小麦芽库值与其品质关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦芽作为优良的啤酒原料与价格杠杆应用于啤酒酿造,是保障我国啤酒工业快速发展的长久之计。小麦芽用于啤酒酿造中突出的技术问题之一是蛋白质含量高。库尔巴哈值(简称库值)即可溶性氮与总氮之比的百分率,是制麦过程中反映小麦芽溶解程度、评价小麦芽质量的一项重要指标。本研究以优选制麦芽小麦品种(Triticumaestivum L)L-2为原料,通过控制浸麦度及发芽周期,获得库值为31.4%~45.5%的小麦芽。对小麦芽蛋白质组分及蛋白酶;淀粉组分及α-淀粉酶、β-淀粉酶;非淀粉多糖及β-D-木糖苷酶、内切-β-(1,4)-D-木聚糖酶、β-葡聚糖酶进行了研究,确定了库值与小麦芽关键品质指标,水溶、盐溶、醇溶和碱溶蛋白含量及分子大小,胚乳细胞微观结构变化等的关系;确定了影响小麦芽基本指标的关键因素及小麦芽库值与这些关键因素的关系,确定了小麦芽适宜库值。主要结论如下:
     (1)库值与小麦芽基本指标的关系
     库值与浸出物、α-氨基氮(α-AN)显著正相关(P<0.05);与糖化时间显著负相关(P<0.05);与小麦芽色度、总酸度、制麦损失存在极显著正相关(P<0.01);小麦芽库值39.5%时,糖化力和α-AN含量最高,此时糖化力496.72WK;α-AN含量166.03mg/100mg。
     (2)库值与小麦芽蛋白质组分降解的关系
     ①31.4%~45.5%的库值范围内,小麦芽水溶蛋白增加91.18%~216.40%;盐溶蛋白增加62.73%~140.91%;醇溶蛋白降解37.85%~79.92%;碱溶蛋白降解23.32%~57.34%。水溶蛋白增加率及碱溶蛋白降解率与库值极显著正相关(P<0.01);盐溶蛋白增长率及醇溶蛋白降解率与库值显著正相关(P<0.05)。说明小麦芽制麦过程中,蛋白质的降解以醇溶蛋白的降解为主,碱溶蛋白的降解为其次;以水溶蛋白的增加为主,盐溶蛋白的增加为其次。在31.4%~45.5%的库值范围内,随库值的增加,小麦芽蛋白质的降解过程线性加剧。
     ②小麦水溶蛋白质在15.4~73.2kDa之间,制麦后84.4、43.8kDa的蛋白质生成;21.0~64.3kDa的蛋白降解,其中64.3、35.2、28.8、21.0kDa的蛋白降解最为显著;60.1和15.4kDa蛋白质增加较多,分别增加95.44%~129.64%和62.70%~257.95%。
     ③小麦盐溶蛋白在14.9~70.8kDa之间,制麦后52.3~70.8kDa的蛋白质降解,14.9~35.0kDa蛋白含量增加。
     ④小麦醇溶蛋白在17.6~60.0kDa之间,31.6~35.2kDa之间的蛋白占所有醇溶蛋白含量58.69%。制麦后醇溶蛋白表现为17.6~60.0kDa的蛋白质的降解,小麦芽中主要含有35.2、31.6、17.6kDa的蛋白质。
     ⑤小麦碱溶蛋白在34.3~108.5kDa之间,制麦后所有分子量的蛋白均含量下降,电泳条带变浅,83.2、63.8kDa的蛋白质条带消失。
     ⑥随库值增加,小麦芽醇溶蛋白中60.0kDa组分、碱溶蛋白中101.5、75.6kDa组分;水溶蛋白中64.3kDa显著降低;盐溶蛋白中17.6kDa组分极显著增加。
     ⑦小麦芽协定法糖化过程中10.6~15.4kDa的蛋白质含量增加。麦汁粘度与13.5kDa的蛋白质显著正相关(P<0.05)与11.3kDa蛋白极显著正相关(P<0.01)。麦汁色度与10.6kDa蛋白质极显著正相关(P<0.01)。
     ⑧协定法麦汁疏水性与小麦芽与库值极显著负相关(P<0.01);与麦汁中36.8kDa的蛋白质含量极显著正相关,36.8kDa蛋白质可能是影响麦汁疏水性的关键蛋白之一。
     (3)库值对小麦芽糖类物质降解的关系
     ①库值为31.4%~39.5%时直链、支链淀粉降解较为剧烈,39.5%~45.5%的库值范围内小麦芽直链、支链淀粉及支链/直链淀粉比不存在显著差异,淀粉降解趋于稳定。
     ②制麦过程中β-葡聚糖以降解为主、WEAXs以增加为主,水溶性β-葡聚糖的降解会提高WEAXs的溶出。在库值小于39.5%时WEAXs含量与粘度呈显著正相关(p<0.05)。
     (4)库值与协定法麦汁糖组分的关系
     不同库值小麦芽协定法麦汁浓度在8.47%~8.66%之间,浸出物在81.29%~82.71%之间,两项指标在小麦芽间无显著性差异,说明麦汁浓度及浸出物受库值的影响较少;麦汁色度与葡萄糖、甘露糖显著正相关(P<0.05);麦汁浊度与还原糖含量呈显著负相关(P<0.05)。麦汁粘度与WEAXS含量极显著正相关(P<0.01)。库值与葡萄糖极显著正相关(P<0.01);与WEAXS显著负相关(P<0.01)。
