硫化氢对营养诱导的大鼠非酒精性脂肪性肝病损伤的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     非酒精性脂肪性肝病(nonalcoholic fatty liverdisease, NAFLD)是指除酒精和其他明确的损肝因素所致外,以弥漫性肝细胞大泡性脂肪变为主要特征的临床病理综合征,包括非酒精性单纯性脂肪肝以及由其演变的非酒精性脂肪性肝炎(nonalcoholicsteatohepatitis, NASH)和肝硬化。其中NASH是以肝细胞丧失、脂肪变性、气球样变、炎性坏死及纤维化形成为特征的病理状态。 NASH常见于II型糖尿病、高血压、高脂血症及肥胖患者。
     NASH的发病机制非常复杂,且未完全阐明。目前被多数学者所接受的是1998年由Day CP所提出的“二次打击学说”。在“初次打击”诱发肝细胞脂质沉积的前提下,以氧化应激和炎症反应为轴心的“二次打击”在NASH的发生发展中起重要作用。
     NASH的持续存在已成为肝硬化甚至肝癌的重要因素之一。其中15%-20%的NASH患者在10-20年内可进展为肝硬化。随着中国物质生活水平的日益提高,NASH的患病人数持续增加,其年龄也呈现低龄化趋势。针对NASH的药物研究也成为当今医学研究的热点之一。
     气体信号分子硫化氢(H_2S),作为一种气体递质,不需借助任何特殊的运输工具就可以自由快速地通过细胞膜, H_2S在心血管、呼吸、消化、神经等系统中具有重要生理作用。研究发现H_2S具有抗氧化应激、抗炎症反应,抗凋亡以及抗纤维化作用。
     内源性H_2S是否参与NASH发病过程,现在尚无研究。本课题的研究目的就是阐明内源性H_2S在大鼠NASH发病过程中的变化;并进一步通过给以外源性的H_2S进行治疗,阐明H_2S在大鼠NASH发病过程中的作用,同时为NASH的药物研究提供基础。
     方法:
     第一部分:观察大鼠NASH发病过程中内源性H_2S的变化
     营养诱发动物模型(食物喂养法)是NASH动物模型建立最常用的方法。其中蛋氨酸/胆碱缺乏饲料(,methionine-choline deficient diet,MCD)和高脂饲料(high-fatdiet,HFD)为诱导NASH的两种常见饲料。
     1. MCD诱导形成NASH大鼠模型,分1天,7天,3周,6周,8周时间梯度观察血清中H_2S水平,肝脏中H_2S的生成能力;应用RT-PCR法和Western blotting法考察肝脏中H_2S生成酶如胱硫醚-β-合酶(CBS)和胱硫醚-γ-裂解酶(CSE)的基因转录和蛋白表达的变化。
     2. HFD诱导形成NASH大鼠模型,分1天,7天,3周,6周,8周时间梯度观察血清中H_2S水平,肝脏中H_2S的生成能力;应用RT-PCR法和Western blotting法分别考察肝脏中H_2S生成酶如CBS和CSE的基因转录和蛋白表达的变化。
     第二部分:外源性H_2S对大鼠NASH肝损伤的保护作用
     1.MCD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周,观察肝脏病理损伤、肝功能损伤指标;观察肝细胞凋亡情况。
     2.HFD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周,观察肝脏病理损伤、肝功能损伤指标;观察肝细胞凋亡情况。
     第三部分:H_2S大鼠缓解NASH肝损伤的作用机制
     1.MCD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周,观察氧化应激相关指标与炎症反应相关指标;观察肝脏脂质沉积以及脂肪酸代谢基因表达;
     2.HFD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周,观察氧化应激相关指标与炎症反应相关指标;观察肝脏脂质沉积以及脂肪酸代谢基因表达;
     结果:
     第一部分:大鼠NASH发病过程中内源性H_2S的变化
     1. MCD饲料诱导形成NASH大鼠模型,3周后,血清和肝脏中H_2S水平降低,肝脏中CBS和CSE的mRNA水平和蛋白表达水平下降。
     2. HFD诱导形成NASH大鼠模型,6周时,发现血清和肝脏中H_2S水平降低,肝脏中CBS和CSE的mRNA水平和蛋白表达水平下降。
     第二部分:外源性H_2S对大鼠NASH肝损伤的保护作用
     1. MCD饲料诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周。
     (1)病理检测:HE染色见正常对照组大鼠肝小叶结构完整,肝索排列整齐,肝细胞大小均匀,无变性坏死;MCD模型组大鼠肝脏肝小叶失去正常结构,肝板排列紊乱,肝细胞普遍脂肪变性,炎症坏死及出血明显,炎症细胞侵润,肝细胞气球样变。H_2S治疗组炎症细胞侵润和肝细胞气球样变得到明显减轻。
     (2)凋亡检测:TUNEL检测发现MCD模型组大鼠肝脏中凋亡细胞数目增加。H_2S治疗组与模型组相比,凋亡细胞数目减少。
     (3)肝脏损伤指标:MCD模型组大鼠血清中丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平增加;H_2S治疗组与模型组相比,ALT和AST水平降低。
     2. HFD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周。
     (1)病理检测:HE染色见正常对照组大鼠肝小叶结构完整,肝索排列整齐,肝细胞大小均匀,无变性坏死;HFD模型组大鼠肝脏肝小叶失去正常结构,肝板排列紊乱,肝细胞普遍脂肪变性,炎症坏死及出血明显,炎症细胞侵润,肝细胞气球样变。H_2S治疗组炎症细胞侵润和肝细胞气球样变得到明显减轻。天狼星红(Sirius Red)染色发现HFD模型组大鼠脏肝纤维化明显,H_2S治疗大鼠脏肝纤维化得以缓解。
     (2)凋亡检测:TUNEL检测发现HFD模型组大鼠肝脏中凋亡细胞数目增加;H_2S治疗组与HFD模型组相比,凋亡细胞数目减少。
     (3)肝脏损伤指标:HFD模型组大鼠血清中丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平增加;H_2S治疗组与模型组相比,ALT和AST水平降低。
     (4)胰岛素耐受:HFD模型组大鼠空腹血糖水平增加,空腹胰岛素水平变化不明显,胰岛素抵抗指数增加;H_2S治疗降低了HFD模型组大鼠的空腹血糖水平,降低了胰岛素抵抗指数。
     第三部分:外源性H_2S大鼠缓解NASH肝损伤的作用机制
     1.MCD饲料诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周。
     (1)氧化应激相关指标:MCD模型组大鼠肝脏中丙二醛(MDA,脂质过氧化的标志分子)水平增加, CYP2E1和HO-1的mRNA和蛋白表达水平增加;H_2S治疗组与模型组相比,MDA水平降低,CYP2E1的mRNA和蛋白表达水平降低,而HO-1的mRNA和蛋白表达水平进一步增加。
     (2)炎症反应相关指标:MCD模型组大鼠肝脏中TNFα和IL-6的mRNA和蛋白表达水平增加,细胞浆中IκBα蛋白水平降低,细胞核中NFκB p65蛋白水平增加。H_2S治疗组与模型组相比,大鼠肝脏中TNFα和IL-6的mRNA和蛋白表达水平降低,细胞浆中IκBα蛋白水平增加,细胞核中NFκB p65蛋白水平减少。
     (3)肝脏脂质沉积以及相关脂肪酸代谢基因的表达:MCD模型组大鼠肝脏中胆固醇和甘油三脂的水平明显增加,PPARα, SREBP-1c, FAS,和L-FABP的mRNA水平降低,CD36, TLR-2和TLR-4的mRNA水平增加;H_2S治疗降低了MCD模型组大鼠肝脏中胆固醇和甘油三脂的水平,增加了PPARα和L-FABP的mRNA水平,降低了CD36,TLR-2和TLR-4的mRNA水平,进一步降低了SREBP-1c和FAS的mRNA水平。
     2.HFD诱导形成NASH大鼠模型,同时腹腔注射硫氢化钠(NaHS,H_2S供体)治疗8周。
     (1)肝脏损伤指标:HFD模型组大鼠血清中丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平增加;H_2S治疗组与模型组相比,ALT和AST水平降低。
     (2)氧化应激相关指标:HFD模型组大鼠肝脏中丙二醛(MDA,脂质过氧化的标志分子)水平增加, CYP2E1和HO-1的mRNA和蛋白表达水平增加;H_2S治疗组与HFD模型组相比,MDA水平降低, CYP2E1的mRNA和蛋白表达水平降低,而HO-1的mRNA和蛋白表达水平进一步增加。
     (3)炎症反应相关指标:HFD模型组大鼠肝脏中TNFα和IL-6的mRNA和蛋白表达水平增加,细胞浆中IκBα蛋白水平降低,细胞核中NFκB p65蛋白水平增加。H_2S治疗组与模型组相比,大鼠肝脏中TNFα和IL-6的mRNA和蛋白表达水平降低,细胞浆中IκBα蛋白水平增加,细胞核中NFκB p65蛋白水平减少。
     (6)肝脏脂质沉积以及相关脂肪酸代谢基因的表达:HFD模型组大鼠肝脏中胆固醇和甘油三脂的水平明显增加,PPARα, SREBP-1c, FAS,和L-FABP的mRNA水平降低,CD36, TLR-2和TLR-4的mRNA水平增加;H_2S治疗降低了HFD模型组大鼠肝脏中胆固醇和甘油三脂的水平,增加了PPARα和L-FABP的mRNA水平,降低了CD36,TLR-2和TLR-4的mRNA水平,进一步降低了SREBP-1c和FAS的mRNA水平。
     结论:
     本课题探索了H_2S在NASH(NASH)发病过程中的变化以及作用机制:
     一、在MCD或HFD诱导的NASH大鼠模型中,大鼠血液和肝脏中的H_2S水平都减少。H_2S水平的明显变化提示该分子可能参与NASH的发病过程。
     二、在MCD或HFD诱导的NASH大鼠模型中给以外源性H_2S治疗发现,NASH的病变状态明显减弱,凋亡减少,胰岛素耐受情况得到好转(仅限于HFD诱导的NASH模型),肝脏中脂质沉积水平降低,氧化应激和炎症反应减轻。结果提示NASH过程中H_2S水平的降低可能是NASH恶化的因素之一,内源性的H_2S本身可能是体内的防御分子之一,提示了应用外源性H_2S治疗NASH患者的潜在价值,为临床的H_2S治疗应用提供理论依据。另外也广泛探讨了H_2S作为一种肝脏保护分子的作用机制,其机制涉及对氧化应激,炎症反应,胰岛素耐受和脂肪酸代谢蛋白的调控。
Objective:
     Non-alcoholic fatty liver disease (NAFLD) is the most major chronic liver dysfunctionin the world and its prevalence in the China is increasing with epidemics of obesity,diabetes, and metabolic syndrome. NAFLD is defined as the spectrum of benign fatty liver(steatosis) to necro-inflammation and fibrosis or non-alcoholic steatohepatitis (NASH) thatcan lead to cirrhosis and hepatocellular cancer, in the absence of excessive alcoholingestion.
