生物质选择性热裂解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热裂解技术是当今生物质能开发应用领域的前沿技术,能够将生物质转化为易储存、易运输的液体燃料,但因其复杂的成分和不稳定的化学性质限制了其作为高品位液体燃料的应用,究其原因是缺乏对相关机理的深入了解。本文结合相关国家项目的支持,对生物质和生物油及馏分的热裂解机理进行了较为系统的研究。
     生物质主要由纤维素、半纤维素和木质素组成,纤维素结构简单且随物料种类的变化较小,半纤维素则种类繁多由多种糖类构成,而木质素结构极其复杂,目前还不十分清楚。本文在热裂解-色谱质谱联用(PY-GC/MS)分析仪上开展了纤维素快速热裂解机理研究,发现纤维素的主要热裂解产物包括以左旋葡聚糖和左旋葡聚糖酮为代表的吡喃类物质,以糠醛和5-羟甲基糠醛为代表的呋喃类物质,以乙醛和1-羟基-2-丙酮等为代表的小分子直链物质。其中小分子直链产物主要由纤维素直接分解形成,而不是由一次产物的二次分解获得。纤维素在热裂解过程中,首先发生解聚反应形成聚合度较低的活性纤维素,进而通过脱水反应、开环反应和环化反应等形成多种热裂解产物。基于纤维素热裂解过程分析,开展了以D-吡喃型葡萄糖单体为反应物的密度泛函理论模拟计算,确定左旋葡聚糖的形成较为容易,其同分异构体3,4-脱水阿卓糖的形成则较为困难。5-羟甲基糠醛可通过D-吡喃型葡萄糖单体分解产生,而它的转化率要高于左旋葡聚糖,另外,5-羟甲基糠醛通过进一步的脱羟甲基作用会生成糠醛和小分子产物,该反应可自发进行。热裂解产物的组成与组分的结构密切相关,木聚糖快速热裂解的产物主要含有乙酸、糠醛和环戊烯酮类等物质,木质素的产物则主要包括烷基酚类、愈创木基型酚类和紫丁香基型酚类物质,还有少量的苯、甲苯等芳香烃类物质。
     本文还开展了生物质选择性热裂解行为研究。在热重-红外联用(TG-FTIR)分析仪上研究了沸石分子筛催化剂HZSM-5、H-β和USY对生物质及其组分选择性热裂解过程的影响规律,研究发现三种催化剂都促进了热裂解初期脱水反应的发生,造成了初期阶段失重的增加,同时对热裂解后期焦炭形成的影响也较大。USY的添加对初始阶段的脱水效果最明显,而HZSM-5和H-β的添加则抑制了焦炭的生成。催化剂的添加并没有改变热裂解产物的种类,只是引起产物析出强度的变化。三种催化剂的添加均降低了含氧化合物的产量,增加了小分子产物CO、CO2、甲烷等烃类产物的产量。USY的作用使得热裂解产物中含氧化合物主要向水和CO2等转化,而HZSM-5和H-β则通过促进焦炭的二次分解反应形成CO、CO2和甲烷等小分子直链产物。
     同时,基于生物油分级分离改性的后续研究需要,本文针对分子蒸馏仪获得的生物油馏分在热重-红外联用分析仪上开展了生物油及其馏分的热裂解动力学研究。轻质馏分富含水分和酸性化合物,在较低温度下就会通过挥发的形式开始失重,并生成CO2、CO、乙酸、醇类等小分子化合物,最后在200℃左右完成全部失重。重质馏分含有较多的酚类和糖类等高沸点物质,几乎没有水分,因此热值较高,稳定性较好,在热裂解过程中具有较宽的失重区间,焦炭产量高达30wt%左右。在这其中,失重低温段以化合物自身的挥发为主,较容易发生,高温段则以物质的分解为主,形成小分子气体和稳定的中间物质。中质馏分的热裂解行为介于轻质馏分和重质馏分之间,具有较多的物质种类析出,但因其蒸馏分离产量不高,可在实际应用过程视反应工况选择性地划归为轻质馏分或重质馏分。
Fast pyrolysis is one of the promising technologies, which can convert biomass into liquid fuel "bio-oil". However, the high-quality utilization of bio-oil, substituted for transportation fuels, is quite limited by its complex chemical composition. It is attributed to the lack of sufficient understanding of reaction mechanisms in biomass pyrolysis. Supported by the related national projects, a systematic research on pyrolysis mechanism of biomass and bio-oil fractions is presented in this thesis.