     (5)库值与小麦芽降解酶活力的关系
     ①制麦后α-淀粉酶、β-淀粉酶、蛋白酶、β-D-木糖苷酶、内切-β-(1,4)-D-木聚糖酶、β-葡聚糖酶降解酶活力都有不同程度的提高。库值的增加会显著影响小麦芽降解酶活力。α-淀粉酶、β-淀粉酶、β-D-木糖苷酶、内切-β-(1,4)-D-木聚糖酶、β-葡聚糖酶活间均存在显著正相关性(P<0.05),说明糖类降解酶活增长之间存在较强的协同作用。
     ②31.4%~37.0%库值范围内,随库值的增加6种降解酶均呈现上升趋势,库值高于37.0%时,α-淀粉酶、内切-β-(1,4)-D-木聚糖酶活持续升高;β-葡聚糖酶、β-D-木糖苷酶、β-淀粉酶、蛋白酶分别在库值为37.6%、39.5%、40.7%、42.7%时达到最大。从获得较高降解酶活角度考虑,小麦芽库值在37.6%~42.7%之间较好。
     (6)影响小麦芽质量的关键因素及小麦芽适宜的库值的确定
     36.8kDa蛋白组分是影响麦汁疏水性的关键蛋白;13.5和11.5kDa蛋白组分及WEAXs是影响麦汁粘度的关键物质。α-AN、10.6kDa蛋白组分、葡萄糖、甘露糖是影响麦汁色度的关键物质。库值在37.6%~42.7%之间时小麦芽品质最优。
Wheat malt which was used as good raw material and price lever in beer brewing, is theguarantee for the fast development of China's beer industry in the long run. One of thehighlighted technology problems in wheat malt beer brewing is that the protein content ishigh in wheat. Kolbach indices that is the ratio of the percentage of soluble nitrogen in thetotal nitrogen, is an important index that reflect wheat malt dissolve degree and wheat maltquality evaluation. Wheat (Triticum aestivum L) malts with different Kolbach indices(31.4%~45.5%) from the same wheat variety named L-2were prepared by controlling steepout moisture and germination time. The protein fractions, the starch components, non-starchpolysaccharides and degradative enzyme activities of the wheat malts was analysed toexplore the rules of the endosperm components degradation. The main conclusions were asfollowings:
     (1) The relationship between Kolbach index and quality indices of wheat malts
     Kolbach index had positive correlation with extract and α-AN (P<0.05); had negativecorrelation with saccharifying power and pH value (P<0.05); and had significant positivecorrelation with chromaticity, acidity and malting loss (P<0.05). The saccharifying powerand α-AN content were comparatively higher at the Kolbach index of39.5%, while thesaccharifying power was496.72WK and α-AN content was166.03mg/100mg.
