HG-induced increase in the level of p-Ets-1and its accumulation in the nucleus HMGB1.
     3. Inhibition of Ets-1reduced high glucose-induced cardiomyocytes apoptosis
     To confirm whether Ets-1activation was involved in HG-induced cardiomyocyte apoptosis, we used Ets-1siRNA to knock down its protein level. Ets-1siRNA significantly reduced the activation of caspase-3protein, Bax/Bcl-2ratio and TUNEL-positive cells as compared with HG alone.
     4. ERK pathway was involved in high glucose-induced activation of Ets-1
     Stimulation of HG increased the phospho-ERK1/2level with a peak at60min. HG but not high osmolarity increased the level of p-ERK1/2in cardiomyocytes as compared with NG. Inhibition of HMGB1with HMGB1-specific shRNA significantly attenuated HG-induced ERK1/2activation in cardiomyocytes. Furthermore, we examined whether HG enhanced Ets-1activation via an ERK pathway. U0126was applied to inhibit p-ERK1/2. HG significantly increased the nuclear level of p-Ets-1, which was reduced by U0126. These observations supported that HMGB1mediated Ets-1activation via an ERK1/2pathway under HG treatment.
     5. Inhibition of HMGB1reduced diabetes-induced myocardial apoptosis in vivo
     Hyperglycemia significantly increased myocardial caspase-3activity, the ratio of Bax/Bcl-2and apoptotic cells was significantly increased in diabetic hearts. HMGB1inhibition effectively ameliorated hyperglycemia-activated caspase-3and decreased Bax/Bcl-2ratio. Additionally, HMGB1inhibition decreased the proportion of TUNEL-positive cells in the diabetic mouse.
     6. Inhibition of HMGB1gene prevented ERK and Ets-1activation in the diabetic mouse heart
     Western blot analysis demonstrated that inhibition of HMGBl by shRNA significantly reduced hyperglycemia-induced ERK phosphorylation. Immunohistochemistry showed that silencing HMGB1gene significantly decreased the level of p-Ets-1in the diabetic myocardium.
     Conclusion
     1. Inhibition of HMGB1reduced high glucose-induced cardiomyocyte apoptosis.
     2. HMGB1induced apoptosis via the ERK-dependent activation of Ets-1in HG-treated cardiomyocytes.
引文
1. Sowers JR, Epstein M, Frohlich ED:Diabetes, hypertension, and cardiovascular disease:an update. Hypertension 2001,37(4):1053-1059.
    2. Galderisi M:Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol 2006, 48(8):1548-1551.
    3. Fang ZY, Prins JB, Marwick TH:Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications. Endocr Rev 2004, 25(4):543-567.
    4. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE:Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 2002,98(1-2):33-39.
    5. Arutyunov GP, Kostyukevich OI, Serov RA, Rylova NV, Bylova NA: Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol 2008, 125(2):240-245.
    6. Burlew BS, Weber KT:Cardiac fibrosis as a cause of diastolic dysfunction. Herz 2002,27(2):92-98.
    7. Larson DF, Ingham R, Alwardt CM, Yang B:TGF-betal overexpression:a mechanism of diastolic filling dysfunction in the aged population. J Extra Corpor Technol 2004,36(1):69-74.
    8. Li YY, Feldman AM:Matrix metalloproteinases in the progression of heart failure:potential therapeutic implications. Drugs 2001,61(9):1239-1252.
    9. Spinale FG:Myocardial matrix remodeling and the matrix metalloproteinases:influence on cardiac form and function. Physiol Rev 2007,87(4):1285-1342.
    10. King MK, Coker ML, Goldberg A, McElmurray JH,3rd, Gunasinghe HR, Mukherjee R, Zile MR, O'Neill TP, Spinale FG:Selective matrix metalloproteinase inhibition with developing heart failure:effects on left ventricular function and structure. Circ Res 2003,92(2):177-185.
    11. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L:Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 2005,166(1):15-25.
    12. Falciola L, Spada F, Calogero S, Langst G, Voit R, Grummt I, Bianchi ME: High mobility group 1 protein is not stably associated with the chromosomes of somatic cells. J Cell Biol 1997,137(1):19-26.
    13. Scaffidi P, Misteli T, Bianchi ME:Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002,418(6894):191-195.
    14. Tzeng HP, Fan J, Vallejo JG, Dong JW, Chen X, Houser SR, Mann DL Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. Am J Physiol Heart Circ Physiol 2008, 294(3):H1490-1496.