     In the transition from benign steatosis to NASH,“two hit theory” is assumed to berequired, with the first hit being lipid accumulation in hepatocytes increasing the sensitivityof the liver to the second hit such as oxidative stress and pro-inflammatory cytokines,which are expected to be the promising targets in the treatment of this disease.
     Hydrogen sulfide (H_2S) was best known as a foul smelling and toxic gas before beingrecognized as an important mediator in several biological systems including neurological,cardiovascular, and gastrointestinal systems. H_2S is endogenously produced in mammaliantissues by cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS).
     Given that H_2S displays anti-oxidative, anti-inflammatory and cytoprotective activities,an anti-fibrotic effect against pulmonary fibrosis, and a protective effect against CCl4-induced injury in liver, we hypothesized that H_2S might attenuate the methionine-choline-deficient diet (MCD) or high-fat diet (HFD) induced NASH in rats.
     Methods:
     Part I:
     1. A MCD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) MCD-fed rats. Measurement of H_2Slevels in plasma and livers of rats was performed by using ELIT Ion Analyzer. The mRNAexpression and protein expression of CBS and CSE were determined by RT-PCR method and Western blotting analysis, respectively.
     2. A HFD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) HFD-fed rats. Measurement of H_2Slevels in plasma and livers of rats was performed by using ELIT Ion Analyzer. The mRNAexpression and protein expression of CBS and CSE were determined by RT-PCR methodand Western blotting analysis, respectively.
     Part II:
     1. A MCD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) MCD-diet-fed rats;(3) MCD-diet-fedrats treated with NaHS (intraperitoneal injection of0.1ml/kg/d of0.28mol/l NaHS, adonor of H_2S). Assessments of steatohepatitis by HE staining, apoptosis by TUNEL, ALTand AST activities were performed to investigate the effect of H_2S on MCD-inducedNASH.
     2. A HFD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) HFD-diet-fed rats;(3) HFD-diet-fed ratstreated with NaHS (intraperitoneal injection of0.1ml/kg/d of0.28mol/l NaHS, a donor ofH_2S). Assessments of steatohepatitis by HE staining, apoptosis by TUNEL, ALT and ASTactivities and insulin resistant were performed to investigate the effect of H_2S onHFD-induced NASH.
     Part III:
     1. A MCD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) MCD-diet-fed rats;(3) MCD-diet-fedrats treated with NaHS (intraperitoneal injection of0.1ml/kg/d of0.28mol/l NaHS, adonor of H_2S). Oxidative stress, inflammation, and expression profiles of fatty acidmetabolism genes in livers were measured to investigate the mechanism of the H_2Sprotective effect on HFD-induced NASH.
     2.A HFD rat model was prepared. Rats were divided into three experimental groupsand fed for8weeks as follows:(1) control rats;(2) HFD-diet-fed rats;(3) HFD-diet-fed ratstreated with NaHS (intraperitoneal injection of0.1ml/kg/d of0.28mol/l NaHS, a donor ofH_2S). Oxidative stress, inflammation, and expression profiles of fatty acid metabolism genes in livers were measured to investigate the mechanism of the H_2S protective effect onHFD-induced NASH.
     Results:
     Part I:
     1. After3weeks, MCD led to reduced plasma H_2S level and hepatic H_2S content inrats. MCD suppressed CBS and CSE mRNA and protein expression in livers of rats.
     2. After6weeks, HFD led to reduced plasma H_2S level and hepatic H_2S content inrats. HFD suppressed CBS and CSE mRNA and protein expression in livers of rats.
     Part II:
     1. Effect of treatment with exogenous H_2S in MCD-fed rats
     [1] Treatment with exogenous H_2S in MCD-fed rats increased plasma H_2S levels andhepatic H_2S content, further decreased hepatic CSE expression, but had no significant effecton hepatic CBS expression.
     [2] Serum levels of glucose, total cholesterol, and triglycerides were lower inMCD-fed rats than that in control rats. Treatment of MCD-fed rats with H_2S had nosignificant effect on serum glucose, total cholesterol, and triglycerides.
     [3] Hepatic content of cholesterol and triglycerides were higher in MCD-fed rats thanthat in control rats. Treatment with H_2S in MCD-fed rats resulted in a significant reductionof hepatic cholesterol and triglycerides.
     [4] HE staining revealed macrovesicular steatosis and inflammation in the livers ofMCD-fed rats, which was attenuated by treatment with H_2S. The increased TUNEL-positive cells revealed increased apoptosis in the livers of MCD-fed rats, which wasalleviated by treatment with H_2S. MCD led to increased activities of ALT and AST in serum,which was restored partly by treatment with H_2S.
     2. Effect of treatment with exogenous H_2S in HFD-fed rats
     [1] Treatment with exogenous H_2S in HFD-fed rats increased plasma H_2S levels andhepatic H_2S content, further decreased hepatic CSE expression, but had no significant effecton hepatic CBS expression.
     [2] Serum levels of glucose, total cholesterol, and triglycerides were higher inHFD-fed rats than that in control rats. Treatment of HFD-fed rats with H_2S reduced serum glucose, but had no significant effect on total cholesterol, and triglycerides in serum.
     [3] Hepatic content of cholesterol and triglycerides were higher in HFD-fed rats thanthat in control rats. Treatment with H_2S in HFD-fed rats resulted in a significant reductionof hepatic cholesterol and triglycerides.
     [4] HE staining revealed macrovesicular steatosis and inflammation in the livers ofHFD-fed rats, which was attenuated by treatment with H_2S. The increased TUNEL-positivecells revealed increased apoptosis in the livers of HFD-fed rats, which was alleviated bytreatment with H_2S. HFD led to increased activities of ALT and AST in serum, which wasrestored partly by treatment with H_2S.
     Part III:
     1. Effect of treatment with exogenous H_2S in MCD-fed rats
     [1] MCD led to increased MDA formation in livers, which were restored by treatmentwith H_2S. Hepatic mRNA and protein expression of CYP2E1and HO-1were higher inMCD-fed rats than that in control rats. Treatment with H_2S reduced CYP2E1expression,but further increased HO-1expression in livers of MCD-fed rats.
     [2] MCD induced hepatic NFκB activation, which was suppressed by treatment withH_2S. MCD led to upregulation of hepatic mRNA and protein expression of TNF-α and IL-6,which was restored by treatment with H_2S.
     [3] Hepatic mRNA levels of PPARα, SREBP-1c, FAS, and L-FABP weredownregulated; hepatic mRNA levels of CD36, TLR-2, and TLR-4were upregulated inMCD rats. Treatment of MCD-fed rats with H_2S increased hepatic mRNA levels of PPARαand L-FABP, and reduced hepatic mRNA levels of CD36, SREBP-1c, FAS, TLR-2, andTLR-4.
     2. Effect of treatment with exogenous H_2S in HFD-fed rats
     [1] HFD led to increased MDA formation in livers, which were restored by treatmentwith H_2S. Hepatic mRNA and protein expression of CYP2E1and HO-1were higher inHFD-fed rats than that in control rats. Treatment with H_2S reduced CYP2E1expression, butfurther increased HO-1expression in livers of HFD-fed rats.
     [2] HFD induced hepatic NFκB activation, which was suppressed by treatment withH_2S. HFD led to upregulation of hepatic mRNA and protein expression of TNF-α and IL-6,which was restored by treatment with H_2S.
     [3] Hepatic mRNA levels of PPARα, SREBP-1c, FAS, and L-FABP weredownregulated; hepatic mRNA levels of CD36, TLR-2, and TLR-4were upregulated inHFD rats. Treatment of HFD-fed rats with H_2S increased hepatic mRNA levels of PPARαand L-FABP, and reduced hepatic mRNA levels of CD36, SREBP-1c, FAS, TLR-2, andTLR-4.
     Conclusion:
     Endogenous H_2S formation was found suppressed in development of NASH inducedby MCD and HFD in rats.
     Treatment with H_2S could attenuate MCD and HFD-induced NASH in rats.
     Treatment with H_2S could abate MCD and HFD-induced oxidative stress in livers.
     Treatment with H_2S could inhibit MCD and HFD-induced inflammation in livers.
