TLR4和VDR在2型糖尿病和糖尿病肾病尿毒症患者单核细胞的炎症调节作用及1,25-(OH)_2D3干预机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     2型糖尿病(T2DM)和糖尿病肾病(DN)尿毒症患者外周血CD14~+CD16~+单核细胞数和Toll样受体4(TLR4)在单核细胞的表达水平及相关细胞因子浓度的差异。
     方法
     对22例非DN尿毒症患者、30例DN尿毒症患者、28例单纯T2DM患者和20例健康志愿者外周血流式细胞术检测CD14~+CD16~+单核细胞数和TLR4在单核细胞的表达,免疫比浊法检测血清CRP水平,鲎试剂法检测血清内毒素水平,同时ELISA法检测外周血相关细胞因子IL-6和MCP-1的浓度。
     结果
     与正常对照组比较,T2DM组及DN尿毒症组外周血促炎CD14~+CD16~+单核细胞数及单核细胞TLR4和血清CRP水平均增高,且DN尿毒症组CD14~+CD16~+单核细胞数及单核细胞TLR4和血清CRP水平均较T2DM组显著增高。但非DN尿毒症组单核细胞TLR4表达较前三组均明显降低(P<0.01)。非DN尿毒症组CD14~+CD16~+单核细胞数和血清CRP水平均较DN尿毒症组稍低,但二者差异不明显(P>0.05)。四组相关细胞因子IL-6、MCP-1浓度逐渐升高,其中,DN尿毒症组>非DN尿毒症组> T2DM组>正常对照组,患者外周血CD14~+CD16~+单核细胞数及血清CRP水平与IL-6和MCP-1浓度呈正相关。2型糖尿病和尿毒症患者体内内毒素水平均较正常对照人群高,尤其以尿毒症患者浓度升高最明显(P<0.01)。
     结论
     以上结果提示在T2DM阶段就可能存在促炎CD14~+CD16`+单核细胞功能紊乱,这种功能紊乱可能参与了T2DM和DN尿毒症的发生发展。非DN尿毒症患者也存在单核细胞功能紊乱,但外周血炎症相关因子DN尿毒症患者较非DN尿毒症患者水平升高明显,这可能是DN为何跃升为终末期肾功能衰竭(ESRF)首位病因的原因之一。
     目的
     探讨1,25-(OH)_2D3及Toll-like recepter(TLR)4配体,脂多糖(Lipopolysaccharide,LPS)联合白介素(IL)-15对2型糖尿病(T2DM)和糖尿病肾病(DN)尿毒症患者血清干预的单核细胞维生素D受体(VDR)、TLR4、TLR9和STAT5、NF-κB信号通路及骨架蛋白表达的影响,进一步探索1,25-(OH)_2D3在T2DM和DN尿毒症炎症性免疫反应中的作用及其可能机制。
     方法
     分离研究对象(健康对照组20例、T2DM组28例和DN尿毒症组30例)外周血血清,孵育THP-1单核细胞,然后于含或不含1,25-(OH)_2D3培养液中培养,再用LPS和IL-15干预,干预结束后收集单核细胞和培养上清。采用实时荧光定量PCR检测VDR、TLR4、TLR9和IL-15的mRNA表达,Western blot检测THP-1单核细胞内TLR4、VDR、NF-κB P65、IκB、STAT5和p-STAT5蛋白表达。用ELISA法检测细胞培养上清IL-6和单核细胞趋化蛋白(MCP)-1水平,细胞免疫荧光和激光共聚焦等技术检测VDR和骨架蛋白的表达。然后通过STAT5抑制剂AG490干预后,检测LPS、IL-15及1,25-(OH)_2D3对T2DM、DN尿毒症患者血清诱导的THP-1细胞内STAT5磷酸化水平的影响。
     结果
     1.5%浓度的DN尿毒症患者血清对体外培养的THP-1细胞增殖有促进作用,且以12h作用最为显著,其机制可能与单核细胞上的TLR4有关。
     2. LPS和IL-15干预后可下调T2DM和DN尿毒症患者血清孵育的单核细胞内VDR和IκB蛋白水平,上调TLR4、p-STAT5、NF-κB P65和IL-6、MCP-1蛋白及TLR4和IL-15mRNA水平,细胞骨架出现重排,各组TLR9mRNA和STAT5蛋白表达水平无显著性差异(P>0.05),而1,25-(OH)_2D3可部分阻断上述作用,1,25-(OH)_2D3提前干预后三组的VDR和TLR4mRNA表达及VDR、NF-κB P65、IκB和p-STAT5蛋白表达,以及相关炎症因子水平均无显著性差异(P>0.05),细胞形态和骨架蛋白分布均正常。
     3.通过STAT5抑制剂AG490干预后,与LPS+IL-15组比较,VD3组、AG490+LPS+IL-15组和AG490+VD3组STAT5磷酸化水平均降低,具有显著性差异(P<0.01),其中以AG490+VD3组降低最明显。
     结论
     1,25(OH)2D3的抗炎机制可能与TLR4、NF-κB P65、VDR和STAT5信号途径及骨架蛋白有关。
     目的
     为了验证VDR和p-STAT5间的相互作用,进一步探索1,25-(OH)2D3在T2DM和DN尿毒症炎症性免疫反应中的作用及其可能机制。
     方法
     实验分3组:(1)对照组(2)LPS和IL-15干预组(3)1,25-(OH)_2D3提前干预组。先用免疫荧光对二者进行共定位。再用免疫共沉淀技术检测VDR和p-STAT5间的相互作用。
     结果
     LPS和IL-15干预组和1,25-(OH)_2D3提前干预组p-STAT5在胞核表达,较对照组明显增多,VDR和p-STAT5可结合在一起,且以1,25-(OH)_2D3提前干预组结合较前两组显著增多。
     结论
     单核细胞内VDR和p-STAT5可能存在相互作用。1,25-(OH)_2D3的抗炎机制可能是通过STAT5-VDR间的串话发挥作用,这种STAT5-VDR的串话作用可进一步解释了维生素D不足的患者为何易合并感染,对于维生素D不足易患人群(如DM和DN患者)及时、适量补充活性维生素D3,可能在DM和DN的防治方面具有一定的保护作用。
Aim
     The differential expression of CD14~+CD16~+and TLR4expression inmonocytes and related cell factor levels among T2DM and DN uremiapatients.