    15. Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S et al: High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 2003,48(4):971-981.
    16. Andersson U, Tracey KJ:HMGB1 in sepsis. Scand J Infect Dis 2003, 35(9):577-584.
    17. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ:HMG-1 as a mediator of acute lung inflammation. J Immunol 2000,165(6):2950-2954.
    18. Andrassy M, Volz HC, Schuessler A, Gitsioudis G, Hofmann N, Laohachewin D, Wienbrandt AR, Kaya Z, Bierhaus A, Giannitsis E et al: HMGB1 is associated with atherosclerotic plaque composition and burden in patients with stable coronary artery disease. PLoS One 2012,7(12):e52081.
    19. Morris-Rosenfeld S, Blessing E, Preusch MR, Albrecht C, Bierhaus A, Andrassy M, Nawroth PP, Rosenfeld ME, Katus HA, Bea F:Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression. Eur J Clin Invest 2011, 41(11):1164-1171.
    20. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I:HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007, 16(3):136-143.
    21. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK et al: High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008, 117(25):3216-3226.
    22. Kitahara T, Takeishi Y, Harada M, Niizeki T, Suzuki S, Sasaki T, Ishino M, Bilim O, Nakajima O, Kubota I:High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc Res 2008,80(1):40-46.
    23. Volz HC, Kaya Z, Katus HA, Andrassy M:The role of HMGB1/RAGE in inflammatory cardiomyopathy. Semin Thromb Hemost 2010,36(2):185-194.
    24. Hamada N, Maeyama T, Kawaguchi T, Yoshimi M, Fukumoto J, Yamada M, Yamada S, Kuwano K, Nakanishi Y:The role of high mobility group boxl in pulmonary fibrosis. Am J Respir Cell Mol Biol 2008,39(4):440-447.
    25. Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB:HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 2012,303(6):F873-885.
    26. Fox CS:Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med 2010,20(3):90-95.
    27. Cai L, Kang YJ:Oxidative stress and diabetic cardiomyopathy:a brief review. Cardiovasc Toxicol 2001,1(3):181-193.
    28. Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, Harris HE, Czura CJ, Wang H, Ulloa L et al: Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 2003, 9(1-2):37-45.
    29. Yang H, Wang H, Czura CJ, Tracey KJ:The cytokine activity of HMGB1. J Leukoc Biol 2005,78(1):1-8.
    30. Chen G, Ward MF, Sama AE, Wang H:Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 2004,24(6):329-333.
    31. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ:HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010,28:367-388.
    32. Williams JH, Ireland HE:Sensing danger--Hsp72 and HMGB1 as candidate signals. J Leukoc Biol 2008,83(3):489-492.
    33. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A:The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 2002, 3(10):995-1001.
    34. Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A, Tracey KJ:Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999,126(2):389-392.
    35. Liu S, Stolz DB, Sappington PL, Macias CA, Killeen ME, Tenhunen JJ, Delude RL, Fink MP:HMGB1 is secreted by immunostimulated enterocytes and contributes to cytomix-induced hyperpermeability of Caco-2 monolayers. Am J Physiol Cell Physiol 2006,290(4):C990-999.
    36. Xu H, Su Z, Wu J, Yang M, Penninger JM, Martin CM, Kvietys PR, Rui T: The alarmin cytokine, high mobility group box 1, is produced by viable cardiomyocytes and mediates the lipopolysaccharide-induced myocardial dysfunction via a TLR4/phosphatidylinositol 3-kinase gamma pathway. J Immunol 2010,184(3):1492-1498.
    37. Guzman-Ruiz R, Ortega F, Rodriguez A, Vazquez-Martinez R, Diaz-Ruiz A, Garcia-Navarro S, Giralt M, Garcia-Rios A, Cobo-Padilla D, Tinahones FJ et al: Alarmin High-Mobility Group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in beta-cells. Int J Obes (Lond) 2014.
    38. Boudina S, Abel ED:Diabetic cardiomyopathy revisited. Circulation 2007, 115(25):3213-3223.
    39. Okoshi K, Guimaraes JF, Di Muzio BP, Fernandes AA, Okoshi MP:[Diabetic cardiomyopathy]. Arq Bras Endocrinol Metabol 2007,51(2):160-167.