     (2) The relationship between Kolbach index and protein components degradation ofwheat malts
     ①When Kolbach index were in the range of31.4%~45.5%, the ALSP of the maltswere increased91.18%~216.40%; the globulins were increased62.73%~140.91%; thegliadins were decreased37.85%~79.92%; the glutenins were decreased23.32%~57.34%.The Kolbach index had significant positive correlation with the ALSP increased ratio and theglutenins decreased ratio (P<0.01); and it had positive correlation with globulins increasedratio and gliadins decreased ratio (P<0.01). In wheat malting process, the degradation ofgliadins give priority to glutenins degradation; the increase of ALSP was given priority tothe increase of globulins. When in the range of31.4%to45.5%, with the increase of theKolbach index the protein degradation process of wheat malt was linear intensified.
     ②The molecular weight of the ALSP in wheat were in the range of15.4~72.3kDa,after malting the protein which molecular weight was84.4and43.8kDa were produced, theprotein which molecular weight were in the range of21.0~64.3kDa were decomposed, and the protein which molecular weight was60.1and15.4kDa were correspondingly increased95.44%~129.64%,62.70%~257.95%.
     ③The molecular weight of the globulins in wheat were in the range of14.9~70.8kDa,after malting the protein which molecular weight were in the range of52.3~70.8kDa weredecomposed,and the content of the protein which molecular weight were in the range of14.9~35.0kDa were increased.
     ④The molecular weights of the gliadins in wheat were in the range of17.6~60.0kDa,the content of the protein with the molecular weight was31.6~35.2kDa were58.69%of thecontent of all the gliadins content. After malting the protein which molecular weight were inthe range of17.6~60.0kDa were decomposed, and the main molecular weights of thegliadins in wheat malts were35.2、31.6and17.6kDa.
     ⑤The molecular weights of the glutenins in wheat were in the range of34.3~108.5kDa,after malting all the protein were decomposed, especially the protein with the molecularweight of83.2and63.8kDa were almost disappear in wheat malts.
     ⑥With the increase of Kolbach index, the content of60.0kDa gliadins,101.5kDa,75.6kDa glutenins;64.3kDa ALSP were significant decreased. And17.6kDa globulin wassignificant highly increased.
     ⑦After saccharified the content of protein with the molecular weight of10.6~15.4kDawere increased. The content of the13.5kDa and11.3kDa protein in standard wort hadpositive correlation with viscosity (P<0.05); The content of the10.6kDa protein hassignificant positive correlation with the chromaticity (P<0.01).
     ⑧The hydrophobicity of the standard wort had significant negative correlation withKolbach index (P<0.01); and had significant positive correlation with the protein with themolecular weight was36.8kDa (P<0.05).
     (3) The relationship between Kolbach index and polysaccharides componentsdegradation of wheat malts
     ①When Kolbach index were in the range of31.4%~39.5%, the degradation of theamylase, amylopectin was severe, but when Kolbach index were in the range of39.5%~45.5%, the amylase, amylopectin and Ape/Amy had no significant difference among thewheat malts.
     ②After malting the soluble β-glucan content of wheat malts was decreased. Thecontent of WEAXs was increased. When the Kolbach index was less than39.5%, the contentof WEAXs had positive correlation with viscosity.
     (4) The relationship between Kolbach index and sugars content of standard wort
     Wort concentration of the standard wort was in the range of8.47%~8.66%, and theextract was in the range of81.29%~82.71%, and the two quality indices had no differenceamong the different wheat malts with different Kolbach index. The chromaticity had positivecorrelations with the glucose and mannose (P<0.05); viscosity had significant positivecorrelations with WEAXs content of standard wort (P<0.01). The Kolbach index hadsignificant positive correlateions with glucose (P<0.01) and had negative correlateions withWEAXs (P<0.05).
     (5) The relationship between Kolbach index and the degradative enzyme activities
     ①After malted the a-amylase, β-amylase, protease, β-glucanase, β-D-xylosidase, β-(1,4)-endoxylanase activity of the malts was increased compared with which of the wheat. Andthe a-amylase, protease, β-glucanase, β-D-xylosidase, β-(1,4)-endoxylanase activity amongthe malts with different Kolbach index were significant different. There were exist positivecorrelations among the a-amylase, β-amylase, β-glucanase, β-D-xylosidase, β-(1,4)-endoxylanase activity of wheat malts (P<0.05).
