银杏叶提取物(EGb)对糖尿病大鼠学习记忆障碍保护作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期糖尿病除了可引起全身多脏器结构和功能损害外,还可引起糖尿病神经病变,包括外周神经病变以及中枢神经神经病变。以往对于糖尿病神经病变的研究、治疗和药物的保护往往着重于外周神经病变方面,而对于糖尿病中枢性损伤的相关研究比较少。因此进行糖尿病脑损伤机制的研究,并寻找相应的保护剂有着十分重要的意义。银杏叶提取物(EGb)主要成分为黄酮类、萜内酯类等,是一有效的抗氧化剂和自由基清除剂,具有明显改善血液流变和组织代谢的作用,对中枢神经系统有独特的保护效应,对应激因素和外伤因素所致的认知缺陷有治疗作用。因此EGb对中枢神经系统退行性疾病,如AD,有广泛的应用价值。
    本论文以Wistar大鼠为研究对象,在链脲佐菌素(Streptozotocin)诱导的糖尿病模型上,从形态功能学、分子生物学等方面对EGb糖尿病海马损伤的保护作用及其机制进行了探讨。
    (一)形态功能学方面
    (1)大鼠腹腔注射Streptozotocin 55mg.kg-1后,出现典型的体重下降、多尿、多饮、血糖升高等表现。6 个月后,Nissl 染色观察表明海马细胞稀疏、无序,神经细胞密度降低;取海马进行其超微结构观察,见大鼠海马锥体细胞出现细胞器结构不清楚,胞体及突起明显肿胀,胞浆空泡化,粗面内质网和游离核糖体明显减少,线粒体肿胀、破坏、溶解,细胞膜崩解等表现以及神经纤维不清楚、神经丝模糊、突触间隙明显增宽、突触后膜致密物厚度(PSD)明显变薄。EGb(100 mg.kg-1)治疗组海马细胞的超微结果得到改善,突触间隙明显缩小,PSD 明显增厚,神经细胞密度有所提高。
    (2)为了探讨糖尿病大鼠海马损伤的机制,大鼠糖尿病后6 个月,用电子显微镜和TUNEL 方法观察到海马的细胞凋亡现象,表明海马细胞存在着明显的凋亡现象,TUNEL阳性细胞表达的凋亡细胞数明显增加,EGb(100 mg.kg-1)治疗组对海马细胞凋亡增加现象有明显的抑制作用,TUNEL 阳性细胞表达的凋亡细胞数明显减少。
    (3)糖尿病6个月后,大鼠海马Na+-K+-ATPase活性的由正常的16.07±3.60(μmolPi.mgPr-1.h-1),下降到10.52±3.02,EGb(100、50 mg.kg-1)治疗组对糖尿病大鼠海马Na+-K+-ATPase的活性分别提高到15.50±2.76,14.67±3.55。提示了银杏叶提取物对作为神经元质膜功能状
Chronic diabetes mellitus can result in structural and functional lesions of multiple organsin human. Even more, it will cause diabetic neuropathy, including peripheral and centralneuropathy. In the early stage, more basic researches had been done on the peripheralneuropathy to find effective neuroprotection. Unfortunately, less attention had been paidto the central neuropathy. For this reason, it is significant to investigate the diabetic braininjury and to find the corresponding neuroprotective agents. Gingko biloba extract (EGb)is a well-defined plant extract containing two major groups of constituents, i.e.flavonoids and terpenoids. Possessing antioxidant and free radical-scanvenging activities,EGb improves blood rheology and tissue metabolism. It has markedly neuroprotectiveeffects on CNS and counteracts the cognitive deficits that follow stress or traumatic braininjury. It is viewed as a polyvalent agent with a possible therapeutic use in the treatmentof neurodengenerative diseases of multifactional origin, e.g. AD.
    In the present study with streptozotocin-induced diabetes in Wistar rats as objects, we have
    investigated the protective effects of EGb on brain in morphological, functional and molecularbiology aspects.
    A. Morphological and functinal aspects
    1.Administration of STZ (55 mg.kg-1, i.p.) produced diabetic symptoms such as weight loss,polyuria, polydipsia, and hyperglycemia. After 6 months of diabetes, morphological analysis ofthe hippocampal cells by Nissl staining revealed that the neuronal cells were in the state ofraritas and disorder, accompanied by reduced neuronal density in the hippocampus.Ultrastructural analysis of the hippocampal pyramidal neurons by electronmicroscope revealedthat the cell organs of neurons were ambiguous, cell body and nervous process were obviouslyswelling, endochylema was vacuolated, rough endoplasmic reticulum and free ribosome weremarkedly decreased, chondriosome was engorged, lyzed and destructed, cellular membrane wasdisaggregated. The ultrastructural analysis also showed that the nerve fiber and nerve plexuswere ambiguous, synaptic cleft was widened, postsynaptic density (PSD) was attenuated. EGbadministration(100 mg.kg-1)could improve the above morphological changes, obviouslydiminishing synapse cleft and increasing PSD and neuronal density.
