2型糖尿病大鼠脑组织TIPE2和TNFAIP8的表达特征及其与Aβ1-40沉积的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的肿瘤坏死因子α诱导蛋白8样因子2(tumor necrosis factor-α induced protein-8-like-2, TIPE2)和肿瘤坏死因子α诱导蛋白8(tumor necrosis factor-α induced protein-8, TNFAIP8)属于TNFAIP8家族成员,是近年新发现的蛋白质,它们能够负性调节免疫反应和细胞凋亡,维持机体内环境稳定。糖尿病脑血管病具有发病率高、卒中预后差的特点;糖尿病能够显著促进阿尔茨海默病的病程进展,严重危害人类生命健康和生活质量。目前研究认为,高血糖本身和糖尿病诱导的淀粉样蛋白Aβ1-40沉积均可以诱导脑组织炎症水平增高,免疫反应介导的炎症损伤和细胞凋亡在糖尿病脑组织损伤中发挥重要作用,但其具体机制尚不明确。因此,探讨高血糖诱导的脑内炎症反应过程,对于理解糖尿病脑损伤的发病机制具有重要意义。为此,本课题主要目的是通过观察TIPE2和TNFAIP8在2型糖尿病大鼠脑组织中的表达特征及其与Aβ1-40沉积的相关性,初步探讨TIPE2和TNFAIP8是否参与糖尿病脑组织损伤的发生发展。
     方法
     (1)采用自发性2型糖尿病大鼠(Goto-Kakizaki rat, GK rat)大鼠为2型糖尿病动物模型(GK组),Wistar大鼠为非糖尿病动物模型(Control组);每组8只大鼠。
     (2)运用免疫组织化学染色法检测脑组织TIPE2、TNFAIP8和Aβ1-40的表达及空间分布;RT-PCR、Western blot法分别检测脑组织TIPE2和TNFAIP8的mRNA水平和蛋白含量;ELISA法检测脑组织Aβ1-40蛋白含量。
     (3)所有计量资料以均数±标准差((?)±s)表示,采用SPSS17.0软件包对数据进行亡检验和两变量间Person相关性分析,P<0.05认为差异具有统计学意义。
     结果
     (1)TIPE2主要表达于皮层和皮层下组织结构的神经胶质细胞和微/小血管管壁。与Control组相比,GK组大鼠脑组织TIPE2蛋白、mRNA.阳染血管数和阳染神经胶质细胞数均显著增高(P均<0.05)。
     (2)TNFAIP8主要分布于皮层和皮层下组织结构的神经元和血管管壁。与Control组相比,GK组大鼠脑组织TNFAIP8蛋白、mRNA.阳染血管数和阳染神经细胞数均显著增高(P均<0.05)。
     (3)A β1-40主要分布于皮质和海马等组织结构的神经元、神经胶质细胞和血管壁。与Control组相比,GK组大鼠脑组织A β1-40蛋白、阳染血管数和阳染细胞数均显著增高(P均<0.05)。
     (4)脑组织TIPE2蛋白表达与Aβ1-40蛋白水平在Control组(r=0.814)和GK组(r=0.744)均呈正相关(P均<0.05)。
     (5)脑组织TNFAIP8蛋白表达与Aβ1-40蛋白水平在Control组(r=0.739)和GK组(r=0.756)均呈正相关(P均<0.05)。
     结论
     (1)正常大鼠脑组织TIPE2和TNFAIP8呈低水平表达,提示TIPE2和TNFAIP8可能参与维持正常脑组织损伤内环境稳态。
     (2)糖尿病诱导大鼠脑组织TIPE2和TNFAIP8表达增多,提示TIPE2和TNFAIP8可能参与减轻糖尿病脑组织炎症损伤。
     (3)糖尿病大鼠脑组织TIPE2和TNFAIP8表达均与Aβ1-40沉积呈正相关,提示糖尿病诱导的Aβ1-40沉积可能启动反馈调节通路,上调TIPE2和TNFAIP8基因转录与蛋白表达。
OBJECTIVE
     Tumor necrosis factor alpha induced protein-8-like-2(TIPE2) and tumor necrosis factor alpha induced protein-8(TNFAIP8), two recently been discovered protein of TNFAIP8family, could negatively regulates immune responses and cell apoptosis, and maintain the body's internal homeostasis. Diabetic cerebrovascular disease, characterized by high incidence and poor prognosis of stroke, induces serious damage to human health and quality of life. Current studies suggest that both high level of beta-amyloid proteins1-40(Aβ1-40) induced by diabetes and high blood sugar itself could induced brain excessive inflammatory response. Immune-mediated inflammatory injury and apoptosis play an important role in diabetic brain damage, but the specific mechanism is still unclear. This study was aimed to investigate the expression pattern of TIPE2and TNFAIP8in the brain of rats with type2diabetes and their correlations with the deposition of Aβ1-40.