    40. Gul K, Celebi AS, Kacmaz F, Ozcan OC, Ustun I, Berker D, Aydin Y, Delibasi T, Guler S, Barazi AO:Tissue Doppler imaging must be performed to detect early left ventricular dysfunction in patients with type 1 diabetes mellitus. Eur J Echocardiogr 2009,10(7):841-846.
    41. Baynes JW:The role of AGEs in aging:causation or correlation. Exp Gerontol 2001,36(9):1527-1537.
    42. Ulrich P, Cerami A:Protein glycation, diabetes, and aging. Recent Prog Horm Res 2001,56:1-21.
    43. Cerami A, Ulrich P:Pharmaceutical intervention of advanced glycation endproducts. Novartis Found Symp 2001,235:202-212; discussion 212-206, 217-220.
    44. Avendano GF, Agarwal RK, Bashey RI, Lyons MM, Soni BJ, Jyothirmayi GN, Regan TJ:Effects of glucose intolerance on myocardial function and collagen-linked glycation. Diabetes 1999,48(7):1443-1447.
    45. Zou Y, Komuro I, Yamazaki T, Kudoh S, Aikawa R, Zhu W, Shiojima I, Hiroi Y, Tobe K, Kadowaki T et al: Cell type-specific angiotensin Ⅱ-evoked signal transduction pathways:critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circ Res 1998,82(3):337-345.
    46. Ramires FJ, Sun Y, Weber KT:Myocardial fibrosis associated with aldosterone or angiotensin Ⅱ administration:attenuation by calcium channel blockade. JMol Cell Cardiol 1998,30(3):475-483.
    47. Brilla CG:Aldosterone and myocardial fibrosis in heart failure. Herz 2000, 25(3):299-306.
    48. Schmidt BM, Schmieder RE:Aldosterone-induced cardiac damage:focus on blood pressure independent effects. Am J Hypertens 2003,16(1):80-86.
    49. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T: Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 2002,106(1):130-135.
    50. Morrisey K, Evans RA, Wakefield L, Phillips AO:Translational regulation of renal proximal tubular epithelial cell transforming growth factor-betal generation by insulin. Am J Pathol 2001,159(5):1905-1915.
    51. Celentano DC, Frishman WH:Matrix metalloproteinases and coronary artery disease:a novel therapeutic target. J Clin Pharmacol 1997, 37(11):991-1000.
    52. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF, Jr.:Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 1996, 148(5):1639-1648.
    53. Brown RD, Ambler SK, Mitchell MD, Long CS:The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 2005,45:657-687.
    54. Souders CA, Bowers SL, Baudino TA:Cardiac fibroblast:the renaissance cell. Circ Res 2009,105(12):1164-1176.
    55. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J: Myocardial remodeling after infarction:the role of myofibroblasts. Nat Rev Cardiol 2010,7(1):30-37.
    56. Asbun J, Manso AM, Villarreal FJ:Profibrotic influence of high glucose concentration on cardiac fibroblast functions:effects of losartan and vitamin E. Am J Physiol Heart Circ Physiol 2005,288(1):H227-234.
    57. Wang P, Li HW, Wang YP, Chen H, Zhang P:Effects of recombinant human relaxin upon proliferation of cardiac fibroblast and synthesis of collagen under high glucose condition. J Endocrinol Invest 2009,32(3):242-247.
    58. Papakrivopoulou J, Lindahl GE, Bishop JE, Laurent GJ:Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen alpha 1(Ⅰ) gene expression in cardiac fibroblasts. Cardiovasc Res 2004,61(4):736-744.
    59. Widmann C, Gibson S, Jarpe MB, Johnson GL:Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human. Physiol Rev 1999,79(1):143-180.
    60. Kang MJ, Wu X, Ly H, Thai K, Scholey JW:Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 1999,55(6):2203-2214.
    61. Isono M, Cruz MC, Chen S, Hong SW, Ziyadeh FN:Extracellular signal-regulated kinase mediates stimulation of TGF-betal and matrix by high glucose in mesangial cells. J Am Soc Nephrol 2000, 11(12):2222-2230.
    62. Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M et al: TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 2011,60(11):2963-2974.
    63. Tang M, Zhang W, Lin H, Jiang H, Dai H, Zhang Y:High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem 2007,301(1-2):109-114.
    64. Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S:High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 2007, 100(2):204-212.