     ②When the Kolbach index was less than37.0%, all the degradative enzyme activitieswas increased, when the Kolbach index were37.6%,39.5%and42.7%, the β-glucanase, β-D-xylosidase and protease reached to the peak value, correspondingly; So to acquire highestdegradative enzyme activities the suitable Kolbach index was in the range of37.6%~42.7%.
     (6) The key factor which affect the malt quality and the suitable Kolbach index ofwheat malts
     The key factor that affected the hydrophobicity of the wort was36.8kDa pritein;Thekey factors that affected the viscosity were13.5and11.5kDaproein and WEAXs. The keyfactors that affected the chromaticity were α-AN,10.6kDa protein, glucose and mannose. Itwas when the Kolbach index was in the range of37.6%~42.7%that the wheat malts qualitywas the best.
引文
曹立民,何国庆.啤酒用小麦芽发芽期间三种胚乳降解酶的研究[J].中国粮油学报,2002,10:18-20
    曾茂茂,王霄,陈洁.蛋白质疏水性测定方法的相关性及适用性[J].食品科学,2011,32(15):117-120
    董小雷,周广田,迟永卿等.小麦啤酒的生产与研究[J].酿酒科技,2004,5:82-84
    段辉国.亚精胺对小麦离体叶片中蛋白质含量与蛋白酶的影响[J].四川师范学院学报,2000,3(21):44-47
    高灿伦.作物种子实验技术[M].河南科学技术出版社,1990,12:143
    耿建华,黄丽娟,马驰.现代小麦啤酒生产技术[J].酿酒,2002,29(6):49
    耿赟,杜金华,何桂芬,杜润孜,郭萌萌.小麦与小麦芽的添加量对12oP麦汁非淀粉多糖和蛋白组分的影响[J].中国食品学报,2012,12(1):91-98
    管敦仪.啤酒工业手册(中册)[M].轻工业出版社,1982
    何照范.谷物中直、支链及总淀粉的双波长测定法[J].生物化学与生物物理进展,1981,1:70-72
    黄亚东.纯生小麦啤酒的研制[J].广州食品工业科技,2002,4:22-24
    金玉红,张开利,付聿成,张兴春,杜金华.小麦蛋白质含量对小麦芽质量的影响[J].中国粮油学报,2006,21(3):39-43
    金玉红,张开利,张兴春,杜金华. β-葡聚糖酶对SN1391小麦芽的品质影响研究[J].食品工业科技,2005(b),26(12):63-66
    金玉红,张开利,张兴春,杜金华.双波长法测定小麦及小麦芽中直链、支链淀粉含量[J].中国粮油学报,2009,24(1):137-140
    金玉红,张开利,张兴春,杜金华.小麦组分含量与小麦芽β-葡聚糖酶活力的相关性分析[J].中国粮油学报,2008,23(9):28-32
    金玉红,张开利,张兴春,杜金华.制麦过程中小麦淀粉含量及淀粉酶活力变化研究[J].酿酒,2005(a),32(1):65-67
    金玉来,刘自强.麦芽中内-β-葡聚糖酶的研究[J].大麦科学,1994,(1):36-38
    鞠云东,张开利,王妮娅,杜金华,姜淑芬.糖化温度对7°P麦汁阿拉伯木聚糖、β-葡聚糖的影响研究[J].酿酒,2008,35(4):44-47
    李俊,杜金华,郭萌萌,王纪东.啤酒原料小麦及其麦芽木聚糖含量与木聚糖酶活的研究[J].酿酒,2010,37(3):56-60
    李俊,杜金华,郭萌萌.啤酒小麦木聚糖酶酶学性质的研究[J].酿酒.2010(b),37(4):78-81
    李永仙,顾国贤,俞中.耐高温β-葡聚糖酶对成品麦芽的影响[J].酿酒,2002,7(29):96-98
    李永仙,尹象胜,顾国贤.刚果红法测定麦汁和啤酒中的β-葡聚糖[J].无锡轻工大学学报,1997,(16):8-13
    陆文清,李德发,任继平等.福林显色法测定饲料用蛋白酶活力的要点分析[J].饲料研究,2003,9:29-30
    马西壮,杜金华,刘兆玺,蒋彬彬.小麦芽使用量对麦汁质量影响的研究[J].啤酒科技,2007,3:20-22
    商曰玲,杜金华.不同成品啤酒中嘌呤含量的测定[J].食品与发酵工业,2009a,35(7):146-150
    商曰玲,杜金华.啤酒发酵过程中嘌呤含量的变化研究[J].酿酒,2009b,36(5):43-46
    邵法都,汪钊.小麦芽的酿造特性及其在啤酒酿造中的应用[J].酿酒,2000,141(6):52-53
    邵志远,关亚彬,张文宝.新的啤酒原料-小麦麦芽[J].酿酒,2002,29(1):99
    王春霞,孙领霞,刘满英.双波长分光光度法测定河北省多种粮豆作物中直、支链淀粉含量[J].光谱实验室,1999,16(3):259-261
    王兰,李家飚,肖东光.小麦啤酒研究进展[J].酿酒科技,2000,102(6):65-67
    王莉,李竹贇.双波长测定高粱中支链淀粉比例[J].酿酒科技,2002,3:71-72
    王妮娅.发酵度、α-AN及小麦芽用量对8oP啤酒酿造的影响研究[D].山东农业大学硕士毕业论文,2008
    王宪泽,李菡,张玲,孟凡国.山东省推广小麦品种蛋白质和淀粉及其组分的聚类分析[J].山东农业大学学报,2000,31(1):19-23