     METHODS
     (1) Male GK rats were used as a type2diabetes model (GK group) and Wistar rats were selected as control (Control group), with8rats in each group.
     (2) The expression and localization of TIPE2, TNFAIP8and (Aβ1-40) were detected by immunohistochemical staining of the brain tissues; mRNA and protein levels of TIPE2and TNFAIP8in the brain were assayed by RT-PCR and Western Blotting, respectively. Aβ1-40protein levels in the brain were measured by ELISA.
     (3) All the data are presented as mean±standard deviation (SD). The SPSS17.0statistical package was used for the analysis. Comparison between two groups was analyzed by t-test, with p<0.05as statistical significance. Person's correlation analysis was performed to determine the relationship between two groups, with p<0.05as the criterion for testing the significance of the correlation coefficient.
     RESULTS
     (1) TIPE2was mainly expressed in neuroglial cells and microvessels of the cortex and subcortical structures. Compared to Wistar rats, GK rats had significantly higher brain levels of TTPE2protein and positively stained blood vessels and cells (p<0.05), and had significantly higher mRNA level of TIPE2(p<0.05).
     (2) TNFAIP8was primarily observed in neurons and blood vessels of cortex and subcortical structures. Compared to Wistar rats, GK rats had significantly higher brain levels of TNFAIP8protein and positively stained blood vessels and cells (p<0.05), and had significantly higher mRNA level of TNFAIP8(p<0.05).
     (3) Aβ1-40protein was mainly localized in neurons and neuroglial cells in the cortex and hippocampus, and in the pial arteries, penetrating arteries, and microvessels. Compared to Wistar rats, GK rats had significantly higher brain levels of Aβ1-40protein and positively stained blood vessels and cells (p<0.05).
     (4) There is a strong positive correlation between TIPE2expression and Aβ1-40levels in the brain of both Wistar rats (r=0.814, p<0.05) and GK rats (r=0.744, p<0.05).
     (5) There is also a strong positive correlation between TNFAIP8expression and Aβ1-40levels in the brain of both Wistar rats (r=0.739, p<0.05) and GK rats (r=0.756, p<0.05).
     CONCLUSIONS
     (1) TIPE2and TNFAIP8express low in non-diabetic brain tissues suggesting their potential involvement in the maintenance of brain homeostasis.
     (2) Expression of TIPE2and TNFAIP8is significantly heightened in diabetic brain tissues suggesting that they might attenuate inflammation induced by diabetes in GK rat brian.
     (3) There were strong positive correlations of Aβ1-40deposition with both TIPE2and TNFAIP8expression in GK rats, which suggest that diabetic brain injury induced by the initial insults such as Aβ1-40deposition might trigger a feedback elevation of TIPE2and TNFAIP8expression, which functions to attenuate inflammation-mediated diabetic brain damage.
引文
1. Kumar, D, Whiteside, TL, Kasid, U, Identification of a novel tumor necrosis factor-alpha-inducible gene, SCC-S2, containing the consensus sequence of a death effector domain of fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein. J Biol Chem,2000.275(4): 2973-2978.
    2. Kumar, D, Gokhale, P, Broustas, C, et al., Expression of SCC-S2, an antiapoptotic molecule, correlates with enhanced proliferation and tumorigenicity of MDA-MB 435 cells. Oncogene,2004.23(2):612-616.
    3. Zhang, C, Chakravarty, D, Sakabe, I, et al., Role of SCC-S2 in experimental metastasis and modulation of VEGFR-2, MMP-1, and MMP-9 expression. Mol Ther,2006.13(5):947-955.
