灵杆菌多糖抗内毒素作用及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     灵杆菌多糖是从灵杆菌菌体中提取精制得到的脂多糖物质,目前国内注册的英文通用名为hemarisin,国内曾经称灵杆菌多糖为“灵杆菌素”,国外,尤其是前苏联或俄罗斯所报道的同类产品叫做prodigiozan。由于灵杆菌(Bacillus prodigiosus)是粘质沙雷氏菌(Serratia marcescens)的老式叫法,因此,灵杆菌多糖和prodigiozan都是从粘质沙雷氏菌或灵杆菌中提取的脂多糖类物质。灵杆菌多糖虽然也是属于细菌内毒素的范畴,但其毒性极低,具有免疫促进作用,在临床主要用于各种原因引起的白细胞减少症、乙型肝炎及急慢性盆腔炎等疾病的辅助治疗。
     目的
     在药物筛选过程中,我们发现灵杆菌多糖具有明显的抗内毒素作用,据此,本研究采用动物模型对灵杆菌多糖的抗内毒素作用进行确证,并从不同角度探讨灵杆菌多糖抗内毒索的作用机制,为理解灵杆菌多糖的临床用途提供新的视角,同时为灵杆菌多糖用于内毒素血症的辅助治疗提供前期实验依据。
     研究内容
     1.灵杆菌多糖对小鼠内毒素休克及内毒素血症模型的影响
     1.1灵杆菌多糖对小鼠内毒素休克致死模型的保护作用
     1.1.1材料与方法
     先给KM小鼠(以下称:小鼠)腹腔注射灵杆菌多糖或生理盐水或阳性对照药物,0.5h后,每组动物均腹腔注射内毒素(铜绿假单胞菌脂多糖,LPS)60mg/kg,观察3d内动物死亡情况。
     1.1.2结果
     腹腔注射大剂量LPS(60mg/kg)后,小鼠出现明显的中毒反应,20h后陆续有动物死亡,48h后仍存活的动物逐渐恢复正常活动与摄食。灵杆菌多糖(100、50U/kg)预防性腹腔注射给药使动物存活率分别提高60%和45%(χ2=15.000,P=0.000;χ2=9.231,Bonferroni校正P=0.006)。
     1.2灵杆菌多糖对内毒素血症模型小鼠炎症相关因子产生的抑制作用
     1.2.1材料与方法
     先给小鼠腹腔注射灵杆菌多糖或生理盐水或阳性对照药物,0.5h后,正常对照组动物腹腔注射等体积生理盐水,其余动物均腹腔注射LPS(10mg/kg),导致内毒素血症。3h后,小鼠摘眼球放血制备血清,ELISA方法测定血清中白介素-1p(IL-1p)、白介素-6(IL-6)、肿瘤坏死因子α(TNF α)、前列腺素E2(PGE2)的含量。Griess法检测一氧化氮(NO)的含量。
     1.2.2结果
     小鼠腹腔注射LPS后,其血清中IL-1β、IL-6、TNF α、PGE2、NO的含量明显升高,预先给予灵杆菌多糖(100,50U/kg)腹腔注射,然后再给LPS,其血清中各指标升高的幅度明显下降,灵杆菌多糖组各指标均数与LPS组相比,差异有统计学意义(IL-1β:P=0.007,P=0.023;IL-6:P=0.018,P=0.046,TNFα:P=0.001,P=0.019;PGE2:P=0.001,P=0.009:NO:P=0.012,P=0.039)。
     1.3灵杆菌多糖对内毒素血症模型小鼠炎症相关基因mRNA表达的抑制作用
     1.3.1材料与方法
     动物分组及处理同1.2.1节,小鼠腹腔注射LPS(10mg/kg)3h后,脱颈椎处死,取出脾脏置液氮中保存,提取总RNA,实时荧光定量PCR法检测IL-1p、IL-6、TNFα、COX-2(环氧酶-2)、iNOS(诱导型一氧化氮合酶)mRNA的相对含量(2-△Ct,以GAPDH为内参)。
     1.3.2结果
     小鼠腹腔注射LPS后3h,脾脏中IL-1β、IL-6、TNFα、COX-2、iNOS mRNA的表达明显增多,提前0.5h腹腔注射灵杆菌多糖(100,50U/kg)可部分抑制由LPS诱导的上述各目的基因mRNA的表达,灵杆菌多糖组各参数均数与LPS组相比,剂量为100U/kg时,差异均有统计学意义(IL-1β:P=0.026;IL-6:P=0.015;TNF仅:P=0.029:COX-2:P=0.016;iNOS:P=0.020);剂量为50U/kg时,差异有些有统计学意义(IL-1β:P=0.072;IL-6:P=0.035;TNF α:P=0.069;COX-2:P=0.034;iNOS:P=0.399)。
     2.灵杆菌多糖对体外内毒素激活小鼠腹腔巨噬细胞产生炎症相关因子及表达炎症相关基因的影响
     2.1灵杆菌多糖对内毒素激活小鼠腹腔巨噬细胞产生炎症相关因子的抑制作用
     2.1.1材料与方法
     LPS(10μg/ml)刺激小鼠腹腔巨噬细胞活化作为体外炎症模型。微量96孔板作为培养载体,ELISA法检测培养上清中IL-1β、IL-6、TNF-α和PGE2的含量;Griess法检测NO的含量。
     2.1.2结果
     在LPS刺激小鼠腹腔巨噬细胞16h后,培养上清中促炎细胞因子IL-1p、IL-6、TNF-a及培养24h后炎症因子或介质PGE2、NO的含量大幅增加,灵杆菌多糖(20、10U/mL)能部分抑制由LPS诱导的上述促炎细胞因子及炎症因子或介质的分泌,灵杆菌多糖组各指标均数与LPS组相比,差异有统计学意义(IL-1β:P=0.001,P=0.016;IL-6:P=0.001,P=0.016;TNF-α:P=0.027,P=0.046;PGE2:P=0.010,P=0.038;NO:P=0.000,P=0.001)
     2.2灵杆菌多糖对内毒素激活小鼠腹腔巨噬细胞表达炎症相关基因mRNA的抑制作用
     2.2.1材料与方法
     LPS(10μg/ml)刺激小鼠腹腔巨噬细胞活化作为体外炎症模型。6孔板作为培养载体,实时荧光定量PCR法检测目的基因mRNA的相对含量(2-△Ct,以GAPDH为内参)。
     2.2.2结果
     经过LPS体外刺激16h后,小鼠腹腔巨噬细胞IL-1p、IL-6、TNF-α、COX-2、iNOS mRNA的表达明显增多,灵杆菌多糖(20、10U/mL)可部分抑制由LPS诱导的上述目的基因mRNA的表达,灵杆菌多糖组各指标均数与LPS组相比,差异有统计学意义(IL-1β:P=0.001,P=0.009;IL-6:P=0.000,P=0.000;TNF-a:P=0.000,P=0.000;COX-2:P=0.000,P=0.001;iNOS:P=0.011,P=0.021)
     3.灵杆菌多糖单独给药对小鼠产生促炎细胞因子的影响
     3.1灵杆菌多糖对正常小鼠血清促炎细胞因子水平的影响
     3.1.1材料与方法
     小鼠腹腔注射灵杆菌多糖或生理盐水或LPS,3h后,小鼠摘眼球放血制备血清,ELISA方法测定血清中IL-1β、IL-6、TNF α的含量。
     3.1.2结果
     正常小鼠血清细胞因子IL-1p、IL-6、TNF α的含量很低,灵杆菌多糖(100、50U/kg)腹腔注射给药使上述细胞因子的血清含量有提升趋势,但均数与生理盐水组相比,差异无统计学意义(IL-1β:P=0.377,P=0.658;IL-6:P=0.903,P=0.994:TNF a:P=0.369,P=0.997)
     3.2灵杆菌多糖对正常小鼠腹腔巨噬细胞产生促炎细胞因子的影响
     3.2.1材料与方法
     小鼠腹腔巨噬细胞体外培养模型,微量96孔板作为培养载体,ELISA法检测培养上清中IL-1p、IL-6、TNF-α的含量。
     3.2.2结果
     在体外培养的条件下,灵杆菌多糖对小鼠腹腔巨噬细胞产生IL-1β、IL-6、TNF-α均有弱的促进作用,在浓度为20U/mL时,其均数与全培组相比,差异有统计学意义(P=0.007,P=0.002,P=0.003)。在浓度为10U/mL时,有些有统计学意义(P=0.043,P=0.536,P=0.016)。