    2.To explore mechanisms underlying central nervous system complications in diabetes, we alsoexamined hippocampal neuronal apoptosis and the effect of EGb. Apoptosis was demonstratedafter 6 months of diabetes by electronmicroscope observation. Increased numbers ofTdT-mediated dUTP nick-end labeling (TUNEL)-positive cells were shown in the diabetichippocampus. Whereas EGb administration(100 mg.kg-1)could decrease the numbers of positiveapoptotic cells by TUNEL in diabetic hippocampus.
    3. After 6 months of diabetes, the activity of Na+-K+-ATPase in diabetic hippocampus wasdescended from the normal 16.07 ±3.60 ( μmolPi.mg Pr-1.h-1 ) to 10.52 ±3.02, EGbadministration 100, 50 mg.kg-1)could enhance the Na+-K+-ATPase to 15.50±2.76, ( 14.67±3.55,respectively. The data suggested that EGb could protect the functional Na+-K+ATPase ofneuronal cytolemma from diabetic injury.
    4. After 6 months of diabetes, diabetic rats could swim for more than 3hrs. The open filed testalso showed that the limb’s movements of diabetic rats were not harmed. Accordingly, weobsvered the learning and memory potentia by Morris water maze, and behavior profiles by openfiled test. The result of open field test showed that the center detention time was prolonged,accompanied by decreased numbers of hollow-probing in diabetic rats. The result of Morris
    water maze showed that the escaping latency was prolonged, and score of platform-searchingwas decreased on d5 and d8 after training. EGb administration(100, 50 mg.kg-1)could shortencenter detention time, increase numbers of hollow-probing, improve deficient escaping latencyand score of platform-searching in diabetic rats.
    B.Molecular biology aspects
    Streptozotocin-induced diabetes was produced in another batch
引文
1. 何戎华主编. 糖尿病现代诊疗[M]. 第1 版. 南京: 江苏科学技术出版社, 2000. 196-236
    2. 许曼音主编. 糖尿病学[M]. 第1 版. 上海: 上海科学技术出版社, 2003. 189-205
    3. Simmons Z, Feldman EL. Update on diabetic neuropathy [J]. Curr Opin Neuro1, 2002,15(5):595-603
    4. Zochodne DW. Diabetic neuropathies: features and mechanisms [J]. Brain Pathol, 1999,9(2):369-391
    5. Greene DA, Sima AA, Stevens MJ, Feldman EL, et al. Complications: neuropathy, pathogenetic considerations [J]. Diabetes Care, 1992,15(12):1902-1925
    6. Santini SA, Cotroneo P, Marra G, et al. Na+/K+ ATPase impairment and experimental glycation: the role of glucose autoxidation[J]. Free Radic Res, 1996,24(5):381-389
    7. Gooch C, Podwall D. The diabetic neuropathies [J]. Neurologist,2004,10(6):311-322
    8. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications [J]. Diabetes Res Clin Pract, 2005,67(1):3-21
    9. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications[J]. Diabetes Care,1996,19(3):257-267
    10.Cellek S. Point of NO return for nitrergic nerves in diabetes: a new insight into diabetic complications[J]. Curr Pharm Des,2004,10(29):3683-3695
    11.Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy[J]. Endocr Rev,2004,25(4):612-628
    12.Siemionow M, Demir Y. Diabetic neuropathy: pathogenesis and treatment [J]. J Reconstr Microsurg, 2004,20(3):241-252
    13.Coste TC, Gerbi A, Vague P, et al. Neuroprotective effect of docosahexaenoic acid-enriched phospholipids in experimental diabetic neuropathy [J]. Diabetes, 2003,52(10):2578-2585
    14.罗敏主编. 分子内分泌学[M]. 第1 版. 人民军医出版社, 2003. 150-159
    15.Biessels GJ, ter Laak MP, Hamers FP, et al. Neuronal Ca(2+) disregulation in diabetes mellitus[J]. Eur J Pharmacol,2002,447(2-3):201-209
    16.Takigawa T, Yasuda H, Terada H, et al. Increase in K+ conduction and Ca2+ influx under high glucose with suppressed Na+/K+-pump activity in the rat myelinated nerve fibers[J]. Neuroreport,2000,11 (11):2547-2551
    17.Pittenger G, Vinik A. Nerve growth factor and diabetic neuropathy [J]. Exp Diabesity Res,2003,4 (4):2712-2785