     Biomass is mainly consisted of cellulose, hemicellulose and lignin. Among the three components. the structure of cellulose is simple and nearly changeless with the feedstock, the structure of hemicellulose is complex due to the existence of various polysaccharides, and lignin is extremely complex with unclear understanding till now. Mechanism research on fast pyrolysis of cellulose was first investigated by using an analytical pyrolyzer coupled with Gas Chromatography and Mass Spectrometer (Py-GC/MS). The results showed that the main products were composed of pyrans such as levoglucosan and levoglucosenone, furans like furfural and5-hydroxymethyl-furfural. and small molecular chemicals with linear chain like acetaldehyde and1-hydroxy-2-propanone. Small molecular compounds were obtained from the direct decomposition of cellulose, not the secondary cracking of the initial products. Based on the depolymerization of cellulose to form active cellulose, pyrans and furans were produced by dehydration reaction, ring opening reaction and cyclization reaction etc. Moreover. the simulation began with D-glucopyranose monomer, based on the density functional methods, were carried out combined with the previous experimental results on cellulose pyrolysis. It was identified that the formation of levoglucosan was easier than its isomeride of3.4-altrosan. The formation of5-hydroxymethyl-furfural was attributed to the degradation of D-glucopyranose, which had a higher conversion than levoglucosan. In addition, furfural was produced by the cleavage of hydroxymethyl group in5-hydroxymethyl-furfural spontaneously. The composition of products was closely related to the structure of samples. The products from fast pyrolysis of xylan mainly included acetic acid, furfural, and cyclopentenone etc.. and the products of lignin were predominantly composed of phenols, such as alkylphenols. guaiacols and syringols, as well as some aromatic hydrocarbons like benzene and toluene.
     The selective pyrolysis of biomass and its components was also studied by using the thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometry. All the three zeolite catalysts HZSM-5, H-β and USY had significant influence on the dehydration reaction, resulting in an increase of weight loss in the initial stage, and meanwhile affected the char formation process during the final stage. The addition of USY had the most obvious effect on the dehydration reaction, and the effect of HZSM-5and H-β focused on the inhibition of the char formation. Though the pyrolysis products were nearly the same, their release intensities changed after the addition of catalysts. It was observed that the yield of oxygenated compounds reduced compared with pure samples pyrolysis, but the yield of light gases increased such as CO, CO2and methane. The presence of USY enhanced the conversion of oxygenated compounds mainly to water and CO2, while the addition of HZSM-5and H-β promoted the secondary cracking of residual chars to form light gases CO. CO2and methane.
     In view of the sequent researches on classification and upgrading of bio-oil for high-quality applications, pyrolysis behaviors of bio-oil fractions were studied on the TG-FTIR analyzer. combined with the first separation of bio-oil into fractions by using the molecular distillation technique. The obtained light fractions were constituted of water and acidic chemical, which began to loss weight at very low temperature by evaporation or was decomposed into small molecular compounds (CO2. CO. acetic acid, alcohols etc.) before200℃. Heavy fractions contained more compounds of phenols and sugars with high boiling point temperature and no water, so its heating value was highest and the stability was best among the three fractions. The weight loss range of heavy fraction was wide and the yield of char was high up to30wt%. During pyrolysis, self-evaporation was dominant at lower temperature, and decomposition was leading at higher temperature to produce more stable chemicals. The pyrolysis behavior of middle fraction was between light fraction and heavy fraction with the most kinds of products. Its yield was lowest, so it was regarded as light fraction or heavy fraction selectively based on the experimental conditions.
引文
[1].国际新能源网.可再生能源以生物质能为主导是大趋势.
    [2].全球石油化工网.2010年我国仍是世界第二能源消耗大国.
    [3].中国国土资源网.可再生能源终将成为化石能源的替代品.
    [4].周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15.
    [5].马立强.生物质能.科学大众(中学版)[J].2006,Z1.
    [6].中国国家发展和改革委员会组织编制.可再生能源中长期发展规划[R].北京,2007.
    [7].国家发展与改革委员会能源局.中国可再生能源产业发展报告[R].北京,2007.
    [8].生物质能的特性及其资源储量综合分析http://www.chinacir.com.cn/qbzx/article.asp?id=2375.2009.
    [9].国际能源网.世界最大的燃料乙醇生产国-巴西.
    [10].王海霞.乙醇市场:不谋巴西难谋全球[J].中国能源报.2011.
    [11]. Scholze B., Hanser C., Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin):Part Ⅱ. GPC, carbonyl goups. and 13C-NMR [J]. Journal of Analytical and Applied Pyrolysis,2001.58-59:387-400.
    [12].闵凡飞.张明旭.生物质燃烧模式及燃烧特性的研究[J].煤炭学报.2005,30(1):104-108.
    [13].米铁,陈汉平,吴正舜等.生物质灰化学特性的研究[J].太阳能学报.2004,25(2):236-241.
    [14].樊峰鸣,张百良,李保谦等.大颗粒生物质成型燃料物理特性的研究[J].农业环境科学学报.2005.24(2):398-402.
    [15].黄爱军,田洪海.城市生活垃圾焚烧处理初探[J].环境科学研究.2000.13(3):27-30.
    [16]. Bridgwater A.V. Biomass fast pyrolysis [J]. Thermal Science.2004.8:21-49.