     4.灵杆菌多糖对内毒素所致小鼠肺损伤的保护作用
     4.1灵杆菌多糖抑制内毒素诱导的肺氧化损伤作用
     4.1.1材料与方法
     除LPS为静脉给药外,动物分组及处理同1.2.1节,小鼠尾静脉注射LPS(30mg/kg)6h后,腹腔注射麻醉,开胸取出全肺,经后续处理后,测量肺湿重干重比(W/D)、髓过氧化物酶(MPO)活力、丙二醛(MDA)含量。
     4.1.2结果
     小鼠静脉注射LPS6h后,出现明显肺水肿现象,肺组织中MPO的活性及MDA的含量均明显增加。
     预先腹腔注射灵杆菌多糖(100、50U/kg)可减轻由LPS引起的肺水肿现象,肺组织湿重与干重的比值下降,当灵杆菌多糖剂量为100U/kg时其均数与LPS组相比,差异有统计学意义(P=0.010),剂量为50U/kg时差异无统计学意义(P=0.060)。
     预先腹腔注射灵杆菌多糖(100、50U/kg)可部分抑制由LPS引起的MPO活性及MDA含量的增加,其均数与内毒素模型组相比,差异有统计学意义(MPO:P=0.001,P=0.010;MDA:P=0.000,P=0.002)。
     4.2灵杆菌多糖抑制内毒素诱导肺内促炎细胞因子产生的作用
     4.2.1材料与方法
     除LPS为静脉给药外,实验分组及给药同1.2.1节,小鼠均尾静脉注射LPS(30mg/kg),3h后,腹腔注射麻醉,开胸取出肺脏,经冷冻后制备肺组织匀浆,ELISA法测定上清中IL-1β、IL-6和TNF α的含量。
     4.2.2结果
     小鼠静脉注射LPS3h后,肺组织中IL-1β、IL-6和TNFα的含量明显增加。预先腹腔注射灵杆菌多糖(100、50U/kg)可部分抑制由LPS引起的IL-1β、IL-6和TNFα的增加,当灵杆菌多糖剂量为100U/kg时其均数与LPS组相比,差异均有统计学意义(P=0.029,P=0.010,P=0.006);剂量为50U/kg时,差异有些有统计学意义(P=0.695,P=0.065,P=0.017)。
     5.灵杆菌多糖对内毒素所致小鼠肝损伤的保护作用
     5.1灵杆菌多糖对内毒素诱导肝细胞损伤的保护作用
     5.1.1材料与方法
     除LPS为静脉给药外,动物分组及处理同1.2.1节,小鼠均尾静脉注射LPS(30mg/kg),6h后,小鼠摘眼球取血,制备血清用于谷丙转氨酶(ALT)和谷草转氨酶(AST)检测。
     5.1.2结果
     小鼠静脉注射LPS6h后,血清中ALT和AST的活性明显升高,预先腹腔注射灵杆菌多糖(100、50U/kg)可部分抑制由内毒素引起的ALT和AST活性的升高,当灵杆菌多糖剂量为100U/kg时其均数与LPS组相比,差异均有统计学意义(P=0.022,P=0.026);剂量为50U/kg时,AST的差异有统计学意义(P=0.031)。
     5.2灵杆菌多糖对内毒素诱导肝组织促炎细胞因子mRNA表达的抑制作用
     5.2.1材料与方法
     实验分组及给药同1.2.1节,小鼠均腹腔注射LPS(30mg/kg),3h后,脱颈椎处死,取出肝脏置液氮中保存,提取总RNA,实时荧光定量PCR法检测IL-1p、IL-6、TNF αmRNA的含量。5.2.2结果
     小鼠腹腔注射细菌LPS后3h,肝脏中IL-1β、IL-6、TNF αmRNA的表达明显增多,提前0.5h腹腔注射灵杆菌多糖(100,50U/kg)可部分抑制由LPS诱导的IL-1p、IL-6、TNFαmRNA的表达,当灵杆菌多糖剂量为100U/kg时其均数与LPS组相比,差异均有统计学意义(P=0.020,P=0.012,P=0.014);剂量为50U/kg时,IL-6和TNFα mRNA的差异有统计学意义(P=0.043,P=0.020)。
     统计学处理
     应用SPSS11.5统计软件进行统计分析。存活率以百分数表示,先采用R×C表资料的卡方检验对各组动物存活率差异进行多组间的总体检验,然后采用四格表资料的卡方检验进行组间存活率的两两比较。定量数据结果以均数±标准差表示,采用单向方差分析法分析,先进行方差齐性检验,若方差齐用LSD方法多重比较;若方差不齐,采用经Welch法校正方差分析的F和P值,用Dunnett's T3法多重比较。显著性水准取α=0.05,以P<0.05时,组间差异判断为具有统计学意义。
     结论
     (1)灵杆菌多糖预防性腹腔给药可减少内毒素致小鼠死亡的百分率。
     (2)灵杆菌多糖预防性腹腔给药可部分抑制由内毒素所致小鼠血清IL-1β、IL-6、TNFα、PGE2、NO含量的升高。
     (3)灵杆菌多糖预防性腹腔给药可部分抑制由内毒素所致小鼠脾脏IL-1pIL-6、TNFa、COX-2、iNOSmRNA的表达。
     (4)灵杆菌多糖体外可部分抑制内毒素刺激小鼠腹腔巨噬细胞产生IL-1p、IL-6、TNF-a、PGE2、NO。
     (5)灵杆菌多糖体外可部分抑制内毒素刺激小鼠腹腔巨噬细胞IL-1p、IL-6、TNF-α、COX-2、iNOS mRNA的表达。
     (6)灵杆菌多糖体外可轻微刺激小鼠腹腔巨噬细胞产生IL-1p、IL-6、TNF-a,其作用明显弱于内毒素。
     (7)灵杆菌多糖预防性腹腔给药对内毒素所致小鼠肺损伤有一定的保护作用。
     (8)灵杆菌多糖预防性腹腔给药对内毒素所致小鼠肝损伤有一定的保护作用。
     (9)由于慢性偷腔炎和乙型肝炎时均伴有局部内毒素浓度的升高,灵杆菌多糖临床上对上述病症有良好疗效的机制可能与拮抗内毒素有关。
     (10)灵杆菌多糖与内毒素都属于细菌脂多糖,而细菌脂多糖作用的主要受体为TLR4(Toll-like receptor4)。灵杆菌多糖刺激作用弱,没有明显的毒性;而内毒素刺激作用强,有明显的毒性反应;提示灵杆菌多糖为部分激动剂,而内毒素为完全激动剂,两者同时存在时前者对后者的毒性作用有拮抗作用,不过,其确切机制有待进一步的研究。
INTRODUCTION
     Bacterium prodigiosum polysaccharides or Hemarisin, an English generic name registred in China, refers to a group of polysaccharides isolated from a bacterium Bacillus prodigiosus. It used to be named as Ling Gan Jun Su in Chinese. In foreign countries, especially in the former Soviet Union or Russia, a similar product to hemarisin is called prodigiozan.Because Bacillus prodigiosus is the old name for Serratia marcescens, therefore, both hemarisin and prodigiozan are lipopolysaccharides isolated from Serratia marcescens. In essence, hemarisin belongs to the category of bacterial endotoxin, but its toxicity is very low. It has immune stimulant effect and is mainly used in the adjuvant treatment of leucopenia caused by different factors, hepatitis B, and acute or chronic pelvic inflammatory diseases, etc.