    薛应龙编.植物生理实验手册[M].上海科技出版社,1985:138-140
    叶俊华,顾国贤,陆健.啤酒及其泡沫中蛋白质组分的比较分析[J].无锡轻工大学学报,2003,22(6):46-49
    张开利,王妮娅,杜金华,杜连祥.发酵度对7°P啤酒酿造的影响[J].酿酒,2007a,34(2):84-86
    张开利,王妮娅,杜金华,杜连祥.浊度与啤酒组成的相关性研究[J].酿酒,2007b,34(3):69-71
    张开利,王妮娅,杜金华,杜连祥.色度与啤酒组成的相关性研究[J].食品与发酵工业,2007c,33(4):94-97
    中华人民共和国国家标准GB/T1686-2008《啤酒麦芽》.中华人民共和国国家发展和改革委员会。
    Alfano J. R. and Collmer A.. Bacterial pathogens in plants: life up against the wall. Plant Cell,1996,(8):1683-1698
    Asano K., Hashimoto N.. Isolation and characterization of foaming proteins of beer. J. Am.Soc. Brew. Chem,1980,38:129-137
    Bamforth C. W.. The foaming properties of beer. J. Inst. Brew,1985,91:370-383
    Barmforth C. W.. Biochemical approaches to beer Quality. J. Inst. Brew,1985,91:54-160
    Bech L. M., Vaag P., Heinemann B. and Breddam K.. Throughout the brewing process barleylipid transfer protein (LTP1) is transformed into a more foam promoting form Proc.Congr. Eur. Brew. Conv,1995,25:561-568
    Blasco L., Vinas M., Villa T. G... Proteins influencing foam formation in wine and beer: therole of yeast. International microbiology,2011,14:61-71
    Bradford M. M.. A rapid and sensitive method for the detection of microgram amounts ofprotein utilising the principle of dye-binding. Analytical Biochemistry,1976,7:248-526
    Burberg F., Hartmann K., Gastl M., Zarnkow M., Krahl M., Back W.. Quality at sbrauweizen-Ergebnisse der Kleinm¨alzung der Sortenbetrachtung. Brauwelt,2008,148:1030-1034
    Cach N. C. and Annmüller G. Ein Beitrag über die Pentosane im Prozess derBierherstellung—Sind sie wichtig oder technologisch unbedeutend? Monatsschr.Brauwiss,1995,48:232-241
    Caspers M. P. M., Lok F., Sinjorgo K. M. C., Zeijl M. J., Nielsen K. A. and Cameron-Mills V..Synthesis, processing and export of cytoplasmic endo-β-1,4-xylanase from barleyaleurone during germination. The Plant Journal,2001,26(2):191-204
    Celus I., Brijs K. and Delcour J. A.. The effect of malting and mashing on barley proteinextractability. Cereal Science,2006,44:203-211
    Cleemput G., Hessing M., Vanoort M., Deconynck M. and Delcour J. A.. Purification andCharacterization of a β-D-xylosidase and an endo-xylanase from wheat flour. PlantPhysiol,1997,113:377-386
    Cleemput G., Roels S. P., Vanoort M., Grobet P. J., Delcour J. A.. Heterogeneity in thestructure of water-soluble arabinoxylans in European wheat flours of variable bread-making quality. Cereal Chemistry,1993,70(3):324-329
    Cleemput G., Van Laere. K., Hessing M., Van Leuven. F., Torrekens S. and Delcour J. A.Identification and characterization of a nove1. arabinoxylanase from wheat flour. PlantPhysiol,1997,115:1619-1627