    [17]. Czernik S., Bridgwater A.V. Overview of Applications of Biomass Fast Pyrolysis Oil [J]. Energy & Fuels,2004,18(2):590-598.
    [18]. Lu Q., Li W.Z., Zhu X.F. Overview of fuel properties of biomass fast pyrolysis oils [J]. Energy Conversion and Management.2009,50(5):1376-1383.
    [19].汪利平,吕惠生,张敏华.纤维素超临界水解反应的研究进展[J].林产化学与工业,2006,26(4):117-120.
    [20]. Zhao Y., Lu W.J., Wang H.T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology [J]. Chemical Engineering Journal.2009.150(2-3):411-417.
    [21]. CHOREN.www.choren.com/en/.
    [22]. Rutkowski P., Kubacki A. Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis [J]. Energy Conversion and Management.2006.47(6): 716-731.
    [23].山东省生物质气化技术重点实验室http://lab.sderi.cn/dy.aspx?id=6.
    [24].国际新能源网.生物质二甲醚初具产业化规模.
    [25]. http://www.mhi.co.jp/en/products/expand/km-cdr_application_04.html.
    [26]. http://iomassmagazine.com/articles/2952/chemrec-biodme-project-launched-to-deliver-biofuels.
    [27]. http://www.euractiv.com/31/images/asfe_tcm31-153324.pdf.
    [28]. http://www.volvogroup.com/group/china/zh-cn/Pages/group_home.aspx.
    [29].科学网.甲醇转化制汽油-MTG.
    [30].朱颖颖.合成气合成二甲醚和乙二醇的试验研究.浙江大学博士学位论文,2010.
    [31].英国航空公司将使用可持续的喷气燃料[J].中外能源,2010,15:108
    [32].充矿集团高温流化床费托合成技术通过鉴定[J].石油化工,2010,7:723.
    [33].中科合成油技术有限公司http://www.synfuelschina.com.cn/index.html.
    [34].谭洪,王树荣,骆仲泱等.生物质整合式流化床热裂解制油系统试验研究[J].农业机械学报,2005,36(4):31-35.
    [35]. ENSYN公司官网http://www.ensyn.com/.
    [36]. Dynamotive公司官网http://www.dynamotive.com/.
    [37]. Renewable Oil公司官网http://www.renoil.com.au/.
    [38].BTG公司官网http://www.btg-btl.com/index.php?r=oilapplication.
    [39]. Mohan D., Pittman C.U., Steele P.H. Pyrolysis of wood/biomass for bio-oil:a critical review [J]. Energy & Fuels,2006.20(3):848-889.
    [40]. Huber G.W., Iborra S., Corma A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering [J]. Chemical Reviews,2006,106(9):4044-4098.
    [41].朱锡峰.郑冀鲁,陆强.生物质热解液化装置研制与试验研究[J].中国工程科学,2006,10(89-93).
    [42]. Bridgwater A.V., Meier D.. Radlein D. An overview of fast pyrolysis of biomass [J]. Organic Geochemistry,1999,30:1479-1493.
    [43]. Luo Z.Y., Wang S.R., Liao Y.F., et al. Research on biomass fast pyrolysis for liquid fuel [J]. Biomass and Bioenergy,2004,26(5):455-462.
    [44]. Park H.J., Park Y.K., Kim J.S. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis [J]. Fuel Processing Technology,2008. 89:797-802.
    [45]. Zheng J.L. Bio-oil from fast pyrolysis of rice husk:Yields and related properties and improvement of the pyrolysis system [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):30-35.
    [46]. Zheng J.L., Yi W.M., Wang N.N. Bio-oil production from cotton stalk [J]. Energy Conversion and Management,2008,49(6):1724-1730.
    [47]. Miao X., Wu Q., Yang C. Fast pyrolysis of microalgae to produce renewable fuels [J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):855-863.
    [48]. Bridgwater A.V. Renewable fuels and chemicals by thermal processing of biomass [J]. Chemical Engineering Journal,2003,91:87-102.
    [49]. Bridgwater A.V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis,1999,51:3-22.
    [50]. Nowakowski D.J., Jones J.M., Brydson R.M., Ross A.B. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice [J]. Fuel.2007.86:2389-2402.
    [51]. Jacques L. Comparison of contact and radiant ablative pyrolysis of biomass [J]. Journal of Analytical and Applied Pyrolysis.2003.70(2):601-618.
    [52]. Brown J.N. Development of a lab-scale auger reactor for biomass pyrolysis and process optimazation using response surface methodology. Doctor thesis of Iowa State University.2009.
    [53]. Wagenaar B., Prins W., Swaaij V. Pyrolysis of biomass in the rotating cone reactor:modeling and experimental justification [J]. Chemical Engineering Science,1994,49(24):5109-5126.
    [54]. Ates F., Putun A.E., Putun E. Fixed bed pyrolysis of Euphorbia rigida with different catalyst [J]. Energy Conversion and Management.2005.,46:421-432.