     Methods
     Twenty-eight uremic patients without DN, thirty DN patients withuremia, twenty-eight T2DM patients, and twenty healthy volunteers wereenrolled for the determination of CD14~+CD16~+fluorescence intensity andTLR4expression on monocytes by using peripheral blood flow cytometry.Serum C-reactive protein (CRP) level was determined by using theimmunoturbidimetry. Serum endotoxin level was determined byquantitative colorimetric limulus test. Concentrations of IL-6and monocytechemoattractant protein-1(MCP-1) in supernatants were assessed by ELISA.
     Results
     Compared to normal control, T2DM patients and DN uremic patientshad a significantly higher CD14+CD16+fluorescence intensity, TLR4expression, and serum CRP level, whilst these biomarkers were moreupregulated in DN uremic patients than in T2DM patients.But thosebiomarkers were significantly downregulated in uremic patients withoutDN(P <0.01). Compared to uremic patients without DN, DN uremicpatients CD14+CD16+monocyte expression and serum CRP level wereslightly lower, but there were no significant differences (P>0.05).Concentrations of IL-6and MCP-1in supernatants were increasedgradually.And DN uremic patients> uremic patients without DN> T2DMpatients> normal control. Peripheral blood CD14~+CD16~+monocyteexpression,serum CRP level were increased and in a positive correlationwith supernatants IL-6and MCP-1concentrations.And the endotoxin(ET)levels were more upregulated in T2DM patients and uremic patientscompared to normal control, especially uremic patients had a significantlyhigher ET level(P <0.01).
     Conclusion
     These findings suggest that the immune disturbance inproinflammatory CD14~+CD16~+monocytes occurs at the stage of T2DM.Such immunological dysfunction may be mediated the occurrence and progression of T2DM and DN uremia. The monocytes dysfunction may bealso result in the occurrence of uremic patients without DN.However, DNuremic patients peripheral blood inflammation factors level were increasedsignificantly than in uremic patients without DN patients.It may be one ofthe reasons, which DN becomes the first one cause of end-stage renal failure(ESRF). To explore the effects of1,25-(OH)_2D3and lipopolysaccharide (LPS)plus human recombinant interleukin-15(IL-15) on expression of vitamin Dreceptor(VDR), Toll-like receptors4(TLR4),TLR9, STAT5, NF-κBsignaling pathway and cytoskeletal rearrangement in human monocytesincubated with sera from type2diabetes (T2DM)patients and diabeticnephropathy(DN) patients with uremia. To further investigate its possiblemechanism of1,25-(OH)_2D3in T2DM and DN uremia inflammatoryimmune response.MethodsPeripheral sera were isolated from healthy volunteers (control group),T2DM patients and DN uremic non-dialysis patients. After incubation with or without1,25(OH)2D3, THP-1monocytes were treated with LPS plusIL-15prior to the collection of cells and supernatants.VDR, TLR4, TLR9and IL-15mRNA transcription was examined by Real-time PCR, whilstTHP-1monocytic TLR4, VDR, NF-κBP65, IκB, STAT5and p-STAT5expressions were investigated by Western blotting. Concentrations of IL-6and monocyte chemoattractant protein-1(MCP-1) in supernatants wereassessed by ELISA.Immunofluorescence and a laser confocal microscopywas used to examine the expression of VDR and cytoskeletal proteins. Todetect the effect of AG490on LPS, IL-15,1,25-(OH)_2D3and sera mediatedTHP-1monocytic STAT5phosphorylate level.
     Results
     1. The THP-1cells proliferation was promoted which incubated by the5%concentration serum of uremic patients with diabetic nephropathy invitro, and the most significant effect was12h group than the others, whichmechanism may be related to TLR4.
     2. Compared to the normal control, LPS and IL-15down-regulatemonocytic VDR and IκB expression in T2DM patients and DN uremicpatients, whilst with cytoskeletal rearrangement,they up-regulate TLR4,p-STAT5, NF-κB P65protein expression as well as IL-6and MCP-1activityand TLR4, IL-15mRNA levels. However, there were no significantdifferences in TLR9mRNA and STAT5protein levels among the threegroups (P>0.05). Such effects could be in part blocked by1,25-(OH)_2D3. The aforementioned effects were improved following the pretreatment with1,25-(OH)_2D3. And there were no significant differences in VDR,TLR4mRNA and VDR,NF-κB P65,IκB and p-STAT5protein expression andrelated inflammation factors level of1,25-(OH)_2D3-treated THP-1monocytes on three groups (P>0.05). The cellular shape and the cytoskeletalproteins distribution were normal which on THP-1monocytes.
     3. Prior to the pretreatment with AG490,compared to the LPS+IL-15group, VD3group,AG490+LPS+IL-15group and AG490+VD3group had asignificantly down-regulate THP-1monocytic STAT5phosphorylate level(P<0.01).And AG490+VD3group was the most remarkable.
     Conclusion
     The above results suggest that the anti-inflammatory mechanism of1,25-(OH)_2D3may be related to TLR4、NF-κB P65、cytoskeletal proteins,VDR and STAT5signaling pathway.
     To validate the interaction between VDR and p-STAT5. And to furtherelaborate the potential mechanisms of immunoregulatory and anti-inflammatory effects of1,25-(OH)_2D3on T2DM and diabeticnephropathy(DN)patients with uremia.
     Methods
     The experiment divides into three groups(1)control group(2)LPSand IL-15-treated group(3)1,25-(OH)_2D3pretreated group. VDR andp-STAT5were co-localized by using immunofluorescence. As theimmunofluorescence experiment validated the possible intranuclearinteraction of VDR with p-STAT5, the immuno-coprecipitation and westernblotting assay of VDR was performed to further validate the interaction ofVDR with p-STAT5.
     Results
     Compared to the normal control, LPS+IL-15-treated group and1,25-(OH)_2D3pretreated group p-STAT5was expressed in the nuclei, VDRinteracted with p-STAT5, and1,25-(OH)_2D3pretreated group had asignificantly increasing.
     Conclusion
     Our results showed that VDR and p-STAT5possible to have interactionin the THP-1monocyte. The anti-inflammatory role of1,25-(OH)_2D3ininflammatory might be associated with STAT5-VDR cross-talk. Thiscross-talk might further explain why the vitamin D insufficient patient easyinfection,and the anti-inflammatory role of1,25-(OH)_2D3in inflammatoryand immune response of T2DM and DN might be associated with STAT5-VDR cross-talk. Therefore, the appropriate supplementation of1,25-(OH)_2D3might be prevention and protection for vitamine-D-deficientsubjects(such as DM and DN patients).