     Treatment with H_2S could attenuate HFD-induced insulin resistant in rats.
     Treatment with H_2S could alleviate MCD and HFD-induced lipid accumulation andhave a beneficial modulation on expression profiles of fatty acid metabolism genes inlivers.
引文
1Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A, Brancati FL, Clark JM. Prevalence ofnonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey,1988-1994. Am J Epidemiol.2013;178:38-45
    2Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region? J GastroenterolHepatol.2003;18:124-138.
    3Yan J, Xie W, Ou WN, Zhao H, Wang SY, Wang JH, Wang Q, Yang YY, Feng X, Cheng J. Epidemiological Survey andRisk Factors Analysis of Fatty Liver Disease of Adult Residents, Beijing, China. J Gastroenterol Hepatol.2013[Epubahead of print]
    4Chen CH, Huang MH, Yang JC, Nien CK, Yang CC, Yeh YH, Yueh SK. Prevalence and etiology of elevated serumalanine aminotransferase level in an adult population in Taiwan. J Gastroenterol Hepatol.2007;22:1482-1489.
    5Malik A, Cheah PL, Hilmi IN, Chan SP, Goh KL. Non-alcoholic fatty liver disease in Malaysia: a demographic,anthropometric, metabolic and histological study. J Dig Dis.2007;8:58-64.
    6Maheshwari A, Thuluvath PJ. Cryptogenic cirrhosis and NAFLD: are they related? Am J Gastroenterol.2006;101:664-668
    7Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference.Hepatology.2003;37:1202-1219
    8Mulhall BP, Ong JP, Younossi ZM. Non-alcoholic fatty liver disease: an overview. J Gastroenterol Hepatol.2002;17:1136-1143
    9Duan XY, Qiao L, Fan JG. Clinical features of nonalcoholic fatty liver disease-associated hepatocellular carcinoma.Hepatobiliary Pancreat Dis Int.2012;11:18-27.
    10McCullough AJ. Update on nonalcoholic fatty liver disease. J Clin Gastroenterol.2002;34:255-262.
    Hübscher SG. Histological assessment of nonalcoholic fatty liver disease. Histopathology2006;49:450-465.
    12Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology.1998;114:842-845.
    1Gentile CL, Pagliassotti MJ. The role of fatty acids in the development and progression of nonalcoholic fatty liverdisease. J Nutr Biochem.2008;19:567-576
    2Shi HB, Fu JF, Liang L, Wang CL, Zhu JF, Zhou F, Zhao ZY. Prevalence of nonalcoholic fatty liver disease andmetabolic syndrome in obese children. Zhonghua Er Ke Za Zhi.2009;47:114-118
    3Jackson MR, Melideo SL, Jorns MS. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfidemetabolism and produces a sulfane sulfur metabolite. Biochemistry.2012;51:6804-6815
    4Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras.Biochem Pharmacol.2013;85:689-703
    5Stein A, Bailey SM. Redox Biology of Hydrogen Sulfide: Implications for Physiology, Pathophysiology, andPharmacology. Redox Biol.2013;1:32-39
    6Fan HN, Wang HJ, Yang-Dan CR, Ren L, Wang C, Li YF, Deng Y. Protective effects of hydrogen sulfide on oxidativestress and fibrosis in hepatic stellate cells. Mol Med Rep.2013;7:247-253
    7Tokuda K, Kida K, Marutani E, Crimi E, Bougaki M, Khatri A, Kimura H, Ichinose F. Inhaled hydrogen sulfideprevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice.Antioxid Redox Signal.2012;17:11-21
    Shen Y, Guo W, Wang Z, Zhang Y, Zhong L, Zhu Y. Protective effects of hydrogen sulfide in hypoxic human umbilicalvein endothelial cells: a possible mitochondria-dependent pathway. Int J Mol Sci.2013;14:13093-13108
    1Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev2012;92:791-896
    2Kabil O, Vitvitsky V, Xie P, Banerjee R. The Quantitative Significance of the Transsulfuration Enzymes for H2SProduction in Murine Tissues. Antioxid Redox Signal2011;15:363–372
    3Siebert N, Cantre′D, Eipel C, Vollmar B. H2S contributes to the hepatic arterial buffer response and mediatesvasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol2008;295:G1266–1273
    Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. Hydrogen Sulfide Preconditioning ProtectsRat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting MitochondrialPermeability Transition. PLoS One.2013;8:e74422
    5Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects of hydrogen sulfide againstacetaminophen-induced hepatotoxicity in mice. Life Sci2010;87:692–698
    6Hosono-Fukao T, Hosono T, Seki T, Ariga T. Diallyl trisulfide protects rats from carbon tetrachloride-induced liverinjury. J Nutr2009;139:2252–2256
    7Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, et al. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity,liver cirrhosis and portal hypertension in rats. PLoS One2011;6: e25943
    8武彦宁,蔡照华,孙海梅,尚宏伟,郝刚,张立新,孙琳,张华,丁惠国。非酒精性脂肪性肝炎大鼠肝脏内源性H2S合成减少。首都医科大学学报,2010;31:287-292
    9Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1expression in a rat nutritional model of hepaticsteatosis with inflammation. Gastroenterology.1996;111:1645-1653
    10Tzanetakou IP, Doulamis IP, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A, Mikhailidis DP, Patsouris E,Vlachos I, Perrea DN. Water Soluble Vitamin E Administration in Wistar Rats with Non-alcoholic Fatty Liver Disease.Open Cardiovasc Med J2012;6:88-97
    Yang S, Lin H, Diehl AM. Fatty liver vulnerability to endotoxin-induced damage despite NF-kappaB induction andinhibited caspase3activation. Am J Physiol Gastrointest Liver Physiol.2001;281:G382-92
    1Norris EJ, Culberson CR, Narasimhan S, Clemens MG. The liver as a central regulator of hydrogen sulfide. Shock2011;36:242–250
    2Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev2012;92:791-896
    Kabil O, Vitvitsky V, Xie P, Banerjee R. The Quantitative Significance of the Transsulfuration Enzymes for H2SProduction in Murine Tissues. Antioxid Redox Signal2011;15:363–372
    4Siebert N, Cantre′D, Eipel C, Vollmar B. H2S contributes to the hepatic arterial buffer response and mediatesvasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol2008;295:G1266–1273
    5Kang K, Zhao M, Jiang H, Tan G, Pan S, Sun X. Role of hydrogen sulfide in hepatic ischemia reperfusion-inducedinjury in rats. Liver Transpl2009;15:1306–1314
    6Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. Hydrogen Sulfide Preconditioning ProtectsRat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting MitochondrialPermeability Transition. PLoS One.2013;8:e74422
    7Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects of hydrogen sulfide againstacetaminophen-induced hepatotoxicity in mice. Life Sci2010;87:692–698
    8Hosono-Fukao T, Hosono T, Seki T, Ariga T. Diallyl trisulfide protects rats from carbon tetrachloride-induced liverinjury. J Nutr2009;139:2252–2256
    9Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, et al. Hydrogen sulfide attenuates carbon tetrachloride-inducedhepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One2011;6:e25943
    10武彦宁,蔡照华,孙海梅,尚宏伟,郝刚,张立新,孙琳,张华,丁惠国。非酒精性脂肪性肝炎大鼠肝脏内源性H2S合成减少。首都医科大学学报,2010;31:287-292
    1Siebert N, Cantre′D, Eipel C, Vollmar B. H2S contributes to the hepatic arterial buffer response and mediatesvasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol2008;295:G1266–1273
    2Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. Hydrogen Sulfide Preconditioning ProtectsRat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting MitochondrialPermeability Transition. PLoS One.2013;8:e74422
    3Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects of hydrogen sulfide againstacetaminophen-induced hepatotoxicity in mice. Life Sci2010;87:692–698
    4Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, et al. Hydrogen sulfide attenuates carbon tetrachloride-inducedhepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One2011;6:e25943.