     OBJECTIVES
     Hemarisin was found to be effective against endotoxin in the process of screening for anti-endotoxin compounds. Inspired by the finding, the present study was carried out to confirm the anti-endotoxin effectiveness by using animal models and to explore the underlying mechanism from different aspects in an effort to provide new information for understanding the polysaccharides'clinical applications and at the same time to lay a foundation experimentally for the polysaccharides used in adjuvant treatment of endotoxemia.
     RESEARCH CONTENTS
     1. Effect of hemarisin on murine models of endotoxin shock and endotoxemia
     1.1Protective effect of hemarisin on murine lethal model of endotoxin shock
     1.1.1Materials and Methods
     KM mice (hereinafter referred to as:mice) were intraperitoneally (ip) injected with hemarisin or saline or positive control drug at first. After0.5h, each animal was ip injected with endotoxin (Pseudomonas aeruginosa lipopolysaccharides, LPS) in a dose of60mg/kg. The animal was under observation for3d and deaths were recorded.
     1.1.2Results
     Injected ip with large dose of LPS (60mg/kg), mice exhibited obvious toxic response and some became to die after20h. Surviving animal gradually came back to normal activities and feeding after48h. Hemarisin (100,50U/kg) with ip administration made animal survival rates increase by60%and45%respectively (χ2=15.000, P=0.000;χ2=9.231, Bonferroni correction P=0.006)
     1.2Inhibitory effect of hemarisin on inflammatory factors in murine model of endotoxemia
     1.2.1Materials and Methods
     Mice were ip injected with hemarisin or saline or positive control drug at first. After0.5h, animal in normal control group was ip injected equal volume saline and the rest was ip injected LPS in a dose of10mg/kg in order to cause endotoxemia.3h later, blood samples, from which serum samples were prepared, were collected from the eye vein by removing the eyeballs quickly. ELISA method was used to determine the amounts of serum interleukin-1β(IL-1β), interleukin-6(IL-6), tumor necrosis factor a (TNF a), prostaglandin E2(PGE2) and Griess method for the detection of nitric oxide (NO) content.
     1.2.2Results
     The mouse serum levels of IL-1β, IL-6, TNF a, PGE2and NO were dramatically increased after ip injection of LPS. Prophylactic administration of hemarisin (100,50U/kg) by ip injection to the animal who were then followed by LPS ip injection, the extent of increase in the above mentioned parameters was attenuated markedly compared to LPS injection alone. The differences of means for the parameters between hemarisin groups and LPS group were statistically significant (IL-1β:P=0.007, P=0.023; IL-6:P=0.018, P=0.046; TNF a:P=0.001, P=0.019; PGE2:P=0.001, P=0.009; NO:P=0.012, P=0.039)1.3Inhibitory effect of hemarisin on mRNA expression of inflammatory factors gene in murine model of endotoxemia
     1.3.1Materials and Methods
     Animal groups and treatment were the same as described in section1.2.1. Mice were sacrificed by cervical dislocation after receiving LPS (10mg/kg) ip injection for3h. Then spleens were removed and stored in liquid nitrogen for RNA isolation. Real time fluorescence quantitative PCR (Polymerase Chain Reaction) was applied to evaluate the mRNA expressions of IL-1β, IL-6, TNF α, COX-2(Cyclooxygenase-2) and iNOS (Inducible Nitric Oxide Synthase). The content of mRNA was expressed as2-ΔCt using GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) as internal reference.
     1.3.2Results
     After ip injection of LPS to the mice for3h, the mRNA expressions of IL-1β, IL-6, TNF a, COX-2and iNOS in spleen increased dramatically. Hemarisin (100,50U/kg) ip injected to the mice0.5h ahead of LPS injection partially inhibited expressions of the genes of interest induced by LPS. The differences of means for the examined parameters between hemarisin group and LPS group were statistically significant when hemarisin was in the dose of100U/kg (IL-1β:P=0.026; IL-6: P=0.015; TNF a:P=0.029; COX-2:P=0.016; iNOS:P=0.020). However, some of the differences were statistically significant when hemarisin was in the dose of50U/kg (IL-1β:P=0.072; IL-6:P=0.035; TNF a:P=0.069; COX-2:P=0.034; iNOS:P=0.399)
     2. Effect of hemarisin on production and gene expression of inflammatory factors in endotoxin activated murine peritoneal macrophages in vitro
     2.1Inhibitory effect of hemarisin on production of inflammatory factors in endotoxin activated murine peritoneal macrophages
     2.1.1Materials and Methods
     Murine peritoneal macrophages activated by LPS (10μg/ml) were used as an in vitro inflammatory model.96well microtitters were applied for cell culture. ELISA method was used to determine the amounts of IL-1β, IL-6, TNF a and PGE2, and Griess method for the detection of NO content in culture supernatants.
     2.1.2Results
     After LPS stimulation of murine peritoneal macrophages for16h, the amounts of proinflammatory cytokines IL-1β,IL-6and TNF-a, and inflammatory factors or mediators PGE2and NO in the supernatants increased dramatically. Hemarisin (20and10U/mL) partially inhibited the macrophages production of the proinflammatory cytokines and inflammatory factors or mediators induced by LPS. The differences of means for the examined parameters between hemarisin groups and LPS group were statistically significant (IL-1β:P=0.001, P=0.016; IL-6: P=0.001, P=0.016; TNF-a:P=0.027, P=0.046; PGE2:P=0.010, P=0.038; NO: P=0.000, P=0.001)
     2.2Inhibitory effect of hemarisin on gene expression of inflammatory factors mRNA in endotoxin activated murine peritoneal macrophages
     2.2.1Materials and Methods
     Murine peritoneal macrophages activated by LPS (10μg/ml) were used as an in vitro inflammatory model.6well plates were applied for cell culture. Real time fluorescence quantitative PCR was applied to evaluate the mRNA expressions of genes of interest. The content of mRNA was expressed as2-ΔCt using GAPDH as internal reference.
     2.2.2Results
     After LPS stimulation of murine peritoneal macrophages for16h, the mRNA expressions of IL-1β,IL-6, TNF-a,COX-2and iNOS markedly increased. Hemarisin (20and10U/mL) partially inhibited the expressions of the genes of interest induced by LPS. The differences of means for the examined parameters between hemarisin groups and LPS group were statistically significant (IL-1β:P=0.001, P=0.009; IL-6: P=0.000, P=0.000; TNF-α:P=0.000, P=0.000; COX-2:P=0.000, P=0.001; iNOS: P=0.011,P=0.021)
     3. Effect of hemarisin administered alone on production of proinflammatory cytokines in mice
     3.1Effect of hemarisin on the serum levels of proinflammatory cytokines in mice
     3.1.1Materials and Methods
     Mice were ip injected with hemarisin or saline or LPS.3h later, blood samples, from which serum samples were prepared, were collected from the eye vein by removing the eyeballs quickly. ELISA method was used to determine the amounts of serum IL-1β, IL-6and TNF a.