引文
[1] Loems Ziegler-Heitbrock. The CD14+CD16+blood monocytes: their role ininfection and inflammation[J]. Journal of Leukocyte Biology,2007,81(3):584-592.
    [2] Christine Poitou,Elise Dalmas,Mariana Renovato,et al.CD14dimCD16+andCD14+CD16+Monocytes in Obesity and During Weight Loss: Relationships WithFat Mass and Subclinical Atherosclerosis Arterioscler[J].Thromb.Vasc.Bio,2011,31:2322-2330.
    [3] Cani PD, Amar J, Iglesias MA, et a1. Metabolic endotoxemia initiates obesity andinsulin resistance[J]. Diabetes,2007;56(7):1761-1772.
    [4] Cani PD, Neyrinck AM, Fava F, et a1. Selective increases of bifidobacteria in gutmicroflora improve high-fat-diet-induced diabetes in mice through a mechanismassociated with endotoxaemia[J]. Diabetologia,2007;50(11):2374-2383.
    [5] Cani PD, BibiloniR, Knauf C, et a1.Changes in gut microbiota control metabolicendotoxemia induced inflammation in high fat diet induced obesity and diabetes inmice[J]. Diabetes,2008;57(6):1470-1481.
    [6] Burcelin R, Luche E, Serino M, et a1. The gut microbiota ecology:a new opportunityfor the treatment of metabolic diseases?[J]. Front Biosci,2009;14:5107-5117.
    [7] Vrieze A, Holleman F, Zoetendal EG, et a1. The environment within:how gutmicrobiota,may influence metabolism and boay composition[J]. Diabetologia,2010;53(4):606-613.
    [8] Creely SJ, McTernan PG, Kusminski CM, et a1. Lipopolysaccharide activates aninnate immune system response in human adipose tissue in obesity and type2diabetes[J]. Am J Physiol Endocrinol Metab,2007,292(3):E740-747.
    [9] Eleftheriadis T, Antoniadi G, Liakopoulos, et a1. Disturbances of acquired immunityin hemodialysis patients[J]. Semin Dial,2007,20(5):440-451.
    [10] Madhumita JB, Marie E. M, Hyunjin S,et al. Elevated proinflammatory cytokineproduction by a skewed T cell compartment requires monocytes and promotesinflammation in type2diabetes[J]. J. Immunol,2011,186(2):1162-1172.
    [11] Juan F. Navarro G and Carmen MF. The Role of inflammatory cytokines in diabeticnephropathy[J]. J Am Soc Nephrol,2008,19(3):433-442.
    [12] Guadalupe OM, Virginia LP, Oscar LF, et al. Suppressors of cytokine signalingabrogate diabetic nephropathy[J]. J. Am.Soc.Nephrol,2010,21(5):763-772.
    [13] Sridevi D, Jung MY, Catherine R, et al. Low Vitamin D levels correlate with theproinflammatory state in type1diabetic subjects with and without microvascularcomplications[J]. American Society for Clinical Pathology,2011,135(3):429-433.
    [14] Zehra O, Tahseen AC, Vitamin D deficiency and type2diabetes[J]. Postgrad Med J,2010,86(1011):18-25.
    [15] Sheena K, Reinhold V, Ravi R, et al. Association of Vitamin D with insulinresistance and β-cell dysfunction in subjects at risk for type2diabetes[J]. DiabetesCare,2010,33(6):1379-1381.
    [16] Tuttle K R.Linking metabolism ang immunology:diabetic nephropathyis aninflammatory disease[J]. J Am Soc Nephrol,2005,16(6):1537-1538.
    [17] Hypponen E, Boucher B J, Berry D J, et al.25-hydroxyvitamin D,IGF-1,andmetabolic syndrome at45years of age: a cross sectional study in the1958BritishBirth Cohort[J]. Diabetes,2008,57(2):298–305.
    [18] Sridevi Devaraj, Jung-Mi Yun, Catherine R, et al.Low Vitamin D LevelsCorrelate With the Proinflammatory State in Type1Diabetic Subjects With andWithout Microvascular Complications[J]. American Society for Clinical Pathology,2011,135(3):429-433.
    [19] Zehra Ozfirat, Tahseen A Chowdhury. Vitamin D deficiency and type2diabetes[J].Postgrad Med J,2010,86:18-25.
    [20] Sheena Kayaniyil, MSC, Reinhold Vieth, et al. Association of Vitamin D WithInsulin Resistance and β-Cell Dysfunction in Subjects at Risk for Type2Diabetes[J]. Diabetes Care.2010,33(6):1379-1381.
    [21] David J. Di Cesar, Robert Ploutz-Snyder, Ruth S. Weinstock, et al. Vitamin DDeficiency Is More Common in Type2Than in Type1Diabetes[J]. Diabetes Care,2006;29(1):174.
    [22] Annapaula Giulietti, Evelyne van Etten, Lut Overbergh, et a1. Monocytesfrom type2diabetic patients have a pro-inflammatory profile1,25-Dihydroxyvitamin D3works as anti-inflammatory[J]. Diabetes Research andClinical Practice,2007,77(1):47-57.
    [23] Tao Du,Zhi-Guang Zhou,Shuo You, et a1.Modulation of monocytehyperresponsiveness to TLR ligands by1,25-dihydroxy-vitamin D3from LADAand T2DM[J].Diabetes Research and Clinical Practice.2009,83(2):208-214.
    [24] Philip T. Liu, Steffen Stenger, Huiying Li,et al. Toll-like receptor triggering of avitamin D mediated human antimicrobial response[J]. Science.2006,311,1770-1773.
    [1] Sridevi Devaraj,Mohan R.Dasu, Jason Rockwood,et al. Increased Toll-LikeReceptor (TLR)2and TLR4Expression in Monocytes from Patients with Type1Diabetes: Further Evidence of a Proinflammatory State[J]. The Journal of ClinicalEndocrinology and Metabolism.2008,93(2):578-583.
    [2] Dasu MR, Devarai S, Park S, et a1. Increased Toll-Like Receptor (TLR)Activation and TLR Ligands in Recently Diagnosed Type2Diabetic Subjects [J].Diabetes Care,2010,33(4):861-868.
    [3] A. Montemari, L. Di Renzo, A. Cacciamani,et al.Toll-Like Receptor4is Elevatedin Human Monocytes of Diabetic Patients and is Associated with the Progressionof Diabetic Retinopathy[J]. Invest. Ophthalmol.Vis.Sci.,2009,50:1340.