    4. Zhang, X, Wang, J, Fan, C, et al., Crystal structure of TIPE2 provides insights into immune homeostasis. Nat Struct Mol Biol,2009.16(1):89-90.
    5. Sun, H, Gong, S, Carmody, RJ, et al., TIPE2, a Negative Regulator of Innate and Adaptive Immunity that Maintains Immune Homeostasis. Cell,2008. 133(3):415-426.
    6. 王永祥;马湉;高崎,TIPE2和炎性细胞因子在鼠动脉硬化斑块形成中的表达及其相互关系.山东大学学报(医学版),2008.46(12):1124-1127,1131.
    7. Zhang, S, Zhang, Y, Wei, X, et al., Expression and regulation of a novel identified TNFAIP8 family is associated with diabetic nephropathy Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2010. 1802(11):1078-1086.
    8. Zhang, Y, Wei, X, Liu, L, et al., TIPE2, a Novel Regulator of Immunity, Protects against Experimental Stroke. Journal of Biological Chemistry,2012. 287(39):32546-32555.
    9. Ahtiluoto, S, Polvikoski, T, Peltonen, M, et al., Diabetes, Alzheimer disease, and vascular dementia:a population-based neuropathologic study. Neurology. 75(13):1195-1202.
    10. Umegaki, H, Neurodegeneration in diabetes mellitus. Adv Exp Med Biol, 2012.724:258-265.
    11. Liu, Y, Liu, H, Yang, J, et al., Increased amyloid β-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience,2008.153(3): 796-802.
    12. Zhu, M, Xu, W, Zhao, Z, et al., Aβ1-40 clearance from the brain by regulation of LRP-1:A study on effects of insulin, rosiglitazone or the combination in type 2 diabetic GK rats. Biomedicine & Aging Pathology,2012.2(2): 54-60.
    13. Honjo, K, Black, SE, Verhoeff, NP, Alzheimer's disease, cerebrovascular disease, and the beta-amyloid cascade. Can J Neurol Sci,2012.39(6): 712-728.
    14. Morales, I, Farias, G, Maccioni, RB, Neuroimmunomodulation in the patho genesis of Alzheimer's disease. Neuroimmunomodulation,2010.17(3): 202-204.
    15. Kitahara, A, Toyota, T, Kakizaki, M, et al., Activities of hepatic enzymes in spontaneous diabetes rats produced by selective breeding of normal Wistar rats. Tohoku J Exp Med,1978.126(1):7-11.
    16. Shafrir, E, Animal models of non-insulin-dependent diabetes. Diabetes Metab Rev,1992.8(3):179-208.
    17. Tran, B, Oliver, S, Rosa, J, et al., Aspects of inflammation and oxidative stress in pediatric obesity and type 1 diabetes:an overview of ten years of studies. Exp Diabetes Res.2012:683680.
    18. Banerjee, M, Saxena, M, Interleukin-1 (IL-1) family of cytokines:role in type 2 diabetes. Clin Chim Acta,2012.413(15-16):1163-1170.
    19. Calle, MC, Fernandez, ML, Inflammation and type 2 diabetes. Diabetes Metab, 2012.38(3):183-191.
    20. Bendtzen, K, Buschard, K, Diamant, M, et al., Possible role of IL-1, TNF-alpha, and IL-6 in insulin-dependent diabetes mellitus and autoimmune thyroid disease. Thyroid Cell Group. Lymphokine Res,1989.8(3):335-340.
    21. Campbell, IL, Hobbs, MV, Dockter, J, et al., Islet inflammation and hyperplasia induced by the pancreatic islet-specific overexpression of interleukin-6 in transgenic mice. Am J Pathol,1994.145(1):157-166.
    22. Hers, I, Bell, CJ, Poole, AW, et al., Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J,2002.368(Pt 3): 875-884.
    23. Doronzo, G, Viretto, M, Russo, I, et al., Nitric oxide activates P13-K and MAPK signalling pathways in human and rat vascular smooth muscle cells: influence of insulin resistance and oxidative stress. Atherosclerosis,2011. 216(1):44-53.