    [55]. Onay O. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor [J]. Fuel. 2007.86:1452-1460.
    [56]. Aho A.,Kumar N., Eranen K., et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure [J]. Fuel.2008.87:2493-2501.
    [57]. Demiral I.. Sensoz S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse) [J]. Bioresource Technology.2008.99:8002-8007.
    [58]. Zhang Q., Chang J., Wang T.J., et al. Review of biomass pyrolysis oil properties and upgrading research [J]. Energy Conversion and Management,2007.48(1):87-92.
    [59]. Elliott D.C. Historical Developments in Hydroprocessing Bio-oils [J]. Energy & Fuels,2007,21(3): 1792-1815.
    [60]. Elliott D.C., Hart T.R. Catalytic Hydroprocessing of Chemical Models for Bio-oil [J]. Energy & Fuels. 2008,23(2):631-637.
    [61]. Rioche C., Kulkarni S., Meunier F.C. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J]. Applied catalysis B:ENVIROMENTAL,2005,61:130-139.
    [62]. Davidian T.. Guilhaume N., Daniel C., et al. Continuous hydrogen production by sequential catalytic cracking of acetic acid [J]. Applied Catalysis A:General,2008,335:64-73.
    [63]. Bridgwater A.V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass [J]. Catalysis Today,1996,29(1-4):285-295.
    [64].骆仲泱,王树荣,岑可法等.生物质整合式热裂解分级制取液体燃料装置.02112008,2004.11.10.
    [65].金征宇,顺正彪,童群义等.碳水化合物化学[M].北京:化学工业出版社,2007:229-247.
    [66]. Zhbankov R.G., Firsov S.P., Buslov D.K., et al. Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose [J]. Journal of Molecular Structure,2002., 614(1-3):117-125.
    [67]. Northolt M.G., Boerstoel H., Maatman H., et al. The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution [J]. Polymer,2001,42(19):8249-8264.
    [68]. Pastorova I., Arisz P.W., Boon J.J. Preservation of d-glucose-oligosaccharides in cellulose chars [J]. Carbohvdrate Research,1993.248:151-165.
    [69]. Zhang J., Luo J., Tong D., et al. The dependence of pyrolysis behavior on the crystal state of cellulose [J]. Carbohydrate Polymers,2010,79(1):164-169.
    [70]. Lin Y.C., Cho J., Tompsett G.A., et al. Kinetics and mechanism of cellulose pyrolysis [J]. The Journal of Physical Chemistry C,2009.113(46):20097-20107.
    [71]. Liu Q., Wang S., Wamg K., et al. Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis [J]. Acta Physico-Chimica Sinica,2008,24(11):1957-1963.
    [72]. Torri C., Lesci I.G., Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):192-196.
    [73]. Fabbri D.. Torri C., Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose:An analytical study [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):24-29.
    [74]. Witczak Z.J. Levoglucosenone and levoglucosans. chemistry and application (4 ed)[M]. ATL Press. Inc. 1994,224.
    [75]. Bridgwater A.V. Fast pyrolysis of biomass:a handbook [M]. UK:CPL Press.2008,205.
    [76]. Shimada N., Kawamoto H.,Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2008,81(1):80-87.
    [77]. Lu Q., Xiong W., Li W., et al. Catalytic pyrolysis of cellulose with sulfated metal oxides:A promising method for obtaining high yield of light furan compounds [J]. Bioresource Technology.2009,100(20): 4871-4876.
    [78]. Dobele G., Rossinskaja G., Dizhbite T., et al. Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):401-405.
    [79]. Nishimura M., Iwasaki S., Horio M. The role of potassium carbonate on cellulose pyrolysis [J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(6):630-637.
    [80]. Chew T.L., Bhatia S. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery [J]. Bioresource Technology,2008,99(17):7911-7922.
    [81]. Kato K. Pyrolysis of cellulose. Comparative studies of the volatile compounds from pyrolysates of cellulose and its related compounds [J]. Agricultural and Biological Chemistry,1967,31:657-663.
    [82]. Zhu Y., Zajicek J., Serianni A.S. Acyclic Forms of [1-13C]Aldohexoses in Aqueous Solution: Quantitation by 13C NMR and Deuterium Isotope Effects on Tautomeric Equilibria [J]. The Journal of Organic Chemistry 2001.66(19):6244-6251.
    [83]. Sanders E.B., Goldsmith A.I., Seeman J.I. A model that distinguishes the pyrolysis of -glucose,-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation [J]. Journal of Analytical and Applied Pyrolysis.2003,66(1-2):29-50.
    [84]. Lu Q., Dong C., Zhang X., et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural:Analytical Py-GC/MS study [J]. Journal of Analytical and Applied Pyrolysis,2011,90(2): 204-212.