    [4] Hodgkinson CP, Laxton RC, Patel K, et a1. Advanced Glycation End-Product ofLow Density Lipoprotein Activates the Toll-Like4Receptor Pathway Implicationsfor Diabetic Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2008,28(12):2275-2281.
    [5] Rudofsky G Jr, Reismann P, Witte S, et a1. Asp299Gly and Thr399Ile Genotypesof the TLR4Gene Are Associated With a Reduced Prevalence of DiabeticNeuropathy in Patients With Type2Diabetes[J]. Diabets Care,2004,27(1):179-183.
    [6] Buraczynska M, Baranowicz-Gaszczyk I, Tarach J, et a1. Toll-like receptor4genepolymorphism and early onset of diabetic retinopathy in patients with type2diabetes[J]. Hum Immunol,2009;70(2):121-124.
    [7] Bruno Fève and Jean-Philippe Bastard. The role of interleukins in insulinresistance and type2diabetes mellitus[J]. Nature Reviews Endocrinology.2009,62(5),305-311.
    [8] Madhumita J B, Marie E. M, Hyunjin S, et al. Elevated Proinflammatory CytokineProduction by a Skewed T Cell Compartment Requires Monocytes and PromotesInflammation in Type2Diabetes [J]. The Journal of Immunology,2011,186(2):1162-1172.
    [9] Herder C,Brunner EJ, Rathmann W, et al. Elevated levels of the anti-inflammatoryinterleukin-1receptor antagonist precede the onset of type2diabetes: theWhitehall II study[J]. Diabetes Care2009,32:421–423.
    [10] Marc Y. Donath, Steven E. Shoelson. Type2diabetes as an inflammatory disease[J].Nature Reviews Immunology,2011,11:98-107.
    [11]殷俊,林宣,何汉武.2型糖尿病肾病患者外周血单个核细胞Toll样受体4的表达及TNF-α水平的研究[J].临床内科杂志,2009,26(5):318-320.
    [12]李曼丽甘华谯林.糖尿病肾病尿毒症患者外周血单核细胞TLR4的表达及其与血浆MCP-1浓度的关系[J].中国免疫学杂志.2009,25(9):848-850.
    [13] Sridevi D, Mohan R D, Jason R, et al. Increased Toll-Like Receptor (TLR)2andTLR4Expression in Monocytes from Patients with Type1Diabetes: FurtherEvidence of a Proinflammatory State[J]. The Journal of Clinical Endocrinologyand Metabolism,2008,93(2):578-583.
    [14] A. Montemari, L. Di Renzo, A. Cacciamani,et al.Toll-Like Receptor4is Elevatedin Human Monocytes of Diabetic Patients and is Associated with the Progressionof Diabetic Retinopathy[J]. Invest. Ophthalmol.Vis.Sci.,2009,50:1340.
    [15] Hodgkinson C P. Laxton R C, Patel K, et a1. Advanced Glycation End-Product ofLow Density Lipoprotein Activates the Toll-Like4Receptor Pathway Implicationsfor Diabetic Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2008,28(12):2275-2281.
    [16] Buraczynska M, Baranowicz G I, Tarach J, et a1. Toll-like receptor4genepolymorphism and early onset of diabetic retinopathy in patients with type2diabetes[J]. Hum Immunol,2009,70(2):121-124.
    [17] Cani PD, Amar J, Iglesias MA, et a1. Metabolic endotoxemia initiates obesityand insulin resistance[J]. Diabetes,2007,56(7):1761-1772.
    [18] Cani PD, Neyrinck AM, Fava F, et a1. Selective increases of bifidobacteria in gutmicroflora improve high-fat-diet-induced diabetes in mice through a mechanismassociated with endotoxaemia[J]. Diabetologia,2007,50(11):2374-2383.
    [19] Cani PD, BibiloniR, Knauf C, et a1. Changes in gut microbiota control metabolicendotoxemia induced inflammation in high fat diet induced obesity and diabetes inmice[J]. Diabetes,2008,57(6):1470-1481.
    [20] Nagasawa T, Kobayashi H, Aramaki M, et al. Expression of CD14,CD16andCD45R A on monocytes from periodontitis patients [J]. Journal of PeriodontalResearch,2004,39(1):72-78.
    [21] Belge K U, Dayyani F, Horelt A, et al. The Proinflammatory CD14+CD16+DR++Monocytes Are a Major Source of TNF [J]. J. Immunology,2002,168(7):3536-3542.
    [22] Schlitt A, Heine G H, Blankenberg S, et al. CD14+CD16+monocytes in coronaryartery disease and the irrelationship to serum TNF-alpha levels[J]. Thrombosis andHaemostasis,2004,92(2):419-424.
    [23] Starikova EA, Lebedeva AM, Fre dlin IS. CD14++CD16-and CD14+CD16+human monocytes adhesion to endothelial cells[J]. Tsitologiia,2010,52(5):380-383.
    [24] Ramírez R, Carracedo J, Merino A, et al. CD14+CD16+monocytes from chronickidney disease patients exhibit increased adhesion ability to endothelial cells[J].ontrib Nephrol,2011,171:57-61.
    [25] Pati o R, Ibarra J, Rodriguez A, et al. Circulating monocytes in patients withdiabetes mellitus, arterial disease, and increased CD14expression[J]. Am JCardiol,2000,85(11):1288-1291.
    [26] Fernández-Real JM, Pickup JC. Innate immunity, insulin resistance and type2diabetes[J]. Diabetologia,2012,55(2):273-278.
    [27] Christine Poitou,Elise Dalmas,Mariana Renovato,et al.CD14~dimCD16~+andCD14+CD16+Monocytes in Obesity and During Weight Loss: Relationships WithFat Mass and Subclinical Atherosclerosis Arterioscler[J].Thromb.Vasc.Bio,2011,31:2322-2330.
    [1] Juan F. Navarro-González and Carmen Mora-Fernández. The Role ofInflammatory Cytokines in Diabetic Nephropathy[J]. J Am Soc Nephrol,2008,19:433-442.
    [2] Guadalupe Ortiz-Mu oz, Virginia Lopez-Parra, Oscar Lopez-Franco, et al.Suppressors of Cytokine Signaling Abrogate Diabetic Nephropathy[J]. J. Am. Soc.Nephrol,2010,21:763-772.