    Courtin C. M. and Delcour J. A.. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. Journal of Cereal Science,2002,35:225-243
    Croes E., Gebruers K., Robben J., Noben J. P., Samyn B., Debyser G., van Beeumen J.,Delcour J. A. and Courtin C. M.. Variability of polymorphic families of three types ofxylanase inhibitors in the wheat grain proteome. Proteomics,2008,8:1692-1705
    Dale S. W., Rasmussen S. K., Hejgaard J.. Heterologous expression of three plant serpins withdistinct inhibitory specificities. J. Biol. Chem,1996,7l(41):25083-25088
    De Backer E., Gebruers K., Van den Ende. W., Courtin C. M., Delcour J.A.. Post-translationalprocessing of β-D-xylanases and changes in extractability of arabinoxylans during wheatgermination. Plant Physiology and Biochemistry,2010.48:90-97
    Debyser W., Delvaux F. and Delcour J. A.. Activity of arabinoxylan hydrolysing enzymesduring mashing with barley malt or barley malt and unmalted wheat. J. Agric. FoodChem,1998,46:4836-4841
    Debyser W., Derdelinckx G. and Delcour J. A.. Arabinoxylan and Arabinoxylan Hydrolysingactivities in barley malts and worts derived from them. Journal of Cereal Science,1997,26:67-74
    Depraetere S. A., Delvaux F., Coghe S. and Delvaux F. R.. Wheat variety and barley maltproperties: influence on haze intensity and foam stability of wheat beer. J. Inst. Brew,2004,110(3):200-206
    Egi A, Speers R. A. and Schwarz P. B.. Arabinoxylans and their behavior during malting andbrewing. MBAA TQ,2004,41:248-267
    Englyst H. N. and Curnmings J. H.. Simplified Method for the Measurement of Total Non-starch Polysaccharides by Gas-Liquid Chromatography of Constituent Sugars as AlditolAcetates. Analyst,1984,109:937-942
    Evans D. E., Sheehan M. C. and Stewart D. C.. The impact of malt derived proteins on beerfoam quality. Part II: The influence of malt foam-positive proteins and non-starchpolysaccharides on beer foam quality. J. Inst. Brew,1999,105:171-177
    Evans E. and Bamforth C.W.. Beer foam, achieving a suitable head. In:Bamforth CW (ed)Beer: a quality perspective. Academic Press, Burlington, MA, USA,2009,7-66
    Gorinstein S., Zemser M., Vargas-Albores F., Ochoa J. L., Paredes-Lopez O., Scheler Ch.,Salnikow J., Martin-Belloso O. and Trakhtenberg S.. Proteins and amino acids in beers,their contents and relationships with other analytical data. Food Chemistry,1999,67:71-78
    Gruppen H., Hamer R. J. and Voragen A. G. J.. Barium hydroxide as a tool to extract purearabinoxylans from water-insoluble cell-wall material of wheat-flour. Journal of CerealScience,1991,13:275-290
    Han J. Y. Structural characteristics of arabinoxylan in barley, malt, and beer. Food Chemistry,2000,70:131-138