    [85]. Faravelli T., Frassoldati A., Mihliavacca G., et al. Detailed kinetic modeling of the thermal degradation of lignins [J]. Biomass and Bioenergy,2010,34(3):290-301.
    [86].蒋挺大.木质素(第二版)[M].北京:化学工业出版社,2008:15-45.
    [87].邵震宇,谢益民,王松.不同温度条件下木质素模型物的热裂解产物的GC/MS研究[J].黑龙江造纸.2008,3:27-29.
    [88]. Vuori A., Bredenberg J.B. Thermal chemistry pathways of substituted anisoles [J]. Industrial& Engineering Chemistry Research,1987.26(2):359-365.
    [89]. Windt M., Meier D., Marsman J., et al. Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GC-MS/FID and GC×GC-TOFMS/FID [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):38-46.
    [90]. Liu Q., Wang S., Zheng Y., et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis [J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177.
    [91]. Wang S., Wang K., Liu Q., et al. Comparison of the pyrolysis behavior of lignins from different tree species [J]. Biotechnology Advances,2009,27(5):562-567.
    [92].谭洪.生物质热裂解机理试验研究.浙江大学博士学位论文,2005.
    [93], French R., Czernik S. Catalytic pyrolysis of biomass for biofuels production [J]. Fuel Processing Technology,2010,91(1):25-32.
    [94]. Nunn T.R., Howard J.B., Lonwell J.P.,et al. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin [J]. Industrial & Engineering Chemistry Process Design and Development,1985. 24(3):844-852.
    [95]. Caballero J.A., Font R.. Marcilla A. Study of the primary pyrolysis of Kraft lignin at high heating rates: yields and kinetics [J]. Journal of Analytical and Applied Pyrolysis,1996,36(2):159-178.
    [96], Britt P.F., Buchanan A.C., Thomas K.B., et al. Pyrolysis mechanisms of lignin:surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways [J]. Journal of Analytical and Applied Pyrolysis,1995,33:1-19.
    [97]. Paice M.G., Bourbonnais R., Reid I.D., et al. Oxidative bleaching enzymes:a review [J]. Journal of Pulp and Paper Science,1995,21(8):280-284.
    [98]. Dae W.C., M.P. S. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-Oxidation of lignin model compounds [J]. The Journal of Organic Chemistry, 2010,75(19):6549-6562.
    [99]. Lucimara M., Rodrigo A.R., Cesar A., et al. Linear β-mannose-containing polysaccharide, β-xylan, and amylose from the cultured photobiont Trebouxia sp. of the ascolichen Ramalina celastri [J]. FEMS Microbiology Letters,2003,220(1):89-94.
    [100]. Girio F.M., Fonseca C., Carvalheiro F.,et al. Hemicelluloses for fuel ethanol:A review [J]. Bioresource Technology,2010.101(13):4775-4800.
    [101]. Bendahou A., Dufresne A., Kaddami H., et al. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. [J]. Carbohydrate Polymers,2007,68:601-608.
    [102]. Yang H., Yan R., Chen H., et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel.2007,86(12-13):1781-1788.
    [103]. Hosoya T., Kawamoto H., SakaS. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature [J]. Journal of Analytical and Applied Pyrolysis,2007.78(2):328-336.
    [104]. Khezami L., Chetouani A., Taouk B., et al., Production and characterisation of activated carbon from wood components in powder:Cellulose, lignin, xylan [J]. Powder Technology,2005,157(1-3):48-56.
    [105]. Alen R., Kuoppala E.. Oesch P. Formation of the main degradation compound groups from wood and its components during pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1996,36:137-148.
    [106]. Varhegyi G., Antal M.J., Jakab E., et al. Kinetic modeling of biomass pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1997,42(1):73-87.
    [107]. Williams T., Besler S. The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor [J]. Fuel.1993,72:151-158.
    [108]. Gani A., Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass [J]. Renewable Energy,2007,32(4):649-661.
    [109]. Raveendran K., Ganesh A., Khilar K.C. Pyrolysis characteristics of biomass and biomass components [J]. Fuel,1996.75(8):987-998.
    [110]. Wang G., Li W., Li B., et al., TG study on pyrolysis of biomass and its three components under syngas [J]. Fuel.2008.87(4-5):552-558.
    [111]. Worasuwannarak N., Sonobe T., Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk. and corncob by TG-MS technique [J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):265-271.
    [112].刘倩.基于组分的生物质热裂解机理研究.浙江大学博士学位论文,2009.
    [113]. Wang S., Guo X., Wang K., et al. Influence of the interaction of components on the pyrolysis behavior of biomass [J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):183-189.
    [114].廖翠萍.颜涌捷,吴创之.生物质中元素分布特征的聚类分析研究[J].煤炭转化.2004.27:89-95.
    [115]. Wang Z., Wang F., Cao J., et al. Pyrolysis of pine wood in a slowly heating fixed-bed reactor: Potassium carbonate versus calcium hydroxide as a catalyst [J]. Fuel Processing Technology,2010,91(8): 942-950.