    [3] Jason C. O’Connor, Ansuman Satpathy, Matthew E. Hartman, et al. IL-βmediatedinnate immunity is amplified in the db/db mouse model of type2diabetes[J].TheJournal of Immunology,2005,174:4991-4997.
    [4] Morii T Navarro J F. Inflammation and diabetic nephropathy[J]. Curr Diab Rep,2006,6(6):463-468.
    [5] Navarro J F, Mora C. Diabetes, inflammation,proinflammatory cytokines,anddiabetic Nephropathy[J]. Scientific World J,2006,6:908-917.
    [6] Tuttle KR. Linking metabolism ang immunology:diabetic nephropathyis aninflammatory disease[J]. J Am Soc Nephrol,2005,16(6):1537-1538.
    [7] Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabeticnephropathy[J]. Front Biosci,2008,13:944-955.
    [8] Stubbs JR, Idiculla A, Slusser J, et al. Cholecalciferol Supplementation AltersCalcitriol-Responsive Monocyte Proteins and Decreases Inflammatory Cytokines inESRD[J]. J. Am. Soc. Nephrol.2010,21(2):353-361.
    [9] P. Vineel Reddy, Rupangi Verma Puri, Aparna Khera,et al. Survival andPathogenesis of Mycobacterium tuberculosis in THP-1Macrophages and the GuineaPig Model of Infection[J]. J. Bacteriol.,2012,194(3):567-575.
    [10] V Marcil, JC Lavoie, L Emonnot, et al.Analysis of the effects of iron and vitamin Cco-supplementation on oxidative damage, antioxidant response and inflammation inTHP-1macrophages[J]. Clin Biochem,2011,44(10-11):873-883.
    [11] Lisa C. Parker, Moira K. B. Whyte, Stefanie N. Vogel, et al. Toll-Like Receptor(TLR)2and TLR4Agonists Regulate CCR Expression in Human MonocyticCells[J]. J. Immunol.,2004,172(8):4977-4986.
    [1] John C, Pickup Dphil, et al. Inflammation and activated innate immunity in thepathogenesis of type2diabetes[J]. Diabetes Care,2004,27(3):813–23.
    [2] Guadalupe OM, Virginia LP, Oscar LF, et al. Suppressors of cytokine signalingabrogate diabetic nephropathy[J]. J Am Soc Nephrol,2010,21:763–72.
    [3] Gang JK, Young SK, Sang YH, et al. Pioglitazone attenuates diabetic nephropathythrough an anti-inflammatory mechanism in type2diabetic rats[J]. Nephrol DialTransplant,2008,23(9):2750–60.
    [4] Juan F, Navarro G, Carmen MF, et al. The role of inflammatory cytokines in diabeticnephropathy[J]. J Am Soc Nephrol,2008,19(3):433–42.
    [5] Morii T, Navarro JF. Inflammation and diabetic nephropathy[J].Curr Diab Rep,2006,6(6):463–8.
    [6] Navarro JF, Mora C. Diabetes, inflammation, proinflammatory cytokines, anddiabetic nephropathy[J]. Sci World J,2006,6:908–17.
    [7] Tuttle KR. Linking metabolism ang immunology:diabetic neph-ropathyis aninflammatory disease[J]. J Am Soc Nephrol,2005,16(6):1537–8.
    [8] Nathan C. Points of control in inflammation[J]. Nature,2002,420(6917):846–52.
    [9] Tracey KJ. The inflammatory reflex[J]. Nature,2002,420(6917):853–9.
    [10] Panichi V, Migliori M, Taccola D, et al. Effect s of1,25(OH)2D3in experimentalmesangial proliferative nephritis in rats[J]. Kidney Int,2001,60:87–95.
    [11] Hypponen E, Boucher BJ, Berry DJ, et al.25-hydroxyvitamin D, IGF-1, andmetabolic syndrome at45years of age: a cross sec-tional study in the1958BritishBirth Cohort[J]. Diabetes,2008,57(2):298–305.
    [12] Devaraj S, Yun JM, Catherine R, et al. Low vitamin D levels correlate with theproinflammatory state in type1diabetic sub-jects with and without microvascularcomplications[J]. Am Soc Clin Pathol,2011,135:429–33.
    [13] Ozfirat Z, Chowdhury TA. Vitamin D deficiency and type2diabetes[J]. PostgradMed J,2010,86:18–25.
    [14] Kayaniyil S, Vieth R, et al. Association of vitamin D with insulin resistance andb-cell dysfunction in subjects at risk for type2diabetes[J]. Diabetes Care,2010,33(6):1379–81.
    [15] Yamaoka K, Otsuka T, Niiro H, et al. Activation of STAT5by lipopolysaccharidethrough granulocyte-macrophage colony-stimulating factor production in humanmonocytes[J]. J Immunol,1998,160(2):838–45.
    [16] Kimura A, Naka T, Muta T, et al. Suppressor of cytokine sig-naling-1selectivelyinhibits LPS-induced IL-6production by regulating JAK–STAT[J]. PNAS,2005,102(47):17089–94.
    [17] Musikacharoen T, Matsuguchi T, Kikuchi T, et al. NF-j B and STAT5Playimportant roles in the regulation of mouse toll-like receptor2gene expression[J]. JImmunol,2001,166(7):4516–24.
    [18] Foster N, Lea SR, Preshaw PM, et al. Pivotal advance: Vasoac-tive intestinalpeptide inhibits up-regulation of human monocyte TLR2and TLR4by LPS anddifferentiation of monocytes to macrophages[J]. J Leukoc Biol,2007,81(4):893–903.
    [19] Foster1N, Andreadou K, Jamieson L, et al. VIP Inhibits P. gingivalis LPS-inducedIL-18and IL-18BPa in Monocytes[J]. JDR,2007,86(9):883–7.
    [20] Pelletier M, Girard D. Interleukin-15increases neutrophil adhe-sion onto humanrespiratory epithelial A549cells and attracts neutrophils in vivo[J]. Clin ExpImmunol,2005,141(2):315–25.
    [21] Girard D, Paquet ME, Paquin R, et al. Differential effects of interleukin-15(IL-15)and IL-2on human neutrophils: modulation of phagocytosis, cytoskeletonrearrangement, gene expression, and apoptosis by IL-15[J]. Blood,1996,88:3176–84.
    [22] Alleva DG, Kaser SB, Monroy MA, et al. IL-15functions as a potent autocrineregulator of macrophage proinflammatory cytokine production: evidence fordifferential receptor subunit utilization associated with stimulation or inhibition[J].J Immunol,1997,159:2941–51.