    65. Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, Xiao X: Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 2007,178(11):7376-7384.
    66. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E:Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004,279(9):7370-7377.
    67. Osaki M, Oshimura M, Ito H:PI3K-Akt pathway:its functions and alterations in human cancer. Apoptosis 2004,9(6):667-676.
    68. Edwards LA, Thiessen B, Dragowska WH, Daynard T, Bally MB, Dedhar S: Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene 2005,24(22):3596-3605.
    1. Battiprolu PK, Gillette TG, Wang ZV, Lavandero S, Hill JA:Diabetic Cardiomyopathy:Mechanisms and Therapeutic Targets. Drug Discov Today Dis Mech 2010,7(2):el35-el43.
    2. Bell DS:Heart failure in the diabetic patient. Cardiol Clin 2007, 25(4):523-538; vi.
    3. Bando YK, Murohara T:Diabetes-Related Heart Failure. Circ J 2014.
    4. Poornima IG, Parikh P, Shannon RP:Diabetic cardiomyopathy:the search for a unifying hypothesis. Circ Res 2006,98(5):596-605.
    5. Danial NN, Korsmeyer SJ:Cell death:critical control points. Cell 2004, 116(2):205-219.
    6. Lee Y, Gustafsson AB:Role of apoptosis in cardiovascular disease. Apoptosis 2009,14(4):536-548.
    7. Wu CF, Bishopric NH, Pratt RE:Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997, 272(23):14860-14866.
    8. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ:Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990,348(6299):334-336.
    9. Allsopp TE, Wyatt S, Paterson HF, Davies AM:The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993,73(2):295-307.
    10. MacLellan WR, Schneider MD:Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997,81(2):137-144.
    11. Xie Z, Koyama T, Suzuki J, Fujii Y, Togashi H, Sawa H, Nagashima K: Coronary reperfusion following ischemia:different expression of bcl-2 and bax proteins, and cardiomyocyte apoptosis. Jpn Heart J 2001, 42(6):759-770.
    12. Zhai D, Ke N, Zhang H, Ladror U, Joseph M, Eichinger A, Godzik A, Ng SC, Reed JC:Characterization of the anti-apoptotic mechanism of Bcl-B. Biochem J 2003,376(Pt 1):229-236.
    13. McClintock DS, Santore MT, Lee VY, Brunelle J, Budinger GR, Zong WX, Thompson CB, Hay N, Chandel NS:Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol 2002,22(1):94-104.
    14. Yang E, Korsmeyer SJ:Molecular thanatopsis:a discourse on the BCL2 family and cell death. Blood 1996,88(2):386-401.
    15. Visconti R, D'Adamio L:Functional cloning of genes regulating apoptosis in neuronal cells. Methods Mol Biol 2007,399:125-131.
    16. Kuribayashi K, Mayes PA, El-Deiry WS:What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther 2006,5(7):763-765.
    17. Feuvray D:Diabetic cardiomyopathy. Arch Mal Coeur Vaiss 2004, 97(3):261-265.
    18. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM:Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006,55(3):608-615.
    19. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG:Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997,272(5 Pt 2):H2313-2319.
    20. Goodwin GH, Johns EW:The isolation and purification of the high mobility group (HMG) nonhistone chromosomal proteins. Methods Cell Biol 1977,16:257-267.
    21. Matzinger P:The danger model:a renewed sense of self. Science 2002, 296(5566):301-305.
    22. Bustin M, Lehn DA, Landsman D:Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta 1990, 1049(3):231-243.
    23. Bianchi ME, Manfredi AA:High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007, 220:35-46.
    24. Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, Arfors KE, Messmer K:The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 1994,57(2):211-217.
    25. Matzinger P:Tolerance, danger, and the extended family. Annu Rev Immunol 1994,12:991-1045.
    26. Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL et al: High mobility group box I (HMGB1) release from tumor cells after treatment:implications for development of targeted chemoimmunotherapy. J Immunother 2007, 30(6):596-606.
    27. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, Lotze MT: Masquerader:high mobility group box-1 and cancer. Clin Cancer Res 2007,13(10):2836-2848.
    28. Scaffidi P, Misteli T, Bianchi ME:Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002,418(6894):191-195.
    29. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C et al: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007,8(5):487-496.
    30. Brezniceanu ML, Volp K, Bosser S, Solbach C. Lichter P, Joos S, Zornig M: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 2003, 17(10):1295-1297.