    18.Apfel SC. Neurotrophic factors in the therapy of diabetic neuropathy [J]. Am J Med,1999,107 (2B):34S-42S
    19.Apfel SC. Neurotrophic factors and diabetic peripheral neuropathy [J]. Eur Neurol,1999,41(Suppl 1):27-34
    20.魏尔清主编. 药理学前沿——信号、蛋白因子、基因与现代药理[M]. 第1 版. 北京:科学出版社, 2001. 241-257
    21.Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms [J]. Brain, 2000,123(Pt 10):2118-2129
    22.Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review [J]. J Neurolathol Exp Neurol, 1996,55(12):1181-1193
    23.衡先培编著. 糖尿病性神经病变诊断与治疗[M]. 第1 版. 北京:人民卫生出版社, 2002.22
    24.Havrankova J,Shmechel D, Roth J, et al. Indenfication of insulin in rat brain [J]. Proc Natl Acad Sci USA, 1978,75(11):5737-5741
    25.Snyder EY,Kim SU. Insulin: is it a nerve survival factor? [J] Brain Res, 1980,196(2):565-571
    26.Palovicik R,Phillips MI, Kappy MS, et al. Insulin inhibits pyramidal neurons in hippocampal slices [J]. Brain Res, 1984,309(1):187-191
    27.Bernstein HG, Poeggel G, Dorn A, et al. Insulin stimulates sodium-potassium activated ATPase from rat hippocampus [J]. Experientia, 1981,37(4):434-435
    28.Voll CL, Whishaw MI, Auer RN. Postischemia insulin reduces spatial learning deficit following transient forebrain ischemia in rats [J]. Stroke, 1989,20(5):646-651
    29.Warner DS, Gionet TX, Todd MM, et al. Insulin-induced normoglycemia improves ischemic outcome in hyperglycemia rats [J]. Stroke,1992, 23(12):17750-17780
    30.Izumi Y, Pinard E, Roussel S, et al. Insulin protects brain tissue against focal ischemia in rats[J]. Neurosci Lett. 1992,144(1-2):121-123
    31.Frank HJ, Jankovic-Vokes T, Pardridge WM, et al. Enhanced insulin binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits [J]. Diabetes, 1985,34 (8):728-733
    32.Fraley GS, Scarlett JM, Schimada I, et al. Effects of diabetes and insulin on the expression of galanin-like peptide in the hypothalamus of the rat [J]. Diabetes, 2004,53(5):1237-1242
    33.钱洪松综述. IGF-1 与中枢神经系统的研究进展[J]. 国外医学生理、病理科学与临床分册, 1996,16(4):272-274
    34.Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-1 administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats [J]. J Neurosci Res, 2003,74(4):512-523
    35. Dunbar JC, Clough-Helfman C, Barraco RA, et al. Effects of insulin and clonidine on the evoked release of norepinephrine and serotonin from the nucleus tractus solitarius of the diabetic rat [J]. Pharmacology, 1995,51(6):370-380
    36.Sounvoravong S, Nakashima MN, Wada M, et al. Decrease in serotonin concentration in raphe magnus nucleus and attenuation of morphine analgesia in two mice models of neuropathic pain [J]. Eur J Pharmacol,2004,484(2-3):217-223
    37.田金洲主编. 血管性痴呆[M]. 第1 版. 北京:人民卫生出版社,2003.1-13
    38.苏定冯缪朝玉王永铭主编. 2001 药理学进展[M]. 北京:人民卫生出版社,2002.37-51
    39.张均田主编. 神经药理学研究进展[M]. 北京:人民卫生出版社,2002.16-29
    40.苏定冯缪朝玉王永铭主编. 2002 药理学进展[M]. 北京:人民卫生出版社,2002.52-59
    41.Hernandez D, Sugaya K, Qu T, et al. Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes[J]. Neuroreport,2001,12 (7):1377-1384
    42.Arendt T. Neurodegeneration and plasticity [J]. Int J Dev Neurosci,2004,22(7):507-514
    43.朱兴族罗质璞主编. 神经药理学新论[M]. 北京:人民卫生出版社,2004.21-34
    44.Leibson CL, Rocca WA, Hanson VA, et al. Risk of dementia among persons with diabetes mellitus: a population based cohort study [J]. Am J Epidemiol, 1997,145(4):301-308
    45.Ott A, Stolk RP, van Harskamp F, et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study[J]. Neurology,1999,53(9):1937-1942
    46.Sachon C, Grimaldi A, Digy JP, et al. Cognitive function: insulin-dependent diabetes and hypoglycaemia [J]. J Intern Med, 1992,231(5):471-475
    47.Heitner J, Dickson D. Diabetes do not have increased Alzheimer-type pathology compared with age-matched subjects. A retrospective postmorten immunocytochemical and histofluorescent study [J]. Neurol, 1997,49:1306-1310