    [116]. Nowakowski D.J., Woodbridge C.R., Jones J.M. Phosphorus catalysis in the pyrolysis behaviour of biomass [J]. Journal of Analytical and Applied Pyrolysis,2008,83(2):197-204.
    [117]. Ranzi E., Cuoci A., Faravelli T., et al. Chemical kinetics of biomass pyrolysis [J]. Energy & Fuels, 2008.22(6):4292-4300.
    [118]. Demirbas A. Estimating of structural composition of wood and non-wood biomass samples [J]. Energy Sources,2005.27:761-767.
    [119]. Meszaros E., Jakab E., Varhegyi G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia [J]. Journal of Analytical and Applied Pyrolysis,2007,79(1/2):61-70.
    [120].郭秀娟,王树荣.王凯歌等.抽提物对生物质热裂解机理的影响研究[J].燃料化学学报.2010,38(1):42-46.
    [121]. Wang J.,Zhang M., Chen M., et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass [J]. Thermochimica Acta,2006,444:110-114.
    [122]. Aho A., Kumar N., Eranen K., et al. Catalytic pyrolysis of biomass in a fluidized bed reactor:Influence of the acidity of H-Beta zeolite [J]. Process Safety and Environmental Protection,2007,85(5):473-480.
    [123]. Adam J., Blazso M., Meszaros E., et al. Pyrolysis of biomass in the present of AL-MCM-41 type catalysts. Fuel,2005.84:p.1494-1502.
    [124]. Demirba A. Mechanisms of liquefaction and pyrolysis reactions of biomass [J]. Energy conversion and management,2000,41(6):633-646.
    [125]. Shin E.J., Nimlos M.R., Evans R.J. Kinetic analysis of the gas-phase pyrolysis of carbohydrates [J]. Fuel.2001.80(12):1697-1709.
    [126]. Liu Q., Zhong Z., Wang S., et al. Interactions of biomass components during pyrolysis:A TG-FTIR study [J]. Journal of Analytical and Applied Pyrolysis,2011,90(2):213-218.
    [127]. Lu Q.,Li W.,Zhang D., et al. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of sawdust with Al/SBA-15 catalysts [J]. Journal of Analytical and Applied Pyrolysis,2009,84(2): 131-138.
    [128].郭秀娟,王树荣,刘倩等.不同烘焙条件对纤维素热裂解机理的影响研究[J].太阳能学报,2009,30(9):1246-1251.
    [129]. Brown L.A., Dayton D.C., Daily J.W. A study of cellulose pyrolysis chemistry and global kinetics at high heating rates [J]. Energy & Fuel,2001,15:1286-1294.
    [130].廖艳芬.纤维素热裂解机理试验研究.浙江大学博士学位论文.2003.
    [131]. Luo, Z., Wang S., Liao Y., et al. Mechanism study of cellulose rapid pyrolysis [J]. Industrial & Engineering Chemistry Research,2004,43:5605-5610.
    [132]. Patwardhan P.R., Satrio J.A., Brown R.C., et al. Product distribution from fast pyrolysis of glucose-based carbohydrates [J]. Journal of Analytical and Applied Pyrolysis,2009,86:323-330.
    [133]. Birot M., Pillot J.P., Daude G., et al. Investigation of the pyrolysis mechanism of cellobiose in the presence of polysiloxane [J]. Journal of Analytical and Applied Pyrolysis,2008,81(2):263-271.
    [134]. Paine Ⅲ J.B., Pithawalla Y.B., Naworal J.D. Carbohydrate pyrolysis mechanisms from isotopic labeling:Part 2. The pyrolysis of d-glucose:General disconnective analysis and the formation of CI and C2 carbonyl compounds by electrocyclic fragmentation mechanisms [J]. Journal of Analytical and Applied Pyrolysis,2008,82(1):10-41.
    [135]. Radlein D.S., Grinshpun A., Piskorz J., et al. On the presence of anhydro-oligosaccharides in the sirups from the fast pyrolysis of cellulose [J]. Journal of Analytical and Applied Pyrolysis,1987,12:39-49.
    [136]. Shafizadeh F., Yuan-Zong L. Thermal degradation of 3-deoxy-erythro-hexosulose [J]. Carbohydrate Research,1975.40(2):263-274.
    [137]. Shafizadeh F., Philpot C.W., Ostojic N. Thermal analysis of 1.6-anhydro-[beta]—glucopyranose [J]. Carbohydrate Research.1971.16(2):279-287.
    [138]. Bradbury A.G.W., Sakai Y., Shafizadeh F., A kinetic model for pyrolysis of cellulose [J]. Journal of analytical and applied pyrolysis,1979,23:3271-3280.
    [139].葛晓岚.乙二醇和液体燃料合成的理论与试验研究.浙江大学硕士学位论文,2011.