    [23] Tripathi P, Kurtulus S, Wojciechowski S, et al. STAT5is critical to maintaineffector CD8+T cell responses[J]. J Immunol,2010,185:2116–24.
    [24] Vidal M, Ramana CV, Dusso AS. Stat1-vitamin D receptor interactions antagonize1,25-Dihydroxyvitamin D transcriptional activity and enhance stat1-mediatedtranscription[J]. Mol Cell Biol,2002,22(8):2777–87.
    [25] Stubbs JR, Idiculla A, Slusser J, et al. Cholecalciferol supple-mentation alterscalcitriol-responsive monocyte proteins and decreases inflammatory cytokines inESRD[J]. J Am Soc Nephrol,2010,21(2):353–61.
    [26] Rocky P, John RA, Christina L, et al. Lipopolysaccharide nega-tively modulatesvitamin D action by down-regulating expression of vitamin D-induced VDR inhuman monocytic THP-1cells[J]. Cell Immunol,2004,232(2):137–43.
    [27] Kambis S, Barbara W, Ute L, et al. Vitamin D3down-regulates monocyte TLRexpression and triggers hyporesponsiveness to pathogen-associated molecularpatterns[J]. Eur J Immunol,2006,36:361–70.
    [28] Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity andinsulin resistance[J]. Diabetes,2007,56(7):1761–72.
    [29] Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gutmicroflora improve high-fat-diet-induced diabetes in mice through a mechanismassociated with endotox-aemia[J]. Diabetologia,2007,50(11):2374–83.
    [30] Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolicendotoxemia induced inflammation in high fat diet induced obesity and diabetes inmice[J]. Diabetes,2008,57(6):1470–81.
    [31] Burcelin R, Luche E, Serino M, et al. The gut microbiota ecol-ogy:a newopportunity for the treatment of metabolic diseases?[J]. Front Biosci,2009,14:5107–17.
    [32] Vrieze A, Holleman F, Zoetendal EG, et al. The environment within: how gutmicrobiota, may influence_metabolism and boay composition[J]. Diabetologia,2010,53(4):606–13.
    [33] Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysac-charide activates aninnate immune system response in human adipose tissue in obesity and type2diabetes[J]. Am J Physiol Endocrinol Metab,2007,292(3):E740–7.
    [34] Yang M, Gan H, Shen Q, Tang W, et al. Proinflammatory CD14+CD16+monocytes are associated with microinflammation in patients with type2diabetesmellitus and diabetic nephropathy uremia[J]. Inflammation,2012,35(1):388-396.
    [35] Yang M, Shen Z, Chen D, et al. Effects of1,25-(OH)2D3on the expressions ofvitamin D receptor, STAT5and cytoskeletal rearrangement in human monocytesincubated with sera from type2diabetes patients and diabetic nephropathypatients with uremia[J]. Inflamm Res,2012Feb10.[DOI10.1007/s00011-012-0441-y]
    [36]杨孟雪,甘华,沈清等.2型糖尿病患者CD14+CD16+单核细胞的水平及其对LPS和IL-15刺激的反应[J].中国病理生理杂志,2012,28(1):136-141.
    [37] T Hasegawa, A Kosaki, T Kimura, et.al. The regulation of EN-RAGE (S100A12)gene expression in human THP-1macrophages[J]. Atherosclerosis,2003,171(2):211-218.
    [38] Marnie L.Gruen, Mingming Hao,et.al.Leptin requires canonical migratorysignaling pathways for induction of monocyte and macrophage chemotaxis[J]. AmJ Physiol Cell Physiol,2007,293(5):C1481-C1488.
    [1] Marcos Vidal, Chilakamarti V. Ramana, Adriana S. Dusso. Stat1-vitamin Dreceptor interactions antagonize1,25-Dihydroxyvitamin D transcriptional activityand enhance stat1-mediated transcription[J]. MOLECULAR AND CELLULARBIOLOGY,2002,22(8):2777–2787.
    [2] Kunihiro Yamaoka, Takeshi Otsuka, Hiroaki Niiro, et al. Activation of STAT5byLipopolysaccharide Through Granulocyte-Macrophage Colony-Stimulating FactorProduction in Human Monocytes[J]. J Immunol,1998,160(2):838-845.
    [3] Akihiro Kimura, Tetsuji Naka, Tatsushi Muta, et al. Suppressor of cytokinesignaling-1selectively inhibits LPS-induced IL-6production by regulating JAK–STAT[J]. PNAS,2005,102(47):17089-17094.
    [4] Tipayaratn Musikacharoen, Tetsuya Matsuguchi, Takeshi Kikuchi, et al. NF-κBand STAT5Play Important Roles in the Regulation of Mouse Toll-Like Receptor2Gene Expression[J]. The Journal of Immunology,2001,166(7):4516-4524.
    [5] Graham GN, Stephen MR, Ernest KA, et al. Lipopolysaccharide-Stimulated orGranulocyte-Macrophage Colony-Stimulating Factor-Stimulated MonocytesRapidly Express Biologically Active IL-15on Their Cell Surface Independent ofNew Protein Synthesis[J]. The Journal of Immunology November,2001,167(9):5011-5017.
    [6] N. Foster, S. R. Lea, P. M. Preshaw, et al. Pivotal Advance: Vasoactive intestinalpeptide inhibits up-regulation of human monocyte TLR2and TLR4by LPS anddifferentiation of monocytes to macrophages[J]. Journal of Leukocyte Biology,2007,81(4):893-903.
    [7] N. Foster1, K. Andreadou, L. Jamieson, et al. VIP Inhibits P. gingivalisLPS-induced IL-18and IL-18BPa in Monocytes[J]. JDR,2007,86(9):883-887.
    [8] RA Merendino, A Arena, S Gangemi, A Ruello,et al.In vitro effect of lithiumchloride on interleukin-15production by monocytes from IL-breast cancerpatients[J]. J Chemother,2000,12(3):252-7.
    [9] M Moue, M Tohno, T Shimazu,et al.Toll-like receptor4and cytokine expressioninvolved in functional immune response in an originally established porcineintestinal epitheliocyte cell line[J]. Biochim Biophys Acta,2008,1780(2):134-44.
    [1] T Tom D. Thacher and Bart L. Clarke. Vitamin D Insufficiency[J]. Mayo ClinProc,2011,86(1):50-60.