     3.1.2Results
     The levels of the cytokines IL-1β, IL-6and TNF a in normal mice were very low. Peritoneal injection of hemarisin (100,50U/kg) to the animal resulted in an increase trend in the cytokines serum levels, but the differences of means for the examined parameters between hemarisin groups and saline control group were not statistically significant (IL-1β:P=0.377, P=0.658; IL-6:P=0.903, P=0.994; TNF a:P=0.369, P=0.997)
     3.2Effect of hemarisin on production of inflammatory cytokines by normal murine peritoneal macrophages
     3.2.1Materials and Methods
     Normal murine peritoneal macrophages were cultured as an in vitro model.96well microtitter was applied for cell culture. ELISA method was used to determine the amounts of IL-1β, IL-6and TNF in culture supernatants.
     3.2.2Results
     Hemarisin exerted weak stimulating effect on production of IL-1β, IL-6and TNF-a by murine peritoneal macrophages in in vitro culture situation. The differences of means for the examined parameters between hemarisin group and culture medium control group were statistically significant when hemarisin was at the concentration of20U/mL(P=0.007, P=0.002, P=0.003). However, only some of the differences were statistically significant when hemarisin was at the concentration of10U/mL (P=0.043, P=0.536, P=0.016)
     4. Protective effects of hemarisin on endotoxin-induced lung injury in mice
     4.1Hemarisin inhibits endotoxin-induced pulmonary oxidative damage in mice
     4.1.1Materials and Methods
     Except for LPS administered by intravenous route, animal groups and treatment were the same as described in section1.2.1. Mice were injected LPS (30mg/kg) through tail vein.6h later, the animal were anesthetized by intraperitoneal injection and lungs were removed by thoracotomy. Followed by various treatments, lung wet weight and dry weight ratio (W/D) was measured, myeloperoxidase (MPO) activity assessed, and malondialdehyde (MDA) content determined.
     4.1.2Results
     Significant pulmonary edema appeared after mice receiving LPS (30mg/kg) intravenous injection for6h. Lung tissue MPO activity and MDA content were increased dramatically.
     Prophylactic ip administration of hemarisin (100,50U/kg) reduced the pulmonary edema caused by LPS with a decrease in lung wet weight and dry weight ratio (W/D). The difference of means for the ratio between hemarisin group and LPS group was statistically significant when hemarisin was in the dose of100U/kg (P=0.010), while no statistical significance was observed in the dose of50U/kg (P=0.060)
     Prophylactic ip administration of hemarisin (100,50U/kg) partially suppressed the increases in MPO activity and MDA content caused by LPS. The differences of means for the examined parameters between hemarisin group and LPS group were statistically significant (MPO:P=0.001, P=0.010; MDA:P=0.000, P=0.002)4.2Hemarisin inhibits endotoxin-induced increase in pulmonary proinflammatory cytokines
     4.2.1Materials and Methods
     Except for LPS administered by intravenous route, animal groups and treatment were the same as described in section1.2.1. Mice were injected LPS (30mg/kg) through tail vein.3h later, the animal were anesthetized by intraperitoneal injection and lungs were removed by thoracotomy and frozen immediately. Pulmonary tissue homogenates were made in ice bath. ELISA method was used to determine the amounts of IL-1β, IL-6and TNFa in the homogenates.
     4.2.2Results
     The amounts of IL-1β, IL-6and TNF a in murine pulmonary tissue were dramatically increased after iv injection of LPS for3h. Prophylactic administration of hemarisin (100and50U/kg) by ip injection to the animal partially inhibited the increase in the proinflammatory cytokines induced by LPS. The differences of means for the examined parameters between hemarisin group and LPS group were statistically significant when hemarisin was in the dose of100U/kg (P=0.029, P=0.010, P=0.006). However, some of the differences were statistically significant when hemarisin was in the dose of50U/kg (P=0.695, P=0.065, P=0.017)
     5. Protective effects of hemarisin on endotoxin-induced liver injury in mice
     5.1Protective effects of hemarisin on endotoxin-induced hepatocyte injury
     5.1.1Materials and Methods
     Except for LPS administered by intravenous route, animal groups and treatment were the same as described in section1.2.1. Mice were injected LPS (30mg/kg) through tail vein.6h later, blood samples, from which serum samples were prepared, were collected from the eye vein by removing the eyeballs quickly. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum samples were assessed.
     5.1.2Results
     The mouse serum levels of ALT and AST were dramatically increased after iv injection of LPS for6h. Prophylactic administration of hemarisin (100,50U/kg) by ip injection to the animal that were then followed by LPS ip injection partially inhibited the increase in the examined parameters.The differences of means for the examined parameters between hemarisin group and LPS group were statistically significant when hemarisin was in the dose of100U/kg (P=0.022, P=0.026). However, only the difference of AST was statistically significant when hemarisin was in the dose of50U/kg (P=0.031)
     5.2Hemarisin inhibits endotoxin-induced increase in proinflammatory cytokines mRNA expression in liver tissue
     5.2.1Materials and Methods
     Animal groups and treatment were the same as described in section1.2.1. Mice were sacrificed by cervical dislocation after receiving LPS (30mg/kg) iv injection for3h. Then livers were removed and stored in liquid nitrogen for RNA isolation. Real time fluorescence quantitative PCR was applied to evaluate the mRNA expressions of IL-1β, IL-6and TNF a.
     5.2.2Results
     After ip injection of LPS to the mice for3h, the mRNA expressions of IL-1β, IL-6and TNF a in the liver increased dramatically. Hemarisin (100,50U/kg) ip injected to the mice0.5h ahead of LPS injection partially inhibited expressions of the genes of IL-1β, IL-6and TNF a induced by LPS. The differences of means for the examined parameters between hemarisin group and LPS group were statistically significant when hemarisin was in the dose of100U/kg (P=0.020, P=0.012, P=0.014). However, only the means differences of IL-6and TNF a were statistically significant when hemarisin was in the dose of50U/kg (P=0.043, P=0.020)
     STATISTICAL ANALYSIS
     SPSS11.5statistical software was applied for statistical analysis. The survival rate was expressed as percentage. The R X C crosstabs chi-square test was used for overall test of animal survival differences among experimental groups at first, and then the four rows crosstabs chi-square test was performed for two by two comparisons. Continuous variables were described as as Mean±SD and analyzed by One-way ANOVA (Analysis of Variance). Test of homogeneity of variances was carried out prior to ANOVA. If the variance was of homogeneity, LSD method was used for multiple comparison, otherwise, Dunnett's T3method was adopted for multiple comparison, using F and P values by Welch correction analysis of variance. Significance level was set at α=0.05and P<0.05was considered to be statistical significance.
     CONCLUSSI ON
     (1) Prophylactic ip administration of hemarisin can reduce endotoxin-induced mouse death.
     (2) Prophylactic ip administration of hemarisin can partially suppress endotoxin-induced increases in murine serum IL-1β, IL-6,TNF a, PGE2and NO.
     (3) Prophylactic ip administration of hemarisin can partially suppress endotoxin-induced increases in mRNA expressions of IL-1β, IL-6, TNF a, COX-2and iNOS in murine liver.
     (4) Hemarisin can partially inhibit endotoxin-induced production of IL-1β, IL-6, TNF a, PGE2and NO by murine peritoneal macrophages in vitro.