    5武彦宁,蔡照华,孙海梅,尚宏伟,郝刚,张立新,孙琳,张华,丁惠国。非酒精性脂肪性肝炎大鼠肝脏内源性H2S合成减少。首都医科大学学报,2010;31:287-292
    1Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev2012;92:791-896
    2Siebert N, Cantre′D, Eipel C, Vollmar B. H2S contributes to the hepatic arterial buffer response and mediatesvasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol2008;295:G1266–1273
    3Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. Hydrogen Sulfide Preconditioning ProtectsRat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting MitochondrialPermeability Transition. PLoS One.2013;8:e74422
    4Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects of hydrogen sulfide againstacetaminophen-induced hepatotoxicity in mice. Life Sci2010;87:692–698
    5Hosono-Fukao T, Hosono T, Seki T, Ariga T. Diallyl trisulfide protects rats from carbon tetrachloride-induced liverinjury. J Nutr2009;139:2252–2256
    Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, et al. Hydrogen sulfide attenuates carbon tetrachloride-inducedhepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One2011;6:e25943
    1中华医学会肝病学分会脂肪肝和酒精性肝病学组,非酒精性脂肪性肝病诊疗指南[J]中华肝脏病杂志,2010,18,(3),163-166
    Farsell GC, Chitturi S, Lau GK, et al. Guidelines for the assessment and management of non-alcoholic fatty liverdisease in the Asia-Pacific region: executive summary[J]. J Gastroenterol Hepatol,2007,22(6):775-777
    1Shi HB, Fu JF, Liang L, Wang CL, Zhu JF, Zhou F, Zhao ZY. Prevalence of nonalcoholic fatty liver disease andmetabolic syndrome in obese children. Zhonghua Er Ke Za Zhi.2009;47:114-118
    2Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev2012;92:791-896
    Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increasesgluconeogenesis in hepatocytes. Endocrinology.2013;154:114-126
    1Yan Y, Chen C, Zhou H, Gao H, Chen L, Chen L, et al. Endogenous hydrogen sulfide formation mediates the liverdamage in endotoxemic rats. Res Vet Sci.2013;94:590-595
    1Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology.1998;114:842-845
    Wang RQ, Nan YM, Wu WJ, Kong LB, Han F, Zhao SX, et al. Induction of heme oxygenase-1protects againstnutritional fibrosing steatohepatitis in mice. Lipids Health Dis2011;10:31
    3Nan Y, Wang R, Zhao S, Han F, Wu WJ, Kong L, et al. Heme oxygenase-1prevents non-alcoholic steatohepatitisthrough suppressing hepatocyte apoptosis in mice. Lipids Health Dis2010;9:124
    4Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. ExpertRev Gastroenterol Hepatol.2011;5:233-244
    5Abdelmegeed MA, Banerjee A, Jang S, Yoo SH, Yun JW, Gonzalez FJ, Keshavarzian A, Song BJ. CYP2E1potentiatesbinge alcohol-induced gut leakiness, steatohepatitis and apoptosis. Free Radic Biol Med.2013(in press)
    Maher J. The CYP2E1knockout delivers another punch: first ASH, now NASH. Alcoholic steatohepatitis.Nonalcoholic steatohepatitis. Hepatology2001;33:311–312
    1Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ. Critical role of cytochrome P4502E1(CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol2012;57:860–866
    2Senate E, Colak Y, Ye il A, Co kunpinar E, Sahin O, Kahraman OT, et al. Circulating resistin is elevated in patientswith non-alcoholic fatty liver disease and is associated with steatosis, portal inflammation, insulin resistance andnonalcoholic steatohepatitis scores. Minerva Med2012;103:369–376
    3Harmon RC, Tiniakos DG, Argo CK. Inflammation in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol2011;5:189–200
    Choi S, Diehl AM. Role of inflammation in nonalcoholic steatohepatitis. Curr Opin Gastroenterol2005;21:702-707
    5Li Z, Diehl AM. Innate immunity in the liver. Curr Opin Gastroenterol2003;19:565-571
    1Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T. IL-6deficiency attenuates murine diet-inducednon-alcoholic steatohepatitis. PLoS One.2009;4:e7929
    2García-Galiano D, Sánchez-Garrido MA, Espejo I,et al. IL-6and IGF-1are independent prognostic factors of liver steatosis
    3and non-alcoholic steatohepatitis in morbidly obese patients. Obes Surg.2007;17:493-503Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expressionof sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood)2007;232:614–621
    4Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in theactivation of the NF-κB transcription factor and HIV-1. EMBO J1991;10:2247–2258
    5Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCray PB, et al. Lipopolysaccharide inducesRac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKKregulation of NF-kappa B. J Biol Chem2001;276:30188–30198
    6Bode JG, Albrecht U, H ussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins--regulation by IL-6-andIL-1-type cytokines involving STAT3and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol2012;91:496–505
    1Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, et al. Increased expression of PPARgamma inhigh fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun2005;336:215–222
    2Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. Cutting edge: role of Toll-like receptor1inmediating immune response to microbial lipoproteins. J Immunol2002;169:10–14
    3Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36is a sensor of diacylglycerides. Nature2005;433:523–527
    4Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res1997;36:43–53
    5Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acidsynthesis in the liver. J Clin Invest2002;109:1125–1131
    6Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expressionof sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood)2007;232:614–621
    7Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha-dependent hepatic lipidturnover in dietary steatohepatitis in mice. Hepatol2003;38:123–132
    Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, Wy-14,643, reversesnutritional fibrosis and steatohepatitis in mice. Hepatol2004;39:1286–1296
    1Martin GG, Atshaves BP, McIntosh AL, Payne HR, Mackie JT, Kier AB, et al. Liver fatty acid binding protein geneablation enhances age-dependent weight gain in male mice. Mol Cell Biochem2009;324:101–115
    2Martin GG, Atshaves BP, Huang H, McIntosh AL, Williams BJ, Pai PJ, et al. Hepatic phenotype of liver fatty acid
    3binding protein gene-ablated mice. Am J Physiol Gastrointest Liver Physiol2009;297:G1053–1065Smathers RL, Galligan JJ, Shearn CT, Fritz KS, Mercer K, Ronis M, Orlicky DJ, Davidson NO, Petersen DR.Susceptibility of L-FABP-/-mice to oxidative stress in early-stage alcoholic liver. J Lipid Res.2013;54:1335-1345
    4Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4signaling andKupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol2007;47:571–579
    5Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology.1998;114:842-845
    6Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC. Hydrogen sulfidetreatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type2diabetes. Antioxid Redox Signal.2013;19:5-23
    Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucose utilization and increasesgluconeogenesis in hepatocytes. Endocrinology.2013;154:114-126
    1Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids2010; DOI:10.1007/s00726-010-0510-x
    2Papapetropoulos A, Pyriochou A, Altaany Z,et al.Hydrogen sulfide is an endogenous stimulator of angiogenesis.Proc Natl Acad Sci U S A2009;106(51):21972-21977
    3Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J2002;16(13):1792-1798
    4Geng B,Yang J,Qi Y,et al.H2S generated by heart in rat and its effect on cardiac function. Biochem Biophys ResCommun2004;313(2):362-368
    1Yang G,Wu L,Wang R. Proapoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J2006;20(3):553-555
    2Li W,Jin HF,Liu D,et al.Hydrogen sulfide induces apoptosis of pulmonary artery smooth muscle cell in rats withpulmonary hypertension induced by high pulmonary blood flow. Chin Med J (Engl)2009;122(24):3032-3038
    3Calvert JW,Elston M,Nicholson CK,et al.Genetic and pharmacologic hydrogen sulfide therapy attenuatesischemia-induced heart failure in mice. Circulation2010;122(1):11-19
    4Tay AS, Hu LF,Lu M,et al.Hydrogen sulfide protects neurons against hypoxic injury via stimulation ofATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein90pathway.Neuroscience2010;167(2):277-286
    5Kang K,Zhao M,Jiang H,et al.Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats. LiverTranspl2009;15(10):1306-1314
    6Hu Y,Chen X,Pan T T,et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation ofERK and PI3K/Akt pathways. Pflugers Arch,2008,455(4):607-616
    1Calvert J W,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotection through Nrf2signaling. Circ Res,2009,105(4):365-374
    2Sivarajah A,Collino M,Yasin M,et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a ratmodel of regional myocardial I/R. Shock,2009,31(3):267-274
    3Minamishima S,Bougaki M,Sips P Y,et al. Hydrogen sulfide improves survival after cardiac arrest andcardiopulmonary resuscitation via a nitric oxide synthase3-dependent mechanism in mice. Circulation,2009,120(10):88-896
    4Zhu X Y,Yan X H,Chen S J. H2S protects myocardium against ischemia/reperfusion injury and its effect onc-Fosprotein expression in rats. Sheng Li Xue Bao,2008,60(2):221-227
    5Samali A,Cotter T G. Heat shock proteins increase resistance to apoptosis. Exp Cell Res,1996,223(1):163-170
    6Yao L L, Huang X W, Wang Y G, et al. Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart CircPhysiol,2010,298(5): H1310-1319
    7Li L, Bhatia M,Moore PK. Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol2006;6(2):125-129