    Iimure T., Nankaku N., Watanabe-Sugimoto M., Hirota N., Tiansu Z., Kihara M., Hayashi K.,Ito K. and Sato K. Identification of novel haze-active beer proteins by proteome analysis.Cereal Science,2009,49:141–147
    Izydorczyk M., Biliaderis C. G. and Bushuk W.. Comparison of the structure and compositionof water-soluble pentosans from different wheat-varieties. Cereal Chemistry,1991,68(2):139-144
    Jin Y. H., Du J. H., Zhang K. L. and Zhang X. C.. Effects of Wheat Starch Contents on MaltQualities. J. Inst. Brew,2011,117(4):534-540
    Jin Y. H., Zhang K. L., Du J. H.. Effects of wheat protein content on endosperm compositesand malt quality. J. Inst. Brew,2008,4(114):289-293
    Jin Y. L., Speers A., Allan T., et al. Effects of β-Glucans and Environmental Factors on theViscosities of Wort and Beer. J. Inst. Brew,2004,110(2):104-116
    Jones B. L.. Endoproteases of barley and malt. Journal of Cereal Science,2005,(42):139-156
    Jones B. L. and Marinac L. A.. Barley LTPl (PAPI) and LTP2: inhibitors of green maltcysteine. endoproteases. J. Am. Soc. Brew. Chem,1995,53:194-195
    Jones B. L. and Marinac L. A. Purification, identification and partial chracterization of abarley protein that inhibits green malt Endoproteases. J. Am. Soc. Brew. Chem,1997,55:58-64
    Koizumi H., Kato Y., Ogawa T.. Barley malt polysaccharides inducing premature yeastflocculation and their possible mechanism. J. Am. Soc. Brew. Chem,2008,66:137-142
    Krahl M., Müller S., Zarnkow M., Back W., Becker T.. Arabinoxylan and Fructan in theMalting and Brewing Process. Quality Assurance and Safety of Crops and Food,2009,1757-8361
    Lewis M. J. and Lewis A. S.. Correlation of beer foam with other beer properties. TechnicalQuarterly, Master. Brewers Association of America,2003,40:114-124
    Li Y., Lu J., Gu G., Shi Z. and Mao Z.. Studies on water-extractable arabinoxylans duringmalting and brewing. Food Chemistry,2005,93:33-38
    Loosveld A. M., Grobet P. J., Delcour J. A.. Contents and Structural Features of Water-Extractable Arabinogalactan in Wheat Flour Fractions. J. Agric. Food Chem,1997,45:1998-2002
    Lu J. and Li Y.. Effects of arabinoxylan solubilization on wort viscosity and filtration whenmashing with grist containing wheat and wheat malt. Food Chemistry,2006,98:164-170
    Lusk L.T., Goldstein H., Ryder D.. Independent role of beer proteins, Melanoidins andpolysaccharides in foam formation. J. Am. Soc. Brew. Chem,1995,53:93-103
    Maeda K., Yokoi S., Kamada K. and Kamimura M.. Foam stability and physiochemicalproperties of beer. J. Am. Soc. Brew. Chem,1991,49:14-18
    McCleary B. V.. Soluble, dye-labelled polysaccharides for the assay of endohydrolases.Methods in Enzymology,1988,160:74-78.