     (5) Hemarisin can partially inhibit endotoxin-induced increases in mRNA expressions of IL-1β, IL-6, TNF a, COX-2and iNOS in murine peritoneal macrophages in vitro.
     (6) Hemarisin can slightly stimulate murine peritoneal macrophages to produce IL-1β, IL-6and TNF-a in vitro, but it is much weaker than endotoxin in potency.
     (7) Prophylactic ip administration of hemarisin can protect mice from endotoxin-induced lung injury in some degree.
     (8) Prophylactic ip administration of hemarisin can protect mice from endotoxin-induced liver injury in some degree.
     (9) Considering chronic pelvic inflammatory disease and hepatitis B are accompanied with increase in local endotoxin concentration, it is conceivable that the good efficacy of hemarisin in the treatment of above mentioned clinical diseases may be associated with the anti-endotoxin mechanism of the medicine.
     (10) Both hemarisin and endotoxin belong to bacterial lipopolysaccharide, and the main receptor for bacterial lipopolysaccharide is TLR4(Toll-like receptor4). Hemarisin has weak stimulating effect and no obvious toxicity, while endotoxin has strong stimulating action and obvious toxicity. It is indicated that hemarisin act as a partial agonist, and endotoxin a full agonist. The former may exert an antagonist effect against the toxicity of the latter when they are present at the same time. However, the exact mechanism needs further study.
引文
[1]Zasimauskas D, Zekonis G. The response of peripheral blood neutrophils unstimulated and stimulated by prodigiosan to smoking[J]. Stomatologija.2005, 7(2):48-51.
    [2]Vishnevskaia EK. The effect of the prodigiozan stimulation of Kupffer cells on the development of perisinusoidal fibrosis in experimental hypervitaminosis A[J]. Morfologiia.1996,110(5):91-5.
    [3]Gainutdinova DT, Lazareva DN, Speranskii VV. The effect of pyrimidines, levamisole and prodigiozan on the antigen-specific regulation of delayed hypersensitivity in relation to the age and strain of the mice[J]. Eksp Klin Farmakol.1995,58(4):45-7.
    [4]Levina NA, Lebedev VG. Effect of prodigiozan on the state of the hemopoietic and stromal precursor cells in mouse bone marrow and spleen[J]. Patol Fiziol Eksp Ter,1993,(2):37-9.
    [5]Bandazhevskil lul, Lis RE, Kapitonova EK, et al. The immunity indices of the progeny of white rats antenatally exposed to prodigiozan[J]. Eksp Klin Farmakol, 1992,55(1):50-1.
    [6]Sibiriak SV, Alekhin EK. The pharmacokinetic and immunopharmacological aspects of prodigiozan interaction with psychotropic agents[J]. Farmakol Toksikol.1990,53(6):36-9.
    [7]Khromov IS, Isaeva El. The prodigiozan and pyrogenal stimulation of the humoral response to influenza virus antigens in mice[J]. Vopr Virusol, 1990,35(3):193-4.
    [8]Guseva SA, Tishchenko LM. Effect of prodigiozan on the antibody-dependent cytotoxicity of neutrophils in chronic myeloid leukemia[J].Vopr Onkol, 1989,35(1):30-4.
    [9]Rudchik AS, Andreichin MA. Indices of immunity and allergy in patients with viral hepatitis treated with prodigiozan[J]. Zh Mikrobiol Epidemiol Immunobiol, 1988,(1):45-9.
    [10]Andriukin AA, Marinin VF, Nastiukova EG, et al. Effect of prodigiozan on immune reactivity in patients with steroid-dependent bronchial asthma[J]. Ter Arkh.1988,60(3):94-6.
    [11]Kuznetsov VS, Abdulkhamidov KhB, Babaian SS, et al. Dynamics of various indices of nonspecific bodily resistance among ginnery workers inhaling prodigiozan[J]. Vestn Otorinolaringol,1987,(4):55-8.
    [12]Medvedev IuA, Alekhin EK, Iarmukhamedova AG. Modulation of phagocytic activity with prodigiozan and obsidan[J]. Antibiotiki,1984,29(11):848-51.
    [13]Rastunova GA, Shcherbakova EG, Kruglova IS. Prodigiozan as an activator of peritoneal macrophages[J]. Antibiotiki,1981,26(6):465-9.
    [14]Veksler IG. Comparative study of the effect of certain nonspecific stimulators on the body's immune response[J]. Biull Eksp Biol Med,1980,89(7):64-7.
    [15]Shcherbakova EG, Rastunova GA, Vvedenskaia OI, et al. Effect of gentamycin in combination with prodigiozan on the immunological reactivity of the body[J]. Antibiotiki.1979,24(9):679-84.
    [16]Kuz'min VG, Loban KM, Medvedeva MM. Stimulating effect of prodigiozan on nonspecific reactivity in typhoid fever, dysentery and staphylococcal infection[J]. Antibiotiki,1978,23(3):264-8.
    [17]Ermol'eva ZV, Vaisberg GE, Braude Al, et al. Effect of prodigiozan inhalation on human immunological reactivity[J]. Antibiotiki,1973,18(1):76-9.
    [18]Beznos TI, Tomenko IF, Milenina EV. Effect of prodigiozan and griseofulvin on immunological responsiveness in experimental microsporosis[J]. Vestn Dermatol Venerol,1972,46(12):52-3.
    [19]Givental'NI. Activity of prodigiozan by various routes of administration and during non-specific stimulation of local (regional) defense mechanisms[J].Antibiotiki,1971,16(4):345-50.
    [20]Artemova LK. Study of the effect of the antibiotic rubomycin C in combination with prodigiozan on some defense reactions of the organism[J]. Antibiotiki,1970, 15(3):263-6.
    [21]Skurkovich GV, Vaisberg GE, Givental'NI, et al. Effect of prodigiozan on the defense reaction of the organism at endonasal administration[J]. Antibiotiki, 1970,15(7):648-52.
    [22]Shapovalova SP. Effect of olivomycin and bruneomycin and their combined use with prodigiozan on some nonspecific defense reactions of the host organism of transplanted lymphadenosis NK-LI[J]. Antibiotiki,1970,15(10):924-8.
    [23]Lutsenko SM, Rybakov AI. Effect of prodigiozan on immunological indices in the surgical treatment of suppurative and neoplastic process of the lungs[J]. Antibiotiki,1969,14(11):1046-9.
    [24]Dzhemukhadze NK, Eidel'shtein SI, Braude AI. Use of prodigiozan and methacyl aerosols for the stimulation of the activity of lung macrophages in experiment[J]. Antibiotiki,1969,14(11):1030-4.
    [25]Afanas'eva TI, Vaisberg GE.Stimulation of antibody formation in animals under the effect of the bacterial lipopolysaccharide-prodigiozan[J]. Zh Mikrobiol Epidemiol Immunobiol,1968,45(11):48-52.
    [26]Vaisberg GE, Givental'NI, Zabolotskaia NN,et al. Study of physico-chemical, immunological and biological properties of prodigiozan and products of its partial degradation [J]. Antibiotiki,1966,11(8):667-74.
    [27]Bukharin OV. Nonspecific stimulation of the body's natural resistance to infection with prodigiozan [J]. Zh Mikrobiol Epidemiol Immunobiol,1966, 43(9):54-8.
    [28]Voitova DI, Kan EL, Kniazhetskaia El, et al.Experience with the use of prodigiozan in the complex treatment of patients with pulmonary tuberculosis [J]. Antibiotiki,1974,19(10):938-43.