    8Zhi L, Ang AD, Zhang H,et al. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in humanmonocyte cell line U937via the ERK-NF-kappaB pathway. J Leukoc Biol,2007;81(5)∶1322
    1Zhang H, Zhi L, Moochhala SM,et al.Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligationand puncture-induced sepsis. J Leukoc Biol,2007;82(4)∶894
    2陈晓波,杜军保,耿彬,等.感染性和内毒素性休克大鼠动脉组织中硫化氢的变化.基础医学与临床,2003;23(4)∶384
    3Zhang H,Hegde A,Ng SW,et al. Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lunginjury. J Immunol,2007;179(6)∶4153
    4Bhatia M, Wong FL, Fu D,et al.Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEBJ,2005;19(6)∶623
    5Bhatia M, Sidhapuriwala J, Moochhala SM,et al. Hydrogen sulphide is a mediator of carrageenan-induced hindpawoedema in the rat. Br J Pharmacol,2005;145(2)∶141
    6Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: invitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med,2007;11(2)∶315
    7Collin M, Anuar FB, Murch O,etal. Inhibition of endogenous hydrogen sulfide formation reduces the organ injurycaused by endotoxemia. Br J Pharmacol,2005;146(4)∶498
    1戴鸿雁,凌亦凌,黄新莉,等.硫化氢在内毒素血症大鼠动脉舒张反应性改变中的作用及其与一氧化氮的关系.河北医科大学学报,2004;25(6)∶355
    2Distrutti E, Sediari L, Mencarelli A,et al. Evidence that hydrogen sulfide exerts antinociceptive effects in thegastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther,2006;16(1)∶325
    3Lou LX, Geng B, Du JB,etal. Hydrogen sulphide-induced hypothermia attenuates stress-related ulceration in rats.Clin Exp Pharmacol Physiol,2008;35(2)∶223
    4Fiorucci S, Santucci L, Distrutti E. NSAIDs, coxibs, CINOD and H2S-releasing NSAIDs: what lies beyond thehorizon.Dig Liver Dis,2007;39(12)∶1043
    5Streng T, Axelsson HE, Hedlund P,et al. Distribution and function of the hydrogen sulfide-sensitive TRPA1ionchannel in rat urinary bladder. Eur Urol,2008;53(2)∶391
    6Mariggiò MA,Pettini F,Fumarulo R.Sulfide influence on polymorphonuclear functions: a possible role forCa2+involvement.Immunopharmacol Immunotoxicol,1997,19:393-404
    7Sivarajah A,Collino M,Thiemermann C,et al.Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide ina rat model of regional myocardial I/R.Shock,2009,31:267-274
    1Zuidema MY,Yang Y,Korthuis RJ,et al. Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype inpostischemic murine small intestine: role of BK channels. Am J Physiol Heart Circ Physiol,2010,299: H1554-1567
    2Whiteman M,Li L,Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation ofinflammatory mediators in macrophages. Antioxid Redox Signal,2010,12:1147-1154
    3Bhatia M,Sidhapuriwala J,Moochhala SM,et al. Hydrogen sulfide is a mediator of carrageenan-induced hindpawedema in the rat. Br J Pharmacol,2005,145:141-144
    4Zanardo RC,Brancaleone V,Distrutti E,et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediatedinflammation.FASEB J,2006,20:2118-2120
    5Matthew W,Paul GW. Hydrogen sulfide and inflammation: the good,the bad,the ugly and the promising. ExpertReview Clinical Phamacology,2011,4:13-32
    6Zhao W,Zhang J,Lu Y,et al.The vasorelaxant effect of H2S as a novel endogenous gaseous KATPchannel opener.EMBOJ2001;20:6008-6016
    7Tang G,Wu L,Wang R. Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol2010;37(7):753-763
    1Sun YG, Cao YX, Wang WW,et al.Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanicalcontraction in rat cardiomyocytes. Cardiovasc Res2008;79(4):632-641
    2Yong QC,Choo CH,Tan BH,et al.Effect of hydrogen sulfide on intracellular calcium homeostasis in neu-ronal cells.Neurochem Int2010;56(3):508-515
    3Jha S,Calvert J W,Duranski M R,et al. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role ofantioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol,2008,295(2): H801-806
    4Fu Z,Liu X,Geng B,et al. Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci,2008,82(23-24):1196-1202
    5Kimura Y,Goto Y,Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress inmitochondria. Antioxid Redox Signal,2010,12(1):1-13
    6Tyagi N,Moshal K S,Sen U,et al.H2S protects against methionine-induced oxidative stress in brain endothelial cells.Antioxid Redox Signal,2009,11(1):25-33
    7肖波,王建春.过氧化物增殖体激活受体与肺部疾病.医学研究生学报,2009,22(1):79-82
    8魏红玲,杜军保,唐朝枢,等.硫化氢对低氧性肺动脉高压中氧化应激的调节作用.北京大学学报(医学版),2007,39(6):565-569
    1张鑫,耿彬,张志刚,等.气体信号分子硫化氢在油酸致大鼠急性肺损伤中的作用.心肺血管病杂志,2007,26(2):108-110
    2王平,张建新,李兰芳,等.硫化氢对大鼠内毒素性急性肺损伤的影响.中国药理学通报,2008,24(9):1232-1236
    3莫立稳,赖西南,甯交琳,等.外源性硫化氢对大鼠肢体爆炸伤后继发性肺损伤的作用.创伤外科杂志,2008,10(2):164-167
    4Chen YH,YacWZ,Geng B,etal. Endogenous hydrogen sulfide in patients with chronic obstructive pulmonarydisease.Chest,2005,128(5):3205-3211
    5李虹,刘新民,耿彬,等.新型气体信号分子硫化氢在大鼠肺纤维化发病中的作用.北京大学学报(医学版),2006,38(2):140-146
    6张维维,宫剑滨,汪俊军,等.氧化低密度脂蛋白与冠心病病变程度及其他危险因素的关系.医学研究生学报,200922(9):951-955
    7刘国磊,刘青云,陈奎,等.内源性硫化氢在大鼠心力衰竭中的变化及作用.郧阳医学院学报.2008,27(1):16-18
    8Geng B, Chang L, Pan C,et al. Endogenous hydrogen sulfide regulation of myocardial injury induced byisoproterenol. Biochem BiophysResCommun,2004,318(3):756-763
    1Bian JS,YongQ C,PanTT,et al. Role ofhydrogen sulfide in the cardioprotection caused by ischemic preconditioningin the rat heart and cardiacmyocytes. PharmacolExp Ther,2006,316(2):670-678
    2Yan SK,ChangT,WangH,et al. Effects of hydrogen sulfide on homocysteine induced oxidative stress in vascularsmooth muscle cells.Biochem Biophys Res Commun,2006,351(2):485-491
    3Eto K, Asada T, Arima K,et al. Brainhydrogen sulfide is severely deceased in Alzheimer′s disease. BiochemBiophys ResComma,2002,293(5):1485-1488
    4WhitemanM,Chua YL,Zhang D,et al. Nitric oxide protects against mitochondrial permeabilization induced byglutathione depletion: Role of S-nitrosylation? Biochem Biophys Res Comma,2006,339(1):255-262
    5任彩丽,赵红岗,刘磊,等.缺氧缺血性脑损伤新生大鼠皮质脑组织硫化氢的动态变化.实用儿科临床杂志,2008,23(12):930-931
    6杨丝丝,姜志胜,唐小卿.硫化氢对H2O2损伤PC12细胞的保护作用.南华大学学报(医学版),2007,35(4):491-494
    7廖新学,唐小卿,郭瑞鲜,等. ATP敏感钾通道在硫化氢钠对抗β-淀粉样肽诱导细胞损伤中的作用.中山大学学报(医学科学版),2008,29(3):258-263
    1张伟,樊海宁,秦伟,等.气体信号分子硫化氢在大鼠肝缺血-再灌注损伤中的作用.青海医学院学报,2007,28(2):83-87
    2王聪,邓勇,秦伟,等.硫化氢在大鼠肝星状细胞氧应激中的作用.青海医学院学报,2008,29(4):234-239
    3Hu Y,Chen X,Pan T,et al.Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERKand PI3K/Akt pathways. Pflugers Arch,2008,455(4):607-616
    4Calvert J W,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotection through Nrf2signaling.Circ Res,2009,105(4):365-374
    1Sivarajah A,Collino M,Yasin M,et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a ratmodel of regional myocardial I/R. Shock,2009,31(3):267-274
    2Minamishima S,Bougaki M,Sips P Y,et al. Hydrogen sulfide improves survival after cardiac arrest andcardiopulmonary resuscitation via a nitric oxide synthase3-dependent mechanism in mice. Circulation,2009,120(10):88-896
    3Sodha N R,Clements R T,Feng J,et al. Hydrogen sulfide therapy attenuates the inflammatory response in a porcinemodel of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg,2009,138(4):977-984
    4Florian B,Vintilescu R,Balseanu A T,et al. Long-term hypothermia reduces infarct volume in aged rats after focalischemia. Neurosci Lett,2008,438(2):180-185
    5Soejima A,Matsuzawa N,Hayashi T,et al. Alteration of redox state of human serum albumin before and afterhemodialysis. Blood Purif,2004,22(6):525-529
    6Fu Z,Liu X,Geng B,et al. Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci,2008,82(23-24):1196-1202
    1Jha S,Calvert J W,Duranski M R,et al. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role ofantioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol,2008,295(2): H801-806
    2Kang K,Jiang H C,Zhao M Y,et al.[Protection of CSE/H2S system in hepatic ischemia reperfusion injury in rats.Zhonghua Wai Ke Za Zhi,2010,48(12):924-928
    3Kang K,Zhao M,Jiang H,et al.Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats.LiverTranspl,2009,15(10):1306-1314
    4Henderson P W,Weinstein A L,Sung J,et al. Hydrogen sulfide attenuates ischemia-reperfusion injury in in vitro andin vivo models of intestine free tissue transfer. Plast Reconstr Surg,2011,127(1):487-488
    5Henderson P W,Weinstein A L,Sohn A M,et al. Hydrogen sulfide attenuates intestinal ischemia-reperfusion injurywhen delivered in the post-ischemic period. J Gastroenterol Hepatol,2010,25(10):1642-1647
    6Xu Z,Prathapasinghe G,Wu N,et al.Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogensulfide generation in the kidney. Am J Physiol Renal Physiol,2009,297(1): F27-35
    1Tripatara P,Patel N S,Brancaleone V,et al. Characterisation of cystathionine gamma-lyase/hydrogen sulphidepathway in ischaemia/reperfusion injury of the mouse kidney: an in vivo study. Eur J Pharmacol,2009,606(1-3):205-209
    2Simon F,Scheuerle A,Groger M,et al. Effects of intravenous sulfide during porcine aortic occlusion-induced kidneyischemia/reperfusion injury. Shock,2011,35(2):156-163
    3Li L,Whiteman M,Guan YY,et al.Characterization of a novel,water-soluble hydrogen sulfide-releasing molecule(GYY4137): new insights into the biology of hydrogen sulfide. Circulation2008;117(18):2351-2360
    4Toombs CF,Insko MA,Wintner EA,et al.Detection of exhaled hydrogen sulphide gas in healthy human volunteersduring intravenous administration of sodium sulphide.Br J Clin Pharmacol2010;69(6):626-636
    1. Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A,Brancati FL, Clark JM. Prevalence of nonalcoholic fatty liver disease in the UnitedStates: the Third National Health and Nutrition Examination Survey,1988-1994. Am JEpidemiol.2013;178:38-45.
    2. Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in theAsia-Pacific region? J Gastroenterol Hepatol.2003;18:124-138.