    31. Yao Y, Xu X, Zhang G, Zhang Y, Qian W, Rui T:Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway. Basic Res Cardiol 2012,107(3):267.
    32. Xu H, Yao Y, Su Z, Yang Y, Kao R, Martin CM, Rui T:Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK. Am J Physiol Heart Circ Physiol 2011,300(3):H913-921.
    33. Sharrocks AD:The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001,2(11):827-837.
    34. Oikawa T, Yamada T:Molecular biology of the Ets family of transcription factors. Gene 2003,303:11-34.
    35. Gao Z, Kim GH, Mackinnon AC, Flagg AE, Bassett B, Earley JU, Svensson EC:Etsl is required for proper migration and differentiation of the cardiac neural crest. Development 2010,137(9):1543-1551.
    36. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M:Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998, 339(4):229-234.
    37. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I:HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007, 16(3):136-143.
    38. Porto A, Palumbo R, Pieroni M, Aprigliano G, Chiesa R, Sanvito F, Maseri A, Bianchi ME:Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB J 2006,20(14):2565-2566.
    39. Kalinina N, Agrotis A, Antropova Y, DiVitto G, Kanellakis P, Kostolias G, Ilyinskaya O, Tararak E, Bobik A:Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions:role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol 2004, 24(12):2320-2325.
    40. Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Iwasaki K, Fujiwara M:Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group boxl-inhibiting mechanism. Stroke 2008,39(3):951-958.
    41. Anzai T:Post-infarction inflammation and left ventricular remodeling:a double-edged sword. Circ J 2013,77(3):580-587.
    42. Kohno T, Anzai T, Naito K, Miyasho T, Okamoto M, Yokota H, Yamada S, Maekawa Y, Takahashi T, Yoshikawa T et al: Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res 2009,81(3):565-573.
    43. He Y, Zhou X, Zheng X, Jiang X:Exogenous high-mobility group box 1 protein prevents postinfarction adverse myocardial remodeling through TGF-beta/Smad signaling pathway. J Cell Biochem 2013, 114(7):1634-1641.
    44. Zhou X, Hu X, Xie J, Xu C, Xu W, Jiang H:Exogenous high-mobility group box 1 protein injection improves cardiac function after myocardial infarction:involvement of Wnt signaling activation. J Biomed Biotechnol 2012,2012:743879.
    45. Limana F, Esposito G, D'Arcangelo D, Di Carlo A, Romani S, Melillo G, Mangoni A, Bertolami C, Pompilio G, Germani A et al: HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PLoS One 2011,6(6):e19845.
    46. Giallauria F, Cirillo P, D'Agostino M, Petrillo G, Vitelli A, Pacileo M, Angri V, Chiariello M, Vigorito C:Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J Card Fail 2011, 17(2):108-114.
    47. Giallauria F, Cirillo P, Lucci R, Pacileo M, D'Agostino M, Maietta P, Vitelli A, Chiariello M, Vigorito C:Effects of exercise-based cardiac rehabilitation on high mobility group box-1 levels after acute myocardial infarction: rationale and design. J Cardiovasc Med (Hagerstown) 2009,10(8):659-663.
    48. Volz HC, Laohachewin D, Schellberg D, Wienbrandt AR, Nelles M, Zugck C, Kaya Z, Katus HA, Andrassy M:HMGB1 is an independent predictor of death and heart transplantation in heart failure. Clin Res Cardiol 2012, 101(6):427-435.
    49. Wang LJ, Lu L, Zhang FR, Chen QJ, De Caterina R, Shen WF:Increased serum high-mobility group box-1 and cleaved receptor for advanced glycation endproducts levels and decreased endogenous secretory receptor for advanced glycation endproducts levels in diabetic and non-diabetic patients with heart failure. Eur J Heart Fail 2011,13(4):440-449.
    50. Nin JW, Ferreira I, Schalkwijk CG, Jorsal A, Prins MH, Parving HH, Tarnow L, Rossing P, Stehouwer CD:Higher plasma high-mobility group box 1 levels are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes:a 12 year follow-up study. Diabetologia 2012, 55(9):2489-2493.
    51. Yan XX, Lu L, Peng WH, Wang LJ, Zhang Q, Zhang RY, Chen QJ, Shen WF: Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and type 2 diabetic patients. Atherosclerosis 2009, 205(2):544-548.