    [29]Kshanovskii SA, Rushchak VA, Tsymbaliuk GF,et al. Use of prodigiozan in the overall treatment of pulmonary tuberculosis in children and adolescents [J]. Probl Tuberk,1980, (1):33-6.
    [30]Kornilova ZKh, Svitneva AS. Prodigiozan in the therapy of destructive pulmonary tuberculosis. Probl Tuberk.1980,(1):30-2.
    [31]Insanov AV. Chemotherapy effectiveness using tuberculin, prodigiozan and pyrogenal in destructive pulmonary tuberculosis[J]. Probl Tuberk. 1981,(10):31-2.
    [32]Kostromina VP. Prodigiozan therapy and its role in correcting immunologic reactivity in children and adolescents with pulmonary tuberculosis[J].Probl Tuberk,1982,(10):39-42.
    [33]Tsymbaliuk GF. Immediate and late results of complex antibacterial therapy of pulmonary tuberculosis in children and adolescents in combination with tuberculin PPD-L or prodigiozan[J]. Probl Tuberk.1982, (10):46-50.
    [34]Makhamatov KM, Dzhuraeva RM, Usmonov IaU. The results of antibacterial therapy combined with prodigiozan in children with tuberculosis[J]. Probl Tuberk,1990,(6):38-41.
    [35]Gurvich SM, Skurkovich GV, Bokshtein ME,et al. Use of prodigiozan in the complex therapy of acute pneumonia[J]. Klin Med (Mosk),1970,48(12):78-82.
    [36]Pedanova VM, Smorchkov AP, Furer NM, et al. Experience with the use of prodigiozan in acute pneumonia and hospital respiratory viral infections in a pediatric department of a district hospital[J]. Antibiotiki,1973,18(10):935-8.
    [37]Sil'vestrov VP, Karaulov AV, Likov VF. Effectiveness of levamisole, prodigiozan and diucifon in the treatment of acute pneumonia[J].Ter Arkh,1983;55(12):56-61.
    [38]Turgunbaev OT, Martynova LG. Use of prodigiozan for preventing acute respiratory viral diseases in a children's collective[J]. Antibiotiki,1978, 23(2):183-5.
    [39]Rainite-Audinene AB, Uspenskii IuS, Prilmiagi LS, et al. Evaluation of the effectiveness of prodigiozan in acute respiratory viral infections in young infants[J]. Pediatriia,1979, (12):44-6.
    [40]Rainite-Audinene AB, Prilmiagi LS, Kremerman IB, et al. Evaluation of the effect of prodigiozan on the course of acute respiratory viral infections[J]. Pediatriia,1983, (4):26-8.
    [41]Pokrovskii VI, Mashilov VP, Utekhin VA, et al. Use of prodigiozan in the complex therapy of dysentery[J]. Vrach Delo,1973,4:154-6.
    [42]Sosnova MA, Zelenaia SN. Role of prodigiozan in the overall therapy of dysentery in children[J]. Zdravookhr Kirg.1976,(6):19-21.
    [43]Vereshchagin IA, Zhuravleva OD. Use of prodigiozan for increasing the effectiveness of the antibiotic therapy of dysentery in children[J]. Antibiotiki, 1984,29(10):791-4.
    [44]Bolko IN, Khavinson VKh, Morozov VG. Effectiveness of thymalin and prodigiozan in the complex treatment of patients with dysentery[J]. Voen Med Zh.1985,(7):45-6.
    [45]Popov NV. On prevention of influenza with prodigiozan[J]. Voen Med Zh. 1969,2:48.
    [46]Ignat'eva GS, Gagarinova VM, Ivanova AM, et al. The use of prodigiozan for the nonspecific prevention of influenza and ARD among frequently ill schoolchildren[J]. Pediatriia,1990,(9):67-70.
    [47]Frolov VM, Rychnev VE. Effectiveness of prodigiozan in the complex treatment of erysipelas[J]. Klin Med (Mosk),1984,62(8):123-6.
    [48]Frolov VM, Rychnev VE. Possibility of increasing the efficacy of antibiotic therapy of erysipelas using combinations of methyluracil with prodigiozan[J]. Antibiot Med Biotekhnol,1985,30(5):375-8.
    [49]Volianskii IuL, Troian GA, Palii GK. Effect of the combination of prodigiozan with decamethoxin on the course and outcome of experimental septicemia in albino mice[J]. Antibiotiki,1971,16(5):441-3.
    [50]Kushnareva TO, Givental'NI, Andreeva PG. Use of polysaccharide prodigiozan in the complex therapy of chronic and residual brucellosis[J]. Antibiotiki,1971, 16(6):567-71.
    [51]Kirienko LV. Treatment of chronic gonorrhea in women with oletetrin, prodigiozan and gonovaccine[J]. Antibiotiki,1974,19(7):642-4.
    [52]Shcherbakova EG, Medvedeva MM, Rastunova GA,et al. Action of gentamicin, tobramycin and their combinations with prodigiozan in an experimental infection caused by Pseudomonas aeruginosa[J]. Antibiotiki,1975,20(12):1112-5.
    [53]Rudenko MM, Kozhanova GA, Genesina TI. Effect of prodigiozan on the course of candidiasis of the oral mucosa clinically and in an experiment[J]. Antibiotiki,1975,20(11):1029-32.
    [54]Zhukov MD, Gein VV. Experience in using prodigiozan in the overall treatment of suppurative surgical diseases in children[J]. Klin Khir.1979,(6):38-40.
    [55]Dvurechenskaia GS, Markova EA, Fortinskaia ES. Use of prodigiozan in complex treatment of endogenous infections[J]. Ter Arkh,1980,52(1):92-4.
    [56]Starodubtsev VS, Babaeva OA, Biberman IaM,et al. Use of prodigiozan and decaris in odontogenic abscesses and phlegmon[J].Sov Med,1983,(11):108-11.
    [57]Nuzov BG. Use of lysozyme and prodigiozan in the treatment of suppurative infections in diabetics[J].Vestn Khir Im I I Grek,1984,132(4):62-5.
    [58]Akhtamov MA, Rakhimov AU, Akhmedov IuM. Use of prodigiozan in chronic hematogenous osteomyelitis in children[J]. Khirurgiia (Mosk),1985,(7):92-4.
    [59]Lebenzon SS, Maianskil DN, Gavrilova NI,et al. Use of prodigiozan and zymosan in treating children with viral hepatitis A[J]. Pediatriia.1988, (6):27-30.
    [60]Titov LP, Shaban ZhG, Kartel'AI. Use of prodigiozan and tactivin for treatment of patients with chronic Klebsiella infections[J]. Zh Mikrobiol Epidemiol Immunobiol,2001,(5):46-9.
    [61]Bukharin OV, Iakovleva ZM. Protective effect of Prodigiozan in experimental infections[J]. Biull Eksp Biol Med,1966,62(8):68-70.
    [62]Bakirov AB. Effect of prodigiozan and pyrimidine derivatives on the effectiveness of the antibiotic therapy of experimental infections[J]. Antibiotiki, 1979,24(9):673-8.
    [63]Anisimov AV, Lanovoi ID, Ivanova TI,et al. Combined therapy of inflammatory diseases of the female genitalia with prodigiozan[J]. Antibiotiki, 1971,16(2):175-7.
    [64]Matveeva EE, Zhukovskaia LN. Experience in the use of prodigiozan in the treatment of chronic inflammatory diseases of the female reproductive organs[J]. Akush Ginekol (Mosk),1967,43(12):30-3.
    [65]Matveeva EE. Prodigiozan treatment of chronic inflammatory processes in the uterus and adnexa[J]. Med Sestra,1980,39(11):25-8.