    3. Yan J, Xie W, Ou WN, Zhao H, Wang SY, Wang JH, Wang Q, Yang YY, Feng X, ChengJ. Epidemiological Survey and Risk Factors Analysis of Fatty Liver Disease of AdultResidents, Beijing, China. J Gastroenterol Hepatol.2013[Epub ahead of print]
    4. Chen CH, Huang MH, Yang JC, Nien CK, Yang CC, Yeh YH, Yueh SK. Prevalence andetiology of elevated serum alanine aminotransferase level in an adult population inTaiwan. J Gastroenterol Hepatol.2007;22:1482-1489.
    5. Malik A, Cheah PL, Hilmi IN, Chan SP, Goh KL. Non-alcoholic fatty liver disease inMalaysia: a demographic, anthropometric, metabolic and histological study. J Dig Dis.2007;8:58-64.
    6. Caldwell SH, Oelsner DH, Iezzoni JC, Hespenheide EE, Battle EH, Driscoll CJ.Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease.Hepatology.1999;29:664-669.
    7. Maheshwari A, Thuluvath PJ. Cryptogenic cirrhosis and NAFLD: are they related? AmJ Gastroenterol.2006;101:664-668.
    8. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of anAASLD Single Topic Conference. Hepatology.2003;37:1202-1219.
    9. Mulhall BP, Ong JP, Younossi ZM. Non-alcoholic fatty liver disease: an overview. JGastroenterol Hepatol.2002;17:1136-1143.
    10. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinicexperiences with a hitherto unnamed disease. Mayo Clin Proc.1980;55:434-438.
    11. Duan XY, Qiao L, Fan JG. Clinical features of nonalcoholic fatty liver disease-associated hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.2012;11:18-27.
    12. Gao X, Fan JG; Study Group of Liver and Metabolism, Chinese Society ofEndocrinology. The Diagnosis and Management of Non-alcoholic Fatty Liver Diseaseand Related Metabolic Disorders: Consensus by the Study Group of Liver andMetabolism, Chinese Society of Endocrinology. J Diabetes.2013[Epub ahead of print]
    13. McCullough AJ. Update on nonalcoholic fatty liver disease. J Clin Gastroenterol.2002;34:255-262.
    14. Bj rnsson E, Angulo P. Non-alcoholic fatty liver disease. Scand J Gastroenterol2007;42:1023-1130.
    15. Hübscher SG. Histological assessment of nonalcoholic fatty liver disease.Histopathology2006;49:450-465.
    16. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology.1998;114:842-845.
    17. Gentile CL, Pagliassotti MJ. The role of fatty acids in the development and progressionof nonalcoholic fatty liver disease. J Nutr Biochem.2008;19:567-576.
    18. Shi HB, Fu JF, Liang L, Wang CL, Zhu JF, Zhou F, Zhao ZY. Prevalence ofnonalcoholic fatty liver disease and metabolic syndrome in obese children. ZhonghuaEr Ke Za Zhi.2009;47:114-118.
    19. Jackson MR, Melideo SL, Jorns MS. Human sulfide:quinone oxidoreductase catalyzesthe first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite.Biochemistry.2012;51:6804-6815.
    20. Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide andhydrogen sulfide-releasing chimeras. Biochem Pharmacol.2013;85:689-703.
    21. Stein A, Bailey SM. Redox Biology of Hydrogen Sulfide: Implications for Physiology,Pathophysiology, and Pharmacology. Redox Biol.2013;1:32-39.
    22. Fan HN, Wang HJ, Yang-Dan CR, Ren L, Wang C, Li YF, Deng Y. Protective effects ofhydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep.2013;7:247-253.
    23. Tokuda K, Kida K, Marutani E, Crimi E, Bougaki M, Khatri A, Kimura H, Ichinose F.Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation andimproves survival by altering sulfide metabolism in mice. Antioxid Redox Signal.2012;17:11-21.
    24. Shen Y, Guo W, Wang Z, Zhang Y, Zhong L, Zhu Y. Protective effects of hydrogensulfide in hypoxic human umbilical vein endothelial cells: a possible mitochondria-dependent pathway. Int J Mol Sci.2013;14:13093-13108.
    25. Norris EJ, Culberson CR, Narasimhan S, Clemens MG. The liver as a central regulatorof hydrogen sulfide. Shock2011;36:242–250.
    26. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration thatblossomed. Physiol Rev2012;92:791-896.
    27. Kabil O, Vitvitsky V, Xie P, Banerjee R. The Quantitative Significance of theTranssulfuration Enzymes for H2S Production in Murine Tissues. Antioxid RedoxSignal2011;15:363–372.
    28. Siebert N, Cantre′D, Eipel C, Vollmar B. H2S contributes to the hepatic arterial bufferresponse and mediates vasorelaxation of the hepatic artery via activation of K(ATP)channels. Am J Physiol Gastrointest Liver Physiol2008;295:G1266–1273.
    29. Kang K, Zhao M, Jiang H, Tan G, Pan S, Sun X. Role of hydrogen sulfide in hepaticischemia reperfusion-induced injury in rats. Liver Transpl2009;15:1306–1314.
    30. Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. HydrogenSulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury byActivating Akt-GSK-3β Signaling and Inhibiting Mitochondrial PermeabilityTransition. PLoS One.2013;8:e74422.
    31. Morsy MA, Ibrahim SA, Abdelwahab SA, Zedan MZ, Elbitar HI. Curative effects ofhydrogen sulfide against acetaminophen-induced hepatotoxicity in mice. Life Sci2010;87:692–698.
    32. Hosono-Fukao T, Hosono T, Seki T, Ariga T. Diallyl trisulfide protects rats from carbontetrachloride-induced liver injury. J Nutr2009;139:2252–2256.
    33. Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, et al. Hydrogen sulfide attenuates carbontetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats.PLoS One2011;6:e25943.
    34.武彦宁,蔡照华,孙海梅,尚宏伟,郝刚,张立新,孙琳,张华,丁惠国。非酒精性脂肪性肝炎大鼠肝脏内源性H2S合成减少。首都医科大学学报,2010;31:287-292。
    35. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1andCYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholicsteatohepatitis. J Clin Invest.2000;105:1067-1075.
    36. Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1expression in a ratnutritional model of hepatic steatosis with inflammation. Gastroenterology.1996;111:1645-1653.
    37. Tzanetakou IP, Doulamis IP, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A,Mikhailidis DP, Patsouris E, Vlachos I, Perrea DN. Water Soluble Vitamin EAdministration in Wistar Rats with Non-alcoholic Fatty Liver Disease. OpenCardiovasc Med J2012;6:88-97.
    38. Yang S, Lin H, Diehl AM. Fatty liver vulnerability to endotoxin-induced damagedespite NF-kappaB induction and inhibited caspase3activation. Am J PhysiolGastrointest Liver Physiol.2001;281:G382-92.
    39.中华医学会肝病学分会脂肪肝和酒精性肝病学组,非酒精性脂肪性肝病诊疗指南.中华肝脏病杂志,2010,18,(3),163-166.
    40. Farsell GC, Chitturi S, Lau GK, et al. Guidelines for the assessment and managementof non-alcoholic fatty liver disease in the Asia-Pacific region: executive summary. JGastroenterol Hepatol,2007,22(6):775-777
    41. Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. Hydrogen sulfide impairs glucoseutilization and increases gluconeogenesis in hepatocytes. Endocrinology.2013;154:114-126.
    42. Yan Y, Chen C, Zhou H, Gao H, Chen L, Chen L, et al. Endogenous hydrogen sulfideformation mediates the liver damage in endotoxemic rats. Res Vet Sci.2013;94:590-595.
    43. Wang RQ, Nan YM, Wu WJ, Kong LB, Han F, Zhao SX, et al. Induction of hemeoxygenase-1protects against nutritional fibrosing steatohepatitis in mice. Lipids HealthDis2011;10:31.
    44. Nan Y, Wang R, Zhao S, Han F, Wu WJ, Kong L, et al. Heme oxygenase-1preventsnon-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice. LipidsHealth Dis2010;9:124.
    45. Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction innonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol.2011;5:233-244.
    46. Abdelmegeed MA, Banerjee A, Jang S, Yoo SH, Yun JW, Gonzalez FJ, Keshavarzian A,Song BJ. CYP2E1potentiates binge alcohol-induced gut leakiness, steatohepatitis andapoptosis. Free Radic Biol Med.2013(in press).
    47. Maher J. The CYP2E1knockout delivers another punch: first ASH, now NASH.Alcoholic steatohepatitis. Nonalcoholic steatohepatitis. Hepatology2001;33:311–312.
    48. Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ. Critical role ofcytochrome P4502E1(CYP2E1) in the development of high fat-induced non-alcoholicsteatohepatitis. J Hepatol2012;57:860–866.
    49. Senate E, Colak Y, Ye il A, Co kunpinar E, Sahin O, Kahraman OT, et al. Circulatingresistin is elevated in patients with non-alcoholic fatty liver disease and is associatedwith steatosis, portal inflammation, insulin resistance and nonalcoholic steatohepatitisscores. Minerva Med2012;103:369–376.
    50. Harmon RC, Tiniakos DG, Argo CK. Inflammation in nonalcoholic steatohepatitis.Expert Rev Gastroenterol Hepatol2011;5:189–200.
    51. Choi S, Diehl AM. Role of inflammation in nonalcoholic steatohepatitis. Curr OpinGastroenterol2005;21:702-707.
    52. Li Z, Diehl AM. Innate immunity in the liver. Curr Opin Gastroenterol2003;19:565-571.
    53. Mas E, Danjoux M, Garcia V, Carpentier S, Ségui B, Levade T. IL-6deficiencyattenuates murine diet-induced non-alcoholic steatohepatitis. PLoS One.2009;4:e7929.