    52. Volz HC, Seidel C, Laohachewin D, Kaya Z, Muller OJ, Pleger ST, Lasitschka F, Bianchi ME, Remppis A, Bierhaus A et al: HMGB1:the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 2010, 105(6):805-820.
    53. Wang WK, Wang B, Lu QH, Zhang W, Qin WD, Liu XJ, Liu XQ, An FS, Zhang Y, Zhang MX:Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int J Cardiol 2014,172(1):202-212.
    54. Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM:Receptor for advanced glycation end products (RAGE) in a dash to the rescue:inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 2007,82(2):204-212.
    55. Hu X, Cui B, Zhou X, Xu C, Lu Z, Jiang H:Ethyl pyruvate reduces myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats. Mol Biol Rep 2012,39(1):227-231.
    56. Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, Choe KH, Strassheim D, Pitts TM, Tracey KJ et al:Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 2003,284(4):C870-879.
    57. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA et al:The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005, 201(7):1135-1143.
    58. Volp K, Brezniceanu ML, Bosser S, Brabletz T, Kirchner T, Gottel D, Joos S, Zornig M:Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-I AP2 protein in human colon carcinomas. Gut 2006,55(2):234-242.
    59. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK et al:High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008, 117(25):3216-3226.
    60. Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, Bansal P, Billiar TR, Tsung A, Wang Q et al:Intracellular Hmgbl Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice. Gastroenterology 2013.
    61. Huang H, Nace GW, McDonald KA, Tai S, Klune JR, Rosborough BR, Ding Q, Loughran P, Zhu X, Beer-Stolz D et al:Hepatocyte specific HMGB1 deletion worsens the injury in liver ischemia/reperfusion:A role for intracellular HMGB1 in cellular protection. Hepatology 2013.
    62. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ et al:HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010, 29(38):5299-5310.
    63. Penckofer S, Schwertz D, Florczak K:Oxidative stress and cardiovascular disease in type 2 diabetes:the role of antioxidants and pro-oxidants. J Cardiovasc Nurs 2002,16(2):68-85.
    64. Marra G, Cotroneo P, Pitocco D, Manto A, Di Leo MA, Ruotolo V, Caputo S, Giardina B, Ghirlanda G, Santini SA:Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes:a case for gender difference. Diabetes Care 2002,25(2):370-375.
    65. Hahne JC, Okuducu AF, Sahin A, Fafeur V, Kiriakidis S, Wernert N:The transcription factor ETS-1:its role in tumour development and strategies for its inhibition. Mini Rev Med Chem 2008,8(11):1095-1105.
    66. Tanaka K, Abe M, Sato Y:Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 1999,90(6):647-654.
    67. Hashiya N, Jo N, Aoki M, Matsumoto K, Nakamura T, Sato Y, Ogata N, Ogihara T, Kaneda Y, Morishita R:In vivo evidence of angiogenesis induced by transcription factor Ets-1:Ets-1 is located upstream of angiogenesis cascade. Circulation 2004,109(24):3035-3041.
    68. Bai Y, Wang L, Li Y, Liu S, Li J, Wang H, Huang H:High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol Biochem 2006,17(1-2):57-68.
    69. Teruyama K, Abe M, Nakano T, Iwasaka-Yagi C, Takahashi S, Yamada S, Sato Y:Role of transcription factor Ets-1 in the apoptosis of human vascular endothelial cells. J Cell Physiol 2001,188(2):243-252.
    70. Pei H, Li C, Adereth Y, Hsu T, Watson DK, Li R:Caspase-1 is a direct target gene of ETS1 and plays a role in ETS1-induced apoptosis. Cancer Res 2005,65(16):7205-7213.
    71. Huang A, Yang YM, Yan C, Kaley G, Hintze TH, Sun D:Altered MAPK signaling in progressive deterioration of endothelial function in diabetic mice. Diabetes 2012,61(12):3181-3188.
    72. Robinson MJ, Cobb MH:Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997,9(2):180-186.
    73. Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M et al: TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 2011,60(11):2963-2974.
    74. Schulman D, Latchman DS, Yellon DM:Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 2002,283(4):H1481-1488.
    75. Xu W, Wu W, Chen J. Guo R, Lin J, Liao X, Feng J:Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways. Int J Mol Med 2013,32(4):917-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700