    [66]Grinzaid MI, Al'berton NI, Balan GM, et al. Experience in the use of prodigiozan in the treatment of chronic bronchitis in miners[J]. Antibiotiki,1969, 14(6):546-9.
    [67]Kuznetsov VS, Abdulkhamidov KhB. Effect of the inhalation of prodigiozan on the incidence of inflammatory diseases of the upper respiratory tract[J]. Vestn Otorinolaringol.1986,(4):49-51.
    [68]Tsyganenko AIa, Filatov VF, Dikii IL, et al. Evaluation of liposomal forms of rifampicin and prodigiozan in the treatment of experimental chronic tonsillitis[J], Antibiot Khimioter,1990,35(6):37-9.
    [69]Fedotov AA, Sergeev VS, Sinitsyna TM, et al. The treatment of bronchial asthma patients with prodigiozan (the clinico-physiological aspects)[J]. Sov Med, 1991,(7):47-8.
    [70]Kovalenko NN, Kogosova LS, Tsygankova LM, et al. The clinico-immunological efficacy of paspat and prodigiozan in the combined treatment of infectious-allergic bronchial asthma[J]. Lik Sprava.1993, (7):73-6.
    [71]Shul'tsev GP, Burtsev VI, Kharybin AK. Use of prodigiozan for treating chronic pyelonephritis[J].Ter Arkh,1972,44(6):90-3.
    [72]Scuratovich AA, Potapnev FV, Levochkin AM. Experiences with the use of Prodigiozan in therapy of prostatitis[J]. Antibiotiki.1973,18(10):938-40.
    [73]Askarov UA, Askarova IV, Mamadzhanov AM. On the therapeutic effectiveness of prodigiozan in chronic colitis[J]. Antibiotiki, 1968,13(11):1036-8.
    [74]Sibiriak SV. The effect of prodigiozan and methyluracil on adjuvant arthritis in rats[J]. Antibiotiki,1983,28(6):449-52.
    [75]Sibiriak SV, Lazereva DN, Kokhanchikova NA. Suppression of adjuvant arthritis with levamisole and prodigiozan[J]. Farmakol Toksikol,1984, 47(6):84-7.
    [76]Sibiriak SV, Lazareva DN, Kokhanchikova NA. Combined use of prodigiozan and methyluracil with immunosuppressive drugs in adjuvant arthritis in rats[J]. Antibiotiki.1984,29(11):845-8.
    [77]Lebedev VG, Moroz VV, Deshevoi IuB, et al. The effect of prodigiozan on the postradiational recovery of hemopoiesis in long-term bone morrow cultures of mice of different genotypes[J].Radiats Biol Radioecol,2005,45(6):715-21.
    [78]Lebedev VG, Moroz BB, Vorotnikova TV, et al. The cellular and humoral mechanisms of the radioprotective action of prodigiozan and indometofen on long-term mouse bone marrow cultures[J]. Patol Fiziol Eksp Ter,2000,(3):10-4.
    [79]Lebedev VG. Effects of prodigiozan on post-radiation recovery of hemopoietic precursor cells and colony-stimulating factor level in long-term cultures of mouse bone marrow[J]. Radiobiologiia,1991,31(4):510-4.
    [80]Romashko OO, Moroz BB, Lebedev VG. The role of the hematopoietic microenvironment in the mechanism of the antiradiation action of prodigiozan[J].Patol Fiziol Eksp Ter,1989,(4):30-4.
    [81]Chertkov KS, Mosina ZM, Khramchenkova SP. Treatment of irradiated guinea pigs with the polysaccharide prodigiozan [J]. Radiobiologiia.1976,16(1):88-91.
    [82]Ermol'eva ZV, Vaisberg GE, Dikovenko EA,et al. Effect of post-irradiation use of prodigiozan on survival and blood system of irradiated animals[J]. Antibiotiki, 1972,17(6):517-22.
    [83]Chertkov KS, Vaisberg GE, Khramchenkova SP,et al. Radio-protective properties of prodigiozan in experiment[J]. Antibiotiki.1969,14(11):1026-30.
    [84]Tishchenko LM, Guseva SA. Prodigiozan treatment of patients with acute myeloblastic leukemia[J]. Vrach Delo,1987,(1):69-72.
    [85]Shevchenko VP. Possibility of using prodigiozan to increase the efficacy of combined treatment of breast cancer[J]. Klin Khir.1987,(5):9-12.
    [86]Kovaleva LG, Isaev VG, Golosova TV,et al. Experience in the use of prodigiozan in leukemia[J]. Klin Med (Mosk),1970,48(7):97-101.
    [87]Veksler IG. Effect of prodigiozan on the therapeutic effect and toxicity of some antitumor preparations[J]. Antibiotiki,1968,13(1):72-7.
    [88]Ermol'eva AV, Givental' NI, Pasternak NA, et al. Effect of prodigiozan and its combinations with cytostatic agents on experimental tumor growth[J]. Antibiotiki,1966,11(8):675-82.
    [89]Ermol'eva AV, Givental'NI, Pasternak NA, et al. Effect of prodigiozan and its combinations with cytostatic agents on experimental tumor growth [J]. Antibiotiki,1966,11(8):675-82.
    [90]关世斌.灵杆菌索研制和临床应用鉴定会[J],微生物学通报,1980,07(02):96.
    [91]张瑞斌.灵杆菌LPS的提取纯化与理化性质的初步研究[J],黑龙江医药,2002,15(05):374-6
    [92]黄诚.标准曲线法对灵杆菌素测定方法的研究[J],科技资讯,2011,09(27):60.
    [93]辛滨,张瑞斌,俞嘉林.灵杆菌LPS的生物学活性[J].黑龙江医药,2001;14(6):434-8.
    [94]杨海嵘,耿晓星.灵杆菌多糖联合抗生素治疗慢性盆腔炎的临床研究[J]。齐齐哈尔医学院学报,2008,29(6):648-50.
    [95]陈明.灵杆菌素联合肝速康治疗慢性乙肝疗效观察[J].中国社区医师,2005,291(21):20.
    [96]付彬玉,王谊,曾令源,等.应用灵杆菌素临床疗效50例观察[J].四川医学,1999,20(1):88-9.
    [97]章谷生,林飞卿,卫并元,等.灵杆菌素对B淋巴细胞的作用[J],上海第一医学院学报,1981,08(06):401-6
    [98]余传林,朱正光,雷林生,等.灵杆菌多糖抗肿瘤及抗免疫抑制作用的研究[J].南方医科大学学报,2009,29(10):2133-7.
    [99]王海荣.灵杆菌素预防化疗所致骨髓抑制的观察[J].华西医学,1999,14(3):315-6.
    [100]彭大为,赖晓莺,江小青.灵杆菌素注射液治疗恶性肿瘤化、放疗引起的白细胞减少症40例疗效观察[J].中国肿瘤生物治疗杂志,1998,5(3):215-6.
    [101]黄国平,王爱云.灵杆菌素治疗白细胞减少症14例临床疗效观察[J]河南医药信息,2001,9(2):55.
    [102]万书英,王荣华.灵杆菌素治疗化疗所致白细胞减少症40例[J].山东医药,2000,40(18):62.
    [103]贾钰铭,庞军,裴铃等.灵杆菌素与惠尔康对化疗后白细胞减少的疗效观察[J].四川肿瘤防治,2000,13(4):242-4.
    [104]陈艳才,古至洲,蒋荣,等.灵杆菌素和GM-CFF对恶性肿瘤化疗后白细胞减少症治疗效果对比[J].医学理论与实践,1999,12(11):644.