    24. Begum, N, Ragolia, L, High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol,2000.278(1):C81-91.
    25. Cannizzo, B, Lujan, A, Estrella, N, et al., Insulin resistance promotes early atherosclerosis via increased proinflammatory proteins and oxidative stress in fructose-fed ApoE-KO mice. Exp Diabetes Res.2012:941304.
    26. Berg, G, Miksztowicz, V, Schreier, L, Metalloproteinases in metabolic syndrome. Clin Chim Acta,2011.412(19-20):1731-1739.
    27. Yamagishi, S, Role of advanced glycation end products (AGE) and soluble receptor for AGE (sRAGE) in vascular complications in diabetes. Nihon Rinsho,2012.70 Suppl 5:243-247.
    28. Wada, R, Yagihashi, S, Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci,2005. 1043:598-604.
    29. Satoh, J, Yagihashi, S, Toyota, T, The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp Diabesity Res,2003.4(2): 65-71.
    30. Brands, AMA, Kessels, RPC, de Haan, EHF, et al., Cerebral dysfunction in type 1 diabetes:effects of insulin, vascular risk factors and blood-glucose levels. European Journal of Pharmacology,2004.490(1-3):159-168.
    31. Kuhad, A, Bishnoi, M, Tiwari, V, et al., Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacology Biochemistry and Behavior,2009.92(2):251-259.
    32. Freundt, EC, Bidere, N, Lenardo, MJ, A different TIPE of immune homeostasis. Cell,2008.133(3):401-402.
    33. Patel, S, Wang, FH, Whiteside, TL, et al., Identification of seven differentially displayed transcripts in human primary and matched metastatic head and neck squamous cell carcinoma cell lines:implications in metastasis and/or radiation response. Oral Oncol,1997.33(3):197-203.
    34. Woodward, MJ, de Boer, J, Heidorn, S, et al., Tnfaip8 is an essential gene for the regulation of glucocorticoid-mediated apoptosis of thymocytes. Cell Death Differ,2010.17(2):316-323.
    35. Lou, Y, Liu, S, The TIPE (TNFAIP8) family in inflammation, immunity, and cancer. Molecular Immunology,2011.49(1-2):4-7.
    36. You, Z, Ouyang, H, Lopatin, D, et al., Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factor-mediated apoptosis by inhibiting caspase-8 activity. J Biol Chem,2001.276(28): 26398-26404.
    37. Zhang, LJ, Liu, X, Gafken, PR, et al., A chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) complex represses expression of the gene encoding tumor necrosis factor alpha-induced protein 8 (TNFAIP8). J Biol Chem,2009.284(10):6156-6168.
    38. Radu, CG, Cheng, D, Nijagal, A, et al., Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol,2006.26(2):668-677.
    39. Strausberg, RL, Feingold, EA, Grouse, LH, et al., Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A,2002.99(26):16899-16903.
    40. Zhang, G, Hao, C, Lou, Y, et al., Tissue-specific expression of TIPE2 provides insights into its function. Mol Immunol,2010.47(15):2435-2442.
    41. Ravanti, L, Toriseva, M, Penttinen, R, et al., Expression of human collagenase-3 (MMP-13) by fetal skin fibroblasts is induced by transforming growth factor beta via p38 mitogen-activated protein kinase. FASEB J,2001. 15(6):1098-1100.
    42. Enslen, H, Brancho, DM, Davis, RJ, Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J,2000.19(6): 1301-1311.
    43. Lauricella, M, Emanuele, S, D'Anneo, A, et al., JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis,2006.11(4):607-625.
    44. Hsu, WH, Hsieh, YS, Kuo, HC, et al., Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol,2007.81(10): 719-728.
    45. Gutierrez, MG, Gonzalez, AP, Anes, E, et al., Role of lipids in killing mycobacteria by macrophages:evidence for NF-kappaB-dependent and-independent killing induced by different lipids. Cell Microbiol,2009.11(3): 406-420.
    46. Altavilla, D, Famulari, C, Passaniti, M, et al., Lipid peroxidation inhibition reduces NF-kappaB activation and attenuates cerulein-induced pancreatitis. Free Radic Res,2003.37(4):425-435.