    [2]范振迁,郑少雄.维生素D及其活性代谢物与糖尿病[J].中华骨质疏松和骨矿盐疾病杂志,2010,3(3):149-156.
    [3] Aufier P, Gandini S. Vitamin D supplement and total motality.A meal-analysis ofrandomized controlled trials [J]. Arch Int Med,2007,167:1730-1737.
    [4] Bess Dawson-Hughes, Robert P. Heaney, Michael F. Holick, et al.Estimates ofoptimal vitamin D status[J]. Osteoporos Int,2005,16(7):713-716.
    [5] Holick MF. Vitamin D status: measurement, interpretation, and clinicalapplication[J]. Ann Epidemiol,2009,19(2):73-78.
    [6] Holick MF. Diabetes and the vitamin d connection[J]. Curr Diab Rep,2008,8(5):393-398.
    [7] Baeke F, van Etten E, Gysemans C, et al. Vitamin D signaling in immune-mediateddisorders: Evolving insights and therapeutic opportunities[J]. Mol Aspects Med.2008,29(6):376-387.
    [8] Adams JS, Hewison M. Unexpected actions of vitamin D: new perspectives on theregulation of innate and adaptive immunity.Nat Clin Pract Endocrinol Metab[J].2008,4(2):80-90.
    [9] Deluca HF, Catorna MT. Vitamin D: its role and uses in immunology[J]. FASEB J,2001,15:2579–2585.
    [10] Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmunediseases, cancers, and cardiovascular disease[J]. Am J Clin Nutr2004,80:1678S–88S.
    [11] Cantorna MT, Zhu Y, Froicu M, et al. Vitamin D status,1,25-dihydroxyvitamin D3,and the immune system[J]. Am J Clin Nutr2004,80:1717S–20S.
    [12] Hypponen E, Boucher B J, Berry D J, et al.25-hydroxyvitamin D, IGF-1, andmetabolic syndrome at45years of age: a cross-sectional study in the1958BritishBirth Cohort[J]. Diabetes,2008,57(2):298-305.
    [13] Sridevi Devaraj, Jung-Mi Yun, Catherine R, et al. Low Vitamin D Levels CorrelateWith the Proinflammatory State in Type1Diabetic Subjects With and WithoutMicrovascular Complications[J]. American Society for Clinical Pathology,2011,135:429-433.
    [14] Zehra Ozfirat, Tahseen A Chowdhury. Vitamin D deficiency and type2diabetes[J].Postgrad Med J,2010,86:18-25.
    [15] Sheena Kayaniyil, MSC, Reinhold Vieth, et al. Association of Vitamin D WithInsulin Resistance and β-Cell Dysfunction in Subjects at Risk for Type2Diabetes[J]. Diabetes Care,2010,33(6):1379-1381.
    [16] Takiishi T, Gysemans C, Bouillon R, et al. Vitamin D and diabetes[J]. EndocrinolMetab Clin North Am,2010,39(2):419-46.
    [17] Boucher BJ. Vitamin D insufficiency and diabetes risks[J]. Curr Drug Target,2011,12(1):61-87.
    [18] Palomer X, González-Clemente JM, Blanco-Vaca F, et al. Role of vitamin D in thepathogenesis of type2diabetes mellitus[J]. Diabetes Obes Metab,2008,10(3):185-97.
    [19] Chagas CE, Borges MC, Martini LA, et al. Focus on vitamin d, inflammation andtype2diabetes[J]. Nutrients,2012,4(1):52-67.
    [20] Mathieu C, Gysemans C, Giulietti A, et al. Vitamin D and diabetes[J]. Diabetologia.2005,48(7):1247-1257.
    [21] Sugden JA, Davies JI, Witham MD,et al. Vitamin D improves endothelial functionin patients with Type2diabetes mellitus and low vitamin D levels[J]. Diabet Med.2008,25(3):320-325.
    [22] Borges MC, Martini LA, Rogero MM.Current perspectives on vitamin D, immunesystem, and chronic diseases[J]. Nutrition.2011,27(4):399-404.
    [23] Van Driel ML, Koedam M, Buurman CJ, et al. Evidence for auto/paracrine actionsof vitamin D in bone:1alpha-hydroxylase expression and activity in human bonecells[J]. FASEB J,2006,20:2417–19.
    [24] Pols HA, Birkenhager JC, Foekens JA, et al. Vitamin D: a modulator of cellproliferation and differentiation [J]. J Steroid Biochem Mol Biol,1990,37:873–6.
    [25] Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediatedhuman antimicrobial response[J]. Science,2006,311:1770–3.
    [26] Mathieu C, Gysemans C,Guilietti A, et al. Vitamin D and diabetes. Diabetologia[J].2005;48:1247–57
    [27] Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phaseproteins and plasminogen activator inhibitor-1predict the development of type2diabetes: the Insulin Resistance Atherosclerosis Study[J]. Diabetes,2002,51(4):1131-1137.
    [28] Barzilay JI, Abraham L, Heckbert SR, et a1. The relation of markers ofinflammation to the development of glucose disorders in the elderly:the Cardio-vascular Health Study[J]. Diabetes,2001,50(10):2384-2389.
    [29] Duncan BB, Schmidt MI, Pankow JS, et a1. Low-grade systemic inflammationand the development of type2diabetes: the atherosclerosis risk in communitiesstudy[J]. Diabetes,2003,52(7):1799-1805.
    [30] Freeman DJ, Norrie J, Caslake MJ, et a1. C-reactive protein is all independentpredictor of risk for the development of diabetes in the West of ScotlandCoronary Prevention Study[J]. Diabetes,2002,51(5):1596-1600.
    [31] Nakanishi N, Yoshida H, Matsuo Y, et a1. W1lite blood-cell count and the risk ofimpaired fasting glucose or type II diabetes in middle-aged Japanese men[J].Diabetologia,2002,45(1):42-48.
    [32] Donath MY, Shoelson SE. Type2diabetes as an inflammatory disease[J]. Nat RevImmunol,2011,11(2):98-107.
    [33] Lindsay RS, Funahashi T, Hanson RL, et a1. Adiponectin and development of type2diabetes in the Pima Indian populmion[J]. Lancet,2002,360(9326):57-58.
    [34] Schmidt MI, Duncan BB, Sharrett AR, et a1. Markers of inflammation and pre-diction of diabetes mellitus in adults(Atherosclerosis Risk in CommunitiesStudy): a cohort study[J]. Lancet,1999,353(9165):1649-1652.