    54. García-Galiano D, Sánchez-Garrido MA, Espejo I, Montero JL, Costán G, Marchal T,Membrives A, Gallardo-Valverde JM, Mu oz-Casta eda JR, Arévalo E, De la Mata M,Muntané J. IL-6and IGF-1are independent prognostic factors of liver steatosis andnon-alcoholic steatohepatitis in morbidly obese patients. Obes Surg.2007;17:493-503.
    55. Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis inmice by enhancing gene expression of sterol regulatory element binding protein-1c(SREBP-1c). Exp Biol Med (Maywood)2007;232:614–621.
    56. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widelyused messengers in the activation of the NF-κB transcription factor and HIV-1. EMBOJ1991;10:2247–2258.
    57. Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCray PB, et al.Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation andcoordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappaB. J Biol Chem2001;276:30188–30198.
    58. Bode JG, Albrecht U, H ussinger D, Heinrich PC, Schaper F. Hepatic acute phaseproteins--regulation by IL-6-and IL-1-type cytokines involving STAT3and itscrosstalk with NF-κB-dependent signaling. Eur J Cell Biol2012;91:496–505.
    59. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, et al. Increasedexpression of PPARgamma in high fat diet-induced liver steatosis in mice. BiochemBiophys Res Commun2005;336:215–222.
    60. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, et al. Cutting edge:role of Toll-like receptor1in mediating immune response to microbial lipoproteins. JImmunol2002;169:10–14.
    61. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36is a sensorof diacylglycerides. Nature2005;433:523–527.
    62. Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res1997;36:43–53.
    63. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program ofcholesterol and fatty acid synthesis in the liver. J Clin Invest2002;109:1125–1131.
    64. Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role ofPPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatol2003;38:123–132.
    65. Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potentPPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice.Hepatol2004;39:1286–1296.
    66. Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ.PPARalpha expression protects male mice from high fat-induced nonalcoholic fattyliver. J Nutr2011;141:603–610.
    67. Martin GG, Atshaves BP, McIntosh AL, Payne HR, Mackie JT, Kier AB, et al. Liverfatty acid binding protein gene ablation enhances age-dependent weight gain in malemice. Mol Cell Biochem2009;324:101–115.
    68. Martin GG, Atshaves BP, Huang H, McIntosh AL, Williams BJ, Pai PJ, et al. Hepaticphenotype of liver fatty acid binding protein gene-ablated mice. Am J PhysiolGastrointest Liver Physiol2009;297:G1053–1065.
    69. Smathers RL, Galligan JJ, Shearn CT, Fritz KS, Mercer K, Ronis M, Orlicky DJ,Davidson NO, Petersen DR. Susceptibility of L-FABP-/-mice to oxidative stress inearly-stage alcoholic liver. J Lipid Res.2013;54:1335-1345.
    70. Arias IM. Liver function from Y to Z. J Clin Invest.2012;122:2763-2764.
    71. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M.Toll-like receptor-4signaling and Kupffer cells play pivotal roles in the pathogenesis ofnon-alcoholic steatohepatitis. J Hepatol2007;47:571–579.
    72. Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J,Zhu YC. Hydrogen sulfide treatment promotes glucose uptake by increasing insulinreceptor sensitivity and ameliorates kidney lesions in type2diabetes. Antioxid RedoxSignal.2013;19:5-23.
    1. Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids2010; DOI:10.1007/s00726-010-0510-x.
    2. Papapetropoulos A, Pyriochou A, Altaany Z,et al.Hydrogen sulfide is anendogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A2009;106(51):21972-21977.
    3. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseoustransmitter? FASEB J2002;16(13):1792-1798.
    4. Geng B,Yang J,Qi Y,et al.H2S generated by heart in rat and its effect on cardiacfunction. Biochem Biophys Res Commun2004;313(2):362-368.
    5. Yang G,Wu L,Wang R. Proapoptotic effect of endogenous H2S on human aortasmooth muscle cells. FASEB J2006;20(3):553-555.
    6. Li W,Jin HF,Liu D,et al.Hydrogen sulfide induces apoptosis of pulmonary arterysmooth muscle cell in rats with pulmonary hypertension induced by high pulmonaryblood flow. Chin Med J (Engl)2009;122(24):3032-3038.
    7. Calvert JW,Elston M,Nicholson CK,et al.Genetic and pharmacologic hydrogensulfide therapy attenuates ischemia-induced heart failure in mice. Circulation2010;122(1):11-19.
    8. Tay AS,Hu LF,Lu M,et al.Hydrogen sulfide protects neurons against hypoxic injuryvia stimulation of ATP-sensitive potassium channel/protein kinase C/extracellularsignal-regulated kinase/heat shock protein90pathway.Neuroscience2010;167(2):277-286.
    9. Kang K,Zhao M,Jiang H,et al.Role of hydrogen sulfide in hepatic ischemia-reperfusion-induced injury in rats. Liver Transpl2009;15(10):1306-1314.
    10. Hu Y,Chen X,Pan T T,et al. Cardioprotection induced by hydrogen sulfidepreconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch,2008,455(4):607-616.
    11. Calvert J W,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotectionthrough Nrf2signaling. Circ Res,2009,105(4):365-374.
    12. Sivarajah A,Collino M,Yasin M,et al. Anti-apoptotic and anti-inflammatory effectsof hydrogen sulfide in a rat model of regional myocardial I/R. Shock,2009,31(3):267-274.
    13. Minamishima S,Bougaki M,Sips P Y,et al.Hydrogen sulfide improves survival aftercardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase3-dependent mechanism in mice. Circulation,2009,120(10):88-896.
    14. Zhu X Y,Yan X H,Chen S J. H2S protects myocardium against ischemia/reperfusion injury and its effect on c-Fosprotein expression in rats. Sheng Li Xue Bao,2008,60(2):221-227.
    15. Samali A,Cotter T G. Heat shock proteins increase resistance to apoptosis. Exp CellRes,1996,223(1):163-170.
    16. Yao L L,Huang X W,Wang Y G,et al. Hydrogen sulfide protects cardiomyocytesfrom hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependentopening of mPTP. Am J Physiol Heart Circ Physiol,2010,298(5): H1310-1319.
    17. Li L, Bhatia M,Moore PK. Hydrogen sulphide—a novel mediator of inflammation?Curr Opin Pharmacol2006;6(2):125-129.
    18. Zhi L, Ang AD, Zhang H,et al. Hydrogen sulfide induces the synthesis ofproinflammatory cytokines in human monocyte cell line U937via the ERK-NF-kappaBpathway. J Leukoc Biol,2007;81(5)∶1322
    19. Zhang H, Zhi L, Moochhala SM,et al.Endogenous hydrogen sulfide regulatesleukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol,2007;82(4)∶894
    20.陈晓波,杜军保,耿彬,等.感染性和内毒素性休克大鼠动脉组织中硫化氢的变化.基础医学与临床,2003;23(4)∶384
    21. Zhang H, Hegde A, Ng SW,et al. Hydrogen sulfide up-regulates substance P inpolymicrobial sepsis-associated lung injury. J Immunol,2007;179(6)∶4153
    22. Bhatia M, Wong FL, Fu D,et al.Role of hydrogen sulfide in acute pancreatitis andassociated lung injury. FASEB J,2005;19(6)∶623
    23. Bhatia M, Sidhapuriwala J, Moochhala SM,et al. Hydrogen sulphide is a mediatorof carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol,2005;145(2)∶141
    24. Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator ofinflammation in acute pancreatitis: in vitro studies using isolated mouse pancreaticacinar cells. J Cell Mol Med,2007;11(2)∶315
    25. Collin M, Anuar FB, Murch O,etal. Inhibition of endogenous hydrogen sulfideformation reduces the organ injury caused by endotoxemia. Br J Pharmacol,2005;146(4)∶498
    26.戴鸿雁,凌亦凌,黄新莉,等.硫化氢在内毒素血症大鼠动脉舒张反应性改变中的作用及其与一氧化氮的关系.河北医科大学学报,2004;25(6)∶355
    27. Distrutti E, Sediari L, Mencarelli A,et al. Evidence that hydrogen sulfide exertsantinociceptive effects in the gastrointestinal tract by activating KATP channels. JPharmacol Exp Ther,2006;16(1)∶325
    28. Lou LX, Geng B, Du JB,etal. Hydrogen sulphide-induced hypothermia attenuatesstress-related ulceration in rats. Clin Exp Pharmacol Physiol,2008;35(2)∶223
    29. Fiorucci S, Santucci L, Distrutti E. NSAIDs, coxibs, CINOD and H2S-releasingNSAIDs: what lies beyond the horizon.Dig Liver Dis,2007;39(12)∶1043
    30. Streng T, Axelsson HE, Hedlund P,et al. Distribution and function of the hydrogensulfide-sensitive TRPA1ion channel in rat urinary bladder. Eur Urol,2008;53(2)∶391
    31. Mariggiò MA,Pettini F,Fumarulo R.Sulfide influence on polymorphonuclearfunctions: a possible role for Ca2+involvement.Immunopharmacol Immunotoxicol,1997,19:393-404.
    32. Sivarajah A,Collino M,Thiemermann C,et al.Anti-apoptotic and anti-inflammatoryeffects of hydrogen sulfide in a rat model of regional myocardial I/R.Shock,2009,31:267-274.
    33. Zuidema MY,Yang Y,Korthuis RJ,et al. Antecedent hydrogen sulfide elicits ananti-inflammatory phenotype in postischemic murine small intestine: role of BKchannels. Am J Physiol Heart Circ Physiol,2010,299: H1554-1567.