    47. O'Neill, LA, Bowie, AG, The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol,2007.7(5):353-364.
    48. Kondo, T, Kawai, T, Akira, S, Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol,2012.33(9):449-458.
    49. Pernick, NL, Biernat, L, Du, W, et al., Clinicopathologic Analysis of Fas, Fas Ligand, and Other Biomarkers in Locally Advanced Breast Carcinoma. Breast J,2000.6(4):233-241.
    50. Morgan, MJ, Kim, YS, Liu, ZG, Membrane-bound Fas ligand requires RIP1 for efficient activation of caspase-8 within the death-inducing signaling complex. J Immunol,2009.183(5):3278-3284.
    51. Li, D, Song, L, Fan, Y, et al., Down-regulation of TIPE2 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clinical Immunology,2009.133(3):422-427.
    52. Luan, YY, Yao, YM, Zhang, L, et al., Expression of tumor necrosis factor-alpha induced protein 8 like-2 contributes to the immunosuppressive property of CD4(+)CD25(+) regulatory T cells in mice. Mol Immunol,2011. 49(1-2):219-226.
    53. Xi, W, Hu, Y, Liu, Y, et al., Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Molecular Immunology,2011. 48(9):1203-1208.
    54. 杨廷廷;李雪梅;盛红光;朱强,溃疡性结肠炎患者结肠黏膜中TIPE2表达的研究中国现代普通外科进展,2011.14(03):186-189.
    55. Holm, TH, Draeby, D, Owens, T, Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia, 2012.60(4):630-638.
    56. Ekdahl, CT, Kokaia, Z, Lindvall, O, Brain inflammation and adult neurogenesis:the dual role of microglia. Neuroscience,2009.158(3): 1021-1029.
    57. Hovsepyan, MR, Haas, MJ, Boyajyan, AS, et al., Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus. Neurosci Lett,2004.369(3):224-227.
    58. Huber, JD, VanGilder, RL, Houser, KA, Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol,2006.291(6):H2660-2668.
    59. Schalkwijk, CG, Stehouwer, CD, Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond),2005.109(2):143-159.
    60. Jansson, PA, Endothelial dysfunction in insulin resistance and type 2 diabetes. J Intern Med,2007.262(2):173-183.
    61. Madonna, R, Massaro, M, De Caterina, R, Insulin potentiates cytokine-induced VCAM-1 expression in human endothelial cells. Biochim Biophys Acta,2008.1782(9):511-516.
    62. Tanzi, RE, Moir, RD, Wagner, SL, Clearance of Alzheimer's Abeta peptide: the many roads to perdition. Neuron,2004.43(5):605-608.
    63. Ho, GJ, Drego, R, Hakimian, E, et al., Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr Drug Targets Inflamm Allergy,2005. 4(2):247-256.
    64. Kagan, BL, Hirakura, Y, Azimov, R, et al., The channel hypothesis of Alzheimer's disease:current status. Peptides,2002.23(7):1311-1315.
    65. Yao, M, Nguyen, TV, Pike, CJ, Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci,2005.25(5):1149-1158.
    66. Jellinger, KA, Challenges in neuronal apoptosis. Curr Alzheimer Res,2006. 3(4):377-391.
    67. Vassar, R, Caspase-3 cleavage of GGA3 stabilizes BACE:implications for Alzheimer's disease. Neuron,2007.54(5):671-673.
    68. Kandimalla, KK, Curran, GL, Holasek, SS, et al., Pharmacokinetic analysis of the blood-brain barrier transport of 1251-amyloid beta protein 40 in wild-type and Alzheimer's disease transgenic mice (APP,PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther,2005.313(3):1370-1378.
    69. Donahue, JE, Flaherty, SL, Johanson, CE, et al., RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol,2006.112(4): 405-415.
    70. Tamaki, C, Ohtsuki, S, Iwatsubo, T, et al., Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res,2006.23(7):1407-1416.
    71. Hong, H, Liu, LP, Liao, JM, et al., Downregulation of LRP1 [correction of LPR1] at the blood-brain barrier in streptozotocin-induced diabetic mice. Neuropharmacology,2009.56(6-7):1054-1059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700