    [140]. Orozco A., Ahmad M., Rooney D., et al. Dilute acid hydrolysis of cellulose and cellulosic bio-waste using microwave reactor system [J]. Process Safety and Envirmental Protection,2007,85(5):446-449.
    [141]. Dobele G., Rossinskaja G., Telysheva G., et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid [J]. Journal of Analytical and Applied Pyrolysis.1999. 49(1-2):307-317.
    [142]. Patwardhan P.R., Dalluge D.L., Shanks B.H., et al. Distinguishing promary and secondary reactions of cellulose pyrolysis [J]. Bioresource Technology,2011,102(8):5265-5269.
    [143]. Wang S., Liu Q., Liao Y., et al. A study on the mechanism research on cellulose pyrolysis under catalysis of metallic salts [J]. Korean Journal of Chemical Engineering,2007,24(2):336-340.
    [144]. Kato K. Pyrolysis of cellulose. Comparative studies of the volatile compounds from pyrolysates of cellulose and its related compounds [J]. Agricultural and Biological Chemistry,1967,31:657-663.
    [145]. Hitoshi I., Seri K.I. Catalytic activity of lanthanoide (Ⅲ) ions for dehydration of D-glucose to 5-(hydroxymethyl) furfural [J]. Journal of Molecular Catalysis A:Chemical,1996,112(2):L163-L165.
    [146]. Evans R.J., Milne T.A., Soltys M.N., et al. Mass spectrometric behavior of levoglucosan under different ionization conditions and implications for studies of cellulose pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1984.6(3):273-283.
    [147].邱玲.肖鹤呜.居学海等.双环-HMX结构和性质的理论研究[J].化学学报,2005,63:377-384.
    [148]. Nimlos M.R.,Blanksby S.J., Ellison G.B., et al. Enhancement of 1,2-dehydration of alcohols by alkali cations and protons:a model for dehydration of carbohydrates [J]. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):3-27.
    [149].黄金保.刘朝,魏顺安等.丙三醇脱水反应机理的密度泛函理论研究[J].化学学报,2010,68(11):1043-1049.
    [150]. Jarungthammachote S.. Dutta A. Equilibrium modeling of gasification:Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers [J]. Energy Conversion and Management,2008,49(6):1345-1356.
    [151].范康年.物理化学[M].北京:高等教育出版社.2005.
    [152]. Mamleev V, Bourbigot S., Yvon J. Kinetic analysis of the thermal decomposition of cellulose:The main step of mass loss [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):151-165.
    [153].黄金保,刘朝,魏顺安.纤维素单体热解机理的热力学研究[J].化学学报.2009,67(18):2081-2086.
    [154]. Nowakowski D.J., Bridgwater A.V., Elliott D.C., et al. Lignin fast pyrolysis:Results from an international collaboration [J]. Journal of Analytical and Applied Pyrolysis,2010,88(1):53-72.
    [155]. Liu Z., Ni Y., Fatehi P., et al. Isolation and cationization of hemicellulose from pre-hydrolysis liquor of kraft-based dissolving pulp production process [J]. Biomass and Bioenergy,2011,35(5):1789-1796.
    [156]. Doherty W.O.S., Mousavioun P., Fellows C.M. Value-adding to cellulosic ethanol:Lignin polymers [J]. Industrial Crops and Products,2011,33(2):259-276.
    [157]. Lavarack B.P., Griffin G.J., Rodman D. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products [J]. Biomass and Bioenergy,2002,23:367-380.
    [158]. Hosoya T., Kawamoto H., Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1): 118-125.
    [159]. Yang H., Yan R., Chen H., et al. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose. cellulose and lignin [J]. Energy and Fuel,2006,20:388-393.
    [160]. Couhert C., Commandre J.M., Salvador S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? [J]. Fuel,2009. 88(3):408-417.
    [161]. Guo X., Wang S., Wang K., et al. Experimental research on MWL pyrolysis based on the analysis of bio-oil [J]. Chemical Research in Chinese Universities,2011,27 (3):426-430.
    [162].高滋,何鸣元,戴逸云.沸石催化与分离技术[M].北京:中国石油出版社.2009.
    [163].鲁长波,杨昌炎,林伟刚等.生物质催化热解的TG-FTIR研究[J].太阳能学报,2007,28(6):0638-0643.
    [164]. Lercher J.A., Grundling C., Eder-Mirth G. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules [J]. Catalysis Today,1996,27(3-4):353-376.
    [165]. Zhang C., Guo X., Song C., et al. Effects of steam and TEOS modification on HZSM-5 zeolite for 2.6-dimethylnaphthalene synthesis by methylation of 2-methylnaphthalene with methanol [J]. Catalysis Today,149(1-2):196-201.
    [166]. Dimitrova R., Gunduz G., Spassova M. A comparative study on the structural and catalytic properties of zeolites type ZSM-5, mordenite, Beta and MCM-41 [J]. Journal of Molecular Catalysis A:Chemical, 2006.243(1):17-23.