    34. Whiteman M, Li L, Moore PK. The effect of hydrogen sulfide donors onlipopolysaccharide-induced formation of inflammatory mediators inmacrophages. Antioxid Redox Signal,2010,12:1147-1154.
    35. Bhatia M,Sidhapuriwala J,Moochhala SM,et al. Hydrogen sulfide is a mediator ofcarrageenan-induced hindpaw edema in the rat. Br J Pharmacol,2005,145:141-144.
    36. Zanardo RC,Brancaleone V,Distrutti E,et al. Hydrogen sulfide is an endogenousmodulator of leukocyte-mediated inflammation.FASEB J,2006,20:2118-2120.
    37. Matthew W,Paul GW. Hydrogen sulfide and inflammation: the good,the bad,theugly and the promising. Expert Review Clinical Phamacology,2011,4:13-32.
    38. Zhao W, Zhang J,Lu Y,et al.The vasorelaxant effect of H2S as a novel endogenousgaseous KATPchannel opener. EMBOJ2001;20:6008-6016.
    39. Tang G, Wu L, Wang R. Interaction of hydrogen sulfide with ion channels. Clin ExpPharmacol Physiol2010;37(7):753-763.
    40. Sun YG, Cao YX, Wang WW,et al.Hydrogen sulphide is an inhibitor of L-typecalcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res2008;79(4):632-641.
    41. Yong QC, Choo CH, Tan BH,et al.Effect of hydrogen sulfide on intracellularcalcium homeostasis in neu-ronal cells. Neurochem Int2010;56(3):508-515.
    42. Jha S,Calvert J W,Duranski M R,et al. Hydrogen sulfide attenuates hepaticischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am JPhysiol Heart Circ Physiol,2008,295(2): H801-806.
    43. Fu Z, Liu X, Geng B, et al. Hydrogen sulfide protects rat lung fromischemia-reperfusion injury. Life Sci,2008,82(23-24):1196-1202.
    44. Kimura Y,Goto Y,Kimura H. Hydrogen sulfide increases glutathione production andsuppresses oxidative stress in mitochondria. Antioxid Redox Signal,2010,12(1):1-13.
    45. Tyagi N,Moshal K S,Sen U,et al.H2S protects against methionine-induced oxidativestress in brain endothelial cells. Antioxid Redox Signal,2009,11(1):25-33.
    46.肖波,王建春.过氧化物增殖体激活受体与肺部疾病.医学研究生学报,2009,22(1):79-82.
    47.魏红玲,杜军保,唐朝枢,等.硫化氢对低氧性肺动脉高压中氧化应激的调节作用.北京大学学报(医学版),2007,39(6):565-569.
    48.张鑫,耿彬,张志刚,等.气体信号分子硫化氢在油酸致大鼠急性肺损伤中的作用.心肺血管病杂志,2007,26(2):108-110.
    49.王平,张建新,李兰芳,等.硫化氢对大鼠内毒素性急性肺损伤的影响.中国药理学通报,2008,24(9):1232-1236.
    50.莫立稳,赖西南,甯交琳,等.外源性硫化氢对大鼠肢体爆炸伤后继发性肺损伤的作用.创伤外科杂志,2008,10(2):164-167.
    51. Chen YH,YacWZ,Geng B,etal. Endogenous hydrogen sulfide in patients with chronicobstructive pulmonary disease.Chest,2005,128(5):3205-3211.
    52.李虹,刘新民,耿彬,等.新型气体信号分子硫化氢在大鼠肺纤维化发病中的作用.北京大学学报(医学版),2006,38(2):140-146.
    53.张维维,宫剑滨,汪俊军,等.氧化低密度脂蛋白与冠心病病变程度及其他危险因素的关系.医学研究生学报,200922(9):951-955.
    54.刘国磊,刘青云,陈奎,等.内源性硫化氢在大鼠心力衰竭中的变化及作用.郧阳医学院学报.2008,27(1):16-18.
    55. Geng B, Chang L, Pan C,et al. Endogenous hydrogen sulfide regulation ofmyocardial injury induced by isoproterenol. Biochem BiophysResCommun,2004,318(3):756-763.
    56. Bian JS,YongQ C,PanTT,et al. Role ofhydrogen sulfide in the cardioprotectioncaused by ischemic preconditioning in the rat heart and cardiacmyocytes.PharmacolExp Ther,2006,316(2):670-678.
    57. Yan SK,ChangT,WangH,et al. Effects of hydrogen sulfide on homocysteine inducedoxidative stress in vascular smooth muscle cells.Biochem Biophys Res Commun,2006,351(2):485-491.
    58. Eto K, Asada T, Arima K,et al. Brainhydrogen sulfide is severely deceased inAlzheimer′s disease. Biochem Biophys ResComma,2002,293(5):1485-1488.
    59. WhitemanM,Chua YL,Zhang D,et al. Nitric oxide protects against mitochondrialpermeabilization induced by glutathione depletion: Role of S-nitrosylation? BiochemBiophys Res Comma,2006,339(1):255-262.
    60.任彩丽,赵红岗,刘磊,等.缺氧缺血性脑损伤新生大鼠皮质脑组织硫化氢的动态变化.实用儿科临床杂志,2008,23(12):930-931.
    61.杨丝丝,姜志胜,唐小卿.硫化氢对H2O2损伤PC12细胞的保护作用.南华大学学报(医学版),2007,35(4):491-494.
    62.廖新学,唐小卿,郭瑞鲜,等. ATP敏感钾通道在硫化氢钠对抗β-淀粉样肽诱导细胞损伤中的作用.中山大学学报(医学科学版),2008,29(3):258-263.
    63.张伟,樊海宁,秦伟,等.气体信号分子硫化氢在大鼠肝缺血-再灌注损伤中的作用.青海医学院学报,2007,28(2):83-87.
    64.王聪,邓勇,秦伟,等.硫化氢在大鼠肝星状细胞氧应激中的作用.青海医学院学报,2008,29(4):234-239.
    65. Hu Y,Chen X,Pan T,et al. Cardioprotection induced by hydrogen sulfidepreconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch,2008,455(4):607-616.
    66. Calvert J W,Jha S,Gundewar S,et al. Hydrogen sulfide mediates cardioprotectionthrough Nrf2signaling.Circ Res,2009,105(4):365-374.
    67. Sivarajah A,Collino M,Yasin M,et al. Anti-apoptotic and anti-inflammatory effectsof hydrogen sulfide in a rat model of regional myocardial I/R. Shock,2009,31(3):267-274.
    68. Minamishima S,Bougaki M,Sips P Y,et al.Hydrogen sulfide improves survival aftercardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase3-dependent mechanism in mice. Circulation,2009,120(10):88-896.
    69. Sodha N R,Clements R T,Feng J,et al. Hydrogen sulfide therapy attenuates theinflammatory response in a porcine model of myocardial ischemia/reperfusioninjury. J Thorac Cardiovasc Surg,2009,138(4):977-984.
    70. Florian B,Vintilescu R,Balseanu A T,et al. Long-term hypothermia reduces infarctvolume in aged rats after focal ischemia. Neurosci Lett,2008,438(2):180-185.
    71. Soejima A,Matsuzawa N,Hayashi T,et al. Alteration of redox state of human serumalbumin before and after hemodialysis. Blood Purif,2004,22(6):525-529.
    72. Fu Z,Liu X,Geng B,et al. Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci,2008,82(23-24):1196-1202.
    73. Jha S,Calvert J W,Duranski M R,et al. Hydrogen sulfide attenuates hepaticischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am JPhysiol Heart Circ Physiol,2008,295(2): H801-806.
    74. Kang K,Jiang H C,Zhao M Y,et al.[Protection of CSE/H2S system in hepaticischemia reperfusion injury in rats. Zhonghua Wai Ke Za Zhi,2010,48(12):924-928.
    75. Kang K, Zhao M, Jiang H, et al. Role of hydrogen sulfide in hepaticischemia-reperfusion-induced injury in rats.Liver Transpl,2009,15(10):1306-1314.
    76. Henderson P W,Weinstein A L,Sung J,et al. Hydrogen sulfide attenuatesischemia-reperfusion injury in in vitro and in vivo models of intestine free tissuetransfer. Plast Reconstr Surg,2011,127(1):487-488.
    77. Henderson P W,Weinstein A L,Sohn A M,et al. Hydrogen sulfide attenuatesintestinal ischemia-reperfusion injury when delivered in the post-ischemic period. JGastroenterol Hepatol,2010,25(10):1642-1647.
    78. Xu Z,Prathapasinghe G,Wu N,et al.Ischemia-reperfusion reduces cystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol RenalPhysiol,2009,297(1): F27-35.
    79. Tripatara P,Patel N S,Brancaleone V,et al. Characterisation of cystathioninegamma-lyase/hydrogen sulphide pathway in ischaemia/reperfusion injury of themouse kidney: an in vivo study. Eur J Pharmacol,2009,606(1-3):205-209.
    80. Simon F,Scheuerle A,Groger M,et al. Effects of intravenous sulfide during porcineaortic occlusion-induced kidney ischemia/reperfusion injury. Shock,2011,35(2):156-163.
    81. Li L,Whiteman M,Guan YY,et al.Characterization of a novel,water-solublehydrogen sulfide-releasing molecule (GYY4137): new insights into the biology ofhydrogen sulfide. Circulation2008;117(18):2351-2360.
    82. Toombs CF,Insko MA,Wintner EA,et al.Detection of exhaled hydrogen sulphidegas in healthy human volunteers during intravenous administration of sodiumsulphide.Br J Clin Pharmacol2010;69(6):626-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700