    [35] Pittas AG, Lau J, Hu FB, et al. The Role of Vitamin D and Calcium in type2diabetes. A systematic Review and Meta-Analysis[J]. J Clin Endocrinol Metab.2007,92(6):2017–2029.
    [36] Danescu LG, Levy S, Levy J. Vitamin D and diabetes mellitus[J]. Endocrine.2009,35(1):11-17.
    [37] Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early lifeaccelerates Type1diabetes in non-obese diabetic mice[J]. Diabetologia,2004,47(3):451-462.
    [38] Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and riskof type1diabetes: a systematic review and meta-analysis[J]. Arch Dis Child,2008,93(6):512-517.
    [39] Mathieu C, Badenhoop K. Vitamin D and type1diabetes mellitus: state of the art.Trends Endocrinol Metab,2005,16(6):261-266.
    [40] Luong K, Nguyen LT, Nguyen DN,et al. The role of vitamin D in protecting type1diabetes mellitus[J]. Diabetes Metab Res Rev,2005,21(4):338-346.
    [41] Zella JB, DeLuca HF. Vitamin D and autoimmune diabetes[J]. J Cell Biochem,2003,88(2):216-22.
    [42] Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk oftype1diabetes: a systematic review and meta-analysis.Arch Dis Child,2008,93(6):512-517.
    [43] Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early lifeaccelerates Type1diabetes in non-obese diabetic mice[J]. Diabetologia,2004,47(3):451-462.
    [44] Liviu G. Danescu, Shiri Levy and Joseph Levy. Vitamin D and diabetes mellitus [J].Endocrine,2009,35(1):11-17.
    [45] Bland R, Markovic D, Hills CE, et al. Expression of25-hydroxyvitaminD3-1α-hydroxylase in pancreatic islets[J]. J Steroid Biochem Mol Biol,2004,89-90(1-5):121-5.
    [46] Milner RD, Hales CD. The role of calcium and magnesium in insulin secretionfrom rabbit pancreas studied in vitro[J]. Diabetologia,1967,3(1):47-9.
    [47] Gedik O, Akalin S. Effects of vitamin D deficiency and repletion on insulin andglucagon secretion in man[J]. Diabetologia,1986,29(3):142-145.
    [48] Chiu KC, Chu A, Go VL, et al. Hypovitaminosis D is associated with insulinresistance and beta cell dysfunction[J]. Am J Clin Nutr,2004,79(5):820-5.
    [49] Ken C Chiu, Audrey Chu, Vay Liang W Go,et al. Hypovitaminosis D is associatedwith insulin resistance and cell dysfunction[J]. American Journal of ClinicalNutrition,2004,79(5):820-825.
    [50] Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects ofmetformin and troglitazone in type II diabetes mellitus[J]. N Engl J Med,1998,338(13):867-872.
    [51] Anastassios G. Pittas, Susan S. Harris, Paul C. Stark, et al.The Effects of Calciumand Vitamin D Supplementation on Blood Glucose and Markers of Inflammationin Nondiabetic Adults[J]. Diabetes Care,2007,30(4):980-986.
    [52] R. Riachy, B. Vandewalle, E. Moerman, et al.1,25-dihydroxyvitamin D3protectshuman pancreatic islets against cytokine-induced apoptosis via down-regulation ofthe fas receptor[J]. Apoptosis,2006,11(2):151-159.
    [53] AW Norman, JB Frankel, AM Heldt,et al.Vitamin D deficiency inhibits pancreaticsecretion of insulin[J]. Science,1980,209(4458):823-825.
    [54] Mitri J, Muraru MD, Pittas AG. Vitamin D and type2diabetes: a systematicreview[J]. Eur J Clin Nutr,2011,65(9):1005-1015.
    [55] Wright DC, Hucker KA, Holloszy JO, et al. Ca2+and AMPK both mediatestimulation of glucose transport by muscle contractions[J]. Diabetes2004,53:330-5.
    [56] Ojuka EO. Role of calcium AMP kinase in the regulation of mitochondrialbiogenesis and GLUT4levels in muscle[J]. Proc Nutr Soc,2004,63:275-8.
    [57] Maestro B, Campion J,Davila N, et al. Stimulation by1,25-dihydroxyvitamin D3of insulin receptor expression and insulin responsiveness for glucose transport inU-937human promonocytic cells[J]. Endocr J,2000,47:383-91.
    [58] Maestro B, Molero S, Bajo S, et al. Transcriptional activation of the human insulinreceptor gene by1,25-dihydroxyvitamin D(3)[J]. Cell Biochem Funct,2002,20(3):227-232.
    [59] Dunlop TW, Vaisanen S, Frank C, et al. The human peroxisome proliferatoractivated receptor δ gene is a primary target of1alpha,25-dihydroxyvitamin d3and its nuclear receptor[J]. J Mol Biol,2005,349(2):248-60.
    [60] Tanaka T, Yamamoto J, Iwasaki S, et al. Activation of peroxisomeproliferator-activated receptor delta induces fatty acid beta-oxidation in skeletalmuscle and attenuates metabolic syndrome[J]. Proc Natl Acad Sci USA,2003,100(26):15924-9.
    [61] Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D andthe metabolic syndrome among U.S. adults[J]. Diabetes Care,2005,28(5):1228-1230.
    [62] Scragg R, Sowers M, Bell C. Serum25-hydroxyvitamin D, diabetes,and ethnicityin the Third National Health and Nutrition Examination Survey[J]. Diabetes Care,2004,27(12):2813-2818.
    [63] Reis JP, von Mühlen D, Miller ER III. Relation of25-hydroxyvitamin D andparathyroid hormone levels with metabolic syndrome among US adults[J]. Eur JEndocrinol.2008,159(1):41-48.
    [64] Borissova AM, Tankova T, Kirilov G, Dakovska L, Kovacheva R. The effect ofvitamin D3on insulin secretion and peripheral insulin sensitivity in type2diabeticpatients[J]. Int J Clin Pract,2003,57(4):258-61.
    [65] Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance[J]. J ClinInvest,2006,116(7):1793-1801.
    [66] Pradhan AD,Manson JE,Rifai N, et al. C-reactive protein, interleukin-6and risk ofdeveloping type2diabetes mellitus[J]. JAMA,2001,286(3):327-34.
    [67] Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation andthe development of type2diabetes: the atherosclerosis risk in communitiesstudy[J]. Diabetes,2003,52(7):1799-805.
    [68] Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance[J].Diabetologia,2003,46(12):1594-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700