    [167]. Li S., Lyons-Hart J., Banyasz J., et al. Real-time evolved gas analysis by FTIR method:an experimental study of cellulose pyrolysis [J]. Fuel,2001,80(12):1809-1817.
    [168]. Yang C.Y.,Lu X., Lin W., et al. TG-FTIR Study on Corn Straw Pyrolysis-influence of Minerals [J]. Chemical Research in Chinese Universities,2006,22(4):524-532.
    [169]. Lu C.B., Yao J.Z., Lin W.G., et al. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR [J]. Chinese Chemical Letters,2007,18:445-448.
    [170]. Shurong W., Liu Q., Wang K., et al. Study on catalytic pyrolysis of Manchurian ash for production of bio-oil [J]. International Journal of Green Energy,2010,7(3):300-309.
    [171]. Gayubo A.G., Aguayo A.T., Atutxa A., et al. Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. I. Alcohols and Phenols [J]. Industrial & Engineering Chemistry Research,2004,43(11):2610-2618.
    [172]. Gayubo A.G., Aguayo A.T.,Atutxa A., et al. Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. Ⅱ. Aldehydes, Ketones. and Acids [J]. Industrial & Engineering Chemistry Research,2004.43(11):2619-2626.
    [173]. Scheirs J., Camino G., Tumiatti W. Overview of water evolution during the thermal degradation of cellulose [J]. European Polymer Journal,2001.37:933-942.
    [174]. Kosik M., Reiser V., Kovac P. Thermal decomposition of model compounds related to branched 4-O-methylglucuronoxylans [J]. Carbohydrate Research,1979,70(2):199-207.
    [175]. Zamoraa F., Ginzalez M.C., Duenas M.T., et al. Thermodegradation and thermal transitions of an exopolysaccharide produced by Pediococcus damnosus 2.6 [J]. Journal of Macromolecular Science, Part B.2002.41 (3):473-486.
    [176]. Raisanen U.. Pitkanen I.. Halttunen H.. et al. Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis [J]. Journal of Thermal Analysis and Calorimetry,2003,72:481-488.
    [177]. Ponder G.R., Richards G.N. Thermal synthesis and pyrolysis of a xylan [J]. Carbohydrate Research. 1991.218:143-155.
    [178].王琦.生物质快速热裂解制取生物油及其后续应用研究.浙江大学博士学位论文,2008.
    [179]. Branca C., Giudicianni P.. Blasi C.D. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood [J]. Industrial Engineering Chemistry & Research,2003,42: 3190-3202.
    [180]. Branca C., Blasi CD.,Elefante R. Devolatilization and heterogeneous combustion of wood fast pyrolysis oils [J]. Industrial Engineering Chemistry & Research,2005,44(4):799-810.
    [181]. Guo. X., Wang S., Guo z., et al. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation [J]. Applied Energy,2010,87:2892-2898.
    [182]. Branca C., Blasi C.D., Elefante R. Devolatilization of conventional pyrolysis oils generated from biomass and cellulose [J]. Energy & Fuels,2006,20(5):2253-2261.
    [183]. Ghetti P., Ricca L., Angelini L. Thermal analysis of biomass and corresponding pyrolysis products [J]. Fuel,1996,75(5):565-573.
    [184]. Liu N.A., Fan W., Dobashi R., et al. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere [J]. Journal of Analytical and Applied Pyrolysis,2002,63:303-325.
    [185]. Hansson K.M., Samuelsson J., Tilin C. et al. Formation of HNCO. HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combustion and Flame,2004,137(3):265-277.
    [186]. Ozbay N., Uzun B.B., Varol E.A., et al. Comparative analysis of pyrolysis oils and its subfractions under different atmospheric conditions [J]. Fuel Processing Technology,2006,87(11):1013-1019.
    [187]. Caballero J.A., Font R., Marcilla A. Kinetic study of the secondary thermal decomposition of Kraft lignin [J]. Journal of Analytical and Applied Pyrolysis,1996,39(1-2):131-152.
    [188]. Guo. X., Wang S., Guo Z., et al. Properties of bio-oil from fast pyrolysis of rice husk [J]. Chinese Journal of Chemical Engineering,2011,19(1):116-121.
    [189]. Ross A.B., Anastasakis K., Kubacki M., et al. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA [J]. Journal of Analytical and Applied Pyrolysis,2009,85:3-10.
    [190]. Das D., Lee J.F., Cheng S. Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups [J]. Journal of Catalysis,2004,223:152-160.
    [191]. Guo X., Wang S., Guo Z., et al. Propertities of bio-oil from alga fast pyrolysis.2011, APPEEC conference in Wuhan.
    [192]. Williams D.H., Fleming I. Spectroscopic methods in organic chemistry (Fifth Edition) [M]. London: McGraw-Hill Publishing Company.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700