    McCleary B.V., Glennie-Holmes M.. Enzymic quantification of (1-3),(1-4)-β-D-glucan inbarley and malt. J. Inst. Brew,1985,91:285-295
    Moers K., Celus I., Brijs K., Courtin C. M. and Delcour J. A.. Endoxylanase substrateselectivity determines degradation of wheat water-extractable and water-unextractablearabinoxylan. Carbohydrate Research,2005,340:1319-1327
    Narziss L., Eicheneder E. and Edney M. J.. Studying beer filtration with an accurate β-glucanassay. Brauwissenschaft,1989,7:277-285
    Onish A. and Proudlove M. O.. Isolation of beer foam polypep-tides by hydrophobicinteraction chromatography and their par-tial characterization. J Sci Food Agric,1994,65:233-240
    Ordaz-Ortiz J. J., Saulnier L.. Structural variability of arabinoxylans from wheat flour.Comparison of water-extractable and xylanase-extractable arabinoxylans. Journal ofCereal Science,2005,42:119-125
    Peter B., Danica M. and Rudolf T.. Soluble Chromogenic Substrates for the Assay of Endo-1,4-xylanases and Endo-1,4-β-glucanases. Analytical Biochemistry,1985,14:142-146
    Pollet A., Sansen S., Raedschelders G., Gebruers K., Rabijns A., Delcour J. A. and Courtin C.M.. Identification of structural determinants for inhibition strength and specificity ofwheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS Journal,2009,276:3916-3927
    Prisen ňáková L., Nosá ová G., Hromádková Z., Ebringerová A.. The pharmacologicalactivity of wheat bran polysaccharides. Fitoterapia,2010,81:1037-1044
    Rimsten L.. Extractable cell-wall polysaccharides in cereals, with emphasis on β-glucan insteeped and germinated barley. Doctoral dissertation,2003,401:49
    Robinson L. H., Healy P., Stewart D. C., Eglinton J. K., Ford C. M. and Evans D. E.. Theidentification of a barley haze active protein that influences beer haze stability: Thegenetic basis of a barley malt haze active protein. Journal of Cereal Science,2007,45:335-342
    Robinson L. H., Juttner J., Milligan A., Lahnstein J., Eglinton J. K. and Evans D. E.. Theidentification of a barley haze active protein that influences beer haze stability: Cloningand characterisation of the barley SE protein as a barley trypsin inhibitor of thechloroform/methanol type. Journal of Cereal Science,2007,45:343-352
    Sadosky P., Schwarz P. B., Horsley R. D.. Effect of arabinoxylans, β-glucans, and dextrins onthe viscosity and membrane filterability of a beer model solution. J. Am. Soc. Brew. Chem,2002,60:153-162
    Schwarz P. B. and Han J. Y.. Arabinoxylan content of commercial beers. J. Am. Soc. Brew.Chem,1995,53:157-159
    Silva F., Nogueira L. C., Gongalves C., Ferreira A.A., Ferreira I.M.P.L.V.O. and Teixeira N.Electrophoretic and HPLC methods for comparative study of the protein fractions ofmalts, worts and beers produced from Scarlett and Prestige barley (Hordeum vulgareL.) varieties. Food Chemistry,2008,106(2):820-829
    Simpson D. J., Fincher G. B., Huang A. H. C. and Cameron-Mills V.. Structure and function ofcereal and related higher plant (1-4)-β-xylan endohydrolases. Journal of Cereal Science,2003,37:111-127
    Simpson W. J., Hughes P. S.. Stablization of foams by hop-derived bitter acids Chemicalinteractions in beer foam. Cerevis Biotechnol,1994,19:39-44
    Skendi A., Biliaderis G G., Izydorczyk M. S., Zervou M., Zoumpoulakis P.. Structuralvariation and rheological properties of water-extractable arabinoxylans from six Greekwheat cultivars. Food Chemistry,2011,126:526-536
    Slack P. and Bamforth C.W.. The fractionation of polypeptides from barley and beer byhydrophobic interaction chromatography: The influence of their hydrophobicity on foamstability. J. Inst. Brew,1983,89:397-401
    Sungurtas J., Swanston J. S., Davies H.V., McDougall G.. J.. Xylan-degrading enzymes andarabinoxylan solubilisation in barley cultivars of differing malting quality. Journal ofCereal Science,2004,39:273-281
    Svensson B., Asano K., Janassen I., Poulsen. F. M., Mundy J., Svensson I. A..10kD barleyseed protein homologous with an alpha-amylase inhibitor from Indian finger millet.Carlsberg Res,1986,51:493-500
    Van Campenhout. S. and Volckaert. G.. Differential expression of endo-β-1,4-xylanaseisoenzymes X-I and X-II at various stages throughout barley development. Plant Science,2005,169:512-522
    Vanbeneden N., Van Roey. T., Willems F., Delvaux F. and Delvaux F. R., Release of phenolicflavour precursors during wort production: Influence of process parameters and gristcomposition on ferulic acid release during brewing. Food Chemistry,2008,111:83-91
    Vincent A. and von Husby K. O.. Food applications of propylene glycol alginate. Eur. FoodDrink Rev,1990, Summer:41-44
    Zhou S., Liu X., Guo Y., Wang Q., Peng D., Cao L.. Comparison of the immunologicalactivities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction.Carbohydrate Polymers,2010,81:784-789

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700