    48.Hassing LB, Johansson B, Nilsson SE, et al. Diabetes is a risk for vascular dementia, but not for Alzheimer’s disease: a population-based study of the oldest old [J]. Int Psychogeriatr, 2002,14 (3):239-248
    49.Xu WL, Qiu CX, Wahlin A, et al. Diabetes mellitus and the risk of dementia in the Kungsholmen project: a 6-year follow-up study [J]. Neurology,2004,63(7):1181-1186
    50.Oates PJ, Mylari BL. Aldose reductase inhibitors: therapeutic implications for diabetic complications [J]. Expert Opin Investig Drugs,1999,8(12):2095-2119
    51.Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase on nerve conduction and morphometry in diabetic neuropathy [J]. Neurology,1999,53(3):580-591
    52.Gabbay KH. Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? [J] Curr Diab Rep, 2004,4(6):405-408
    53.许曼音主编. 糖尿病学[M]. 第1 版. 上海: 上海科学技术出版社, 2003. 205-206
    54.董砚虎王秀军孙丽萍等. 黄芩甙治疗糖尿病周围神经病变的初步观察. 中国糖尿病学杂志,1999,7(6):352-354
    56.Das Evcimen N, Ulusu NN, Karasu Q, et al. Adenosine triphosphatase activity of streptozotocin-induced diabetic rat brain microsomes. Effect of vitamin E [J]. Gen Physiol Biophys,2004,23(3):347-355
    65.吴萍. 月见草油的药效学研究概况[J]. 中国中医基础医学杂志,2001,7(10):75-77
    67.Ristic H, Wiley JW, Hall KE, et al. Failure of nimodipine to prevent or correct the long-term nerve conduction defect and increased neuronal Ca2+ currents in the diabetic BB/W rat [J]. Diabetes Res Clin Pract, 1996,(32):135-140
    68.Apfel SC Arezzo JC Brownlee H, et al. Nerve growth factor administration protects against experimental diabetic sensory neuropathy [J]. Brain Res,1994,634(1):7-12
    69.Jonhagen ME. Nerve growth factor treatment in dementia [J]. Alzheimer Dis Assoc Disord, 2000,14(Suppl 1):S31-38
    70. Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what went does the future hold? [J] Int Rev Neurobiol, 2002,50:393-413
    76.Bhardwaj SK, Sandhu SK, Sharma P, et al. Impact of diabetes on CNS: role of signal transduction cascade [J]. Brain Res Bull,1999,49(3):155-162
    77.Trimmer PA, Swerdlow RH, Parks JK, et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines [J]. Exp Neurol, 2000,162(1):37-50
    78.Fernyhough P, Huang TJ, Verkhratsky A, et al. Mechanism of mitochondrial dysfunction in diabetic senory neuropathy [J]. J Peripher Nerv Syst, 2003,8(4):277-285
    79.李红星王蓉杜怡峰等. APP17 肽对糖尿病大鼠海马线粒体膜电位的影响[J].首都医科大学学报,2003,24(1):40-43
    80.吴开松,徐献群,范幼筠,等.当归注射液治疗糖尿病周围神经病变41 例[J].中国中西医结合杂志,1998,18(6):364
    81.DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb761) and CNS functions: basic studies and clinical applications [J]. Curr Drug Targets,2000,1(1):25-30
    82.Wadsworth TL, McDonald TL, Koop DR. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-alpha [J]. Biochem Pharmacol, 2001,62(7):963-974
    83.Weilt K, Fitzl G. Schepper A. Experimental hypoxia of STZ-diabetic rat myocardium and protective effects of Gingko biloba extract.Ⅱ. Ultrastructural investigation of microvascular endothelium [J]. Exp Toxicol Pathol, 2001,52(6):503-512
    84 . Fitzl G,Welt K, Wassilew G, et al. The influence of hypoxia on the myocardium of experimentally diabetic rats with and without protection by Gingko biloba extract.Ⅲ. Ultrastructural investigation on mitochondria [J]. Exp Toxicol Pathol, 2001,52(6):557-568
    85 . Loffler T, Lee SK, Noldner M, et al. Effect of Gingko biloba extract on glucose metabolism-related markers in strptozotocin-damaged rat brain [J]. J Neural Transm, 2001,108 (12):1457-1474
    86.No authors listed. EGb 761: ginkgo biloba extract, Ginkor [J]. Drugs R D,2003,4(3):188-193
    87.石琳琳,卢丹,姚文华. 银杏叶提取物治疗糖尿病神经病变[J]. 白求恩医科大学学报, 1999, 25(5): 667-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700