    [105]齐洁琳,牛作兴,田禾,等.灵杆菌素对肿瘤化疗所致血细胞下降的疗效观察[J].山东医药,2000,40(9)24-5.
    [106]陈艳才,古至洲,蒋荣,等.灵杆菌素对恶性肿瘤化疗后白细胞减少症的治疗[J].肿瘤研究与临床,1999,11(5):340-1.
    [107]匡建民,张勇,赵付芝,等.灵杆菌素治疗化疗后白细胞减少症的疗效观察[J].四川肿瘤防治,1999,12(4):49-50.
    [108]付彬玉,王谊,曾令源,符.应用灵杆菌素临床疗效50例观察[J].四川医学,1999,20(1):88-9.
    [109]佟长青,陈金华.灵杆菌素治疗效骨髓抑制疗效观察[J].张家口医学院学报,1998,15(4):58-9.
    [110]李锐,杨冬阳,唐继森.灵杆菌素促进非小细胞肺癌化疗后中性粒细胞恢复[J].广东药学,1998,8(2):37.转32.
    [111]雷有成,洪元康,张祖蓉,等.灵杆菌素治疗肿瘤化疗所致白细胞减少症42例疗效观察[J].四川肿瘤防治,1997,10(4):26-8.
    [112]江汀,张爱民,刘琰瑛.灵菌素用于防治化学治疗所致中性粒细胞减少[J].新医学,2001,32(2):90-1
    [113]杨海嵘,耿晓星.灵杆菌多糖联合抗生素治疗慢性盆腔炎的临床研究[J].齐齐哈尔医学院学报,2008,29(6):648-50.
    [114]陈珩.灵杆菌多糖联合常规治疗带状疱疹疗效观察[J].岭南皮肤性病科杂志,2008,15(2):87-8.
    [115]汤家骥.军队流感的预防方向---化学预防[J].解放军预防医学杂志,1994,(11):34,328.
    [116]李长德,金永本.左旋咪哗、灵杆菌素治疗HBsAg阳性慢性迁延型肝炎近期疗效观察[J].人民军医,1983,26(2):48-9.
    [117]晋素丽,耿发云.灵杆菌多糖治疗顽固性复发性阿弗它溃疡的临床观察[J].现代口腔医学杂志,2008,22(2):217-9.
    [118]吕镗烽.Toll样受体在脂多糖耐受性机制作用中的研究进展[J].中国危重病急救医学,2005,17(4):251-3.
    [119]王国兴.Toll样受体及其信号转导[J].细胞与分子免疫学杂志,2002,18(6):666-9.
    [120]Clements JM, Coignard F, Johnson I, et al. Antibacterial activities and characterization of novel inhibitors of lpxC. Antimicrob Agents Chemother, 2002,46(6):1793-9.
    [121]Li X, Uchiyama T, Raetz CR, et al. Synthesis of a carbohydrate-derived hydroxamic acid inhibitor of the bacterial enzyme (lpxC) involved in lipid A biosynthesis. Org-Lett,2003,5 (4):539-41.
    [122]Kumar A, Bunnell E, Lynn M, et al. Experimental human endotoxemia is associated with depression of load-independent contractility indices:prevention by the lipid A analogue E5531[J]. Chest,2004,126(3):860-7.
    [123]Wong YN, Rossignol D, Rose JR, et al. Safety, pharmacokinetics, and pharmacodynamics of E5564, a lipid A antagonist, during an ascending single-dose clinical study[J]. J Clin Pharmacol,2003,43(7):735-42.
    [124]Robert I, Donghui S, Alice H, et al. Limulus antilipopolysaccharide factor prevents mortality late in the course endotoxemia[J]. Infect Dis,1998,177(2): 388-94.
    [125]Vallespi MG, Glaria LA, Reyes O, et al. A limulus antilipopolysaccharide factor-derived peptide exhibits a new immunological activity with potential applicability infectious diseases[J]. Clin Diagn Lab Immunol,2000,7(4): 669-75.
    [126]Kleiger G, Beamer LJ, Grothe R, et al. The 1.7 A crystal structure of BPI:a study of how two dissimilar amino acid sequences can adopt the same fold[J]. J Mol Biol,2000,299(4):1019-34.
    [127]Giroir BP, Quint PA, Barton P, et al. Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis[J]. Lancet,1997,350(9089): 1439-43.
    [128]Tsubery H, Ofek I, Cohen S, et al. Modulation of the hydrophobic domain of polymyxin B nonapeptide:effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol,2002; 62(5):1036-42.
    [129]陈益国,姚婕,张向武,等.以Lipid A为靶点拮抗内毒素中药的筛选[J].中国临床药理学与治疗学,2005,10(12):1349-53.
    [130]Hughes M. Recombinant human activated protein C[J]. Int J Antimicrob Agents.2006,28(2):90-4.
    [131]Gardlund B. Activated protein C (Xigris) treatment in sepsis:a drug in trouble[J]. Acta Anaesthesiol Scand.2006,50(8):907-10.
    [132]张群,雷林生,吴曙光.多糖类药物作用的受体及信号转导机制的研究进展[J].中草药,2005,36(4):614-6.
    [133]路景涛,杨雁,陈敏珠.黄芪多糖对细菌脂多糖诱导大鼠腹腔巨噬细胞释放TNFα、NO及IL-1的影响[J].安徽医科大学学报,2004,39(2):139-41.
    [134]王莉,杜俊蓉,蔡绍晖,等.AP对正常和内毒素化大鼠脾细胞体外分泌细胞因子的影响[J].华西药学杂志,1999,14(5-6):346-8.
    [135]Gamal-Eldeen AM, Amer H, Helmy WA. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem Biol Interact.2006,161(3):229-40.
    [136]王金兰,高颖,崔颖,等.内毒素的来源结构和生物活性及中药对内毒素血症的治疗[J].武警医学院学报,2003,12(6):487-90.
    [137]高宏富,肖光夏,袁建成.抗内毒素研究进展[J].中华烧伤杂志,2005,21(5):395-8.
    [138]郭媛,魏筱华,谢珺.等.内毒索血症的免疫学发病机制[J].中华临床医师杂志(电子版),2011,5(2):454-6.
    [139]Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide [J]. J Biol Ohem, 1994,269(19):13725-8.
    [140]Cho HJ, Xie QW, Calaycay J, et al. Calmodulin is a subunit of nitric oxide synthase from macrophages[J]. J Exp Med,1992,176(2):599-604.
    [141]Corbett JA, Kwon G, Turk J, et al. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans:activation of cyclooxygenase by nitric oxide[J]. Biochemistry,1993,32(50):13767-70.
    [142]罗高兴.巨噬细胞产生N O及PGE2的相互关系[J].国外医学免疫学分册,1997,20(1):19-22.
    [143]李超然,王智刚,朱运奎.内毒素所致急性肺损伤发病机制的研究进展[J].中国医学科学,2011,01(10):47-9.
    [144]Tsuji C, Minhaz MU, Shioya S, et al. The importance of polymorphonuclear leukocytes in lipopolysaccharide-induced superoxide anion production and lung injury:ex vivo observation in rat lungs[J]. Lung,1998,176(1):1-13.
    [145]张馨.内毒素损伤肝脏机制的研究进展[J].国外医学·消化系疾病分册,2002,22(03):163-6.
    [146]Sozinov AS. Systemic endotoxemia during chronic viral hepatitis[J]. Bull Exp Biol Med,2002,133(2):153-5.
    [147]Soper DE. Pelvic inflammatory disease[J]. Obstet Gynecol,2010,116(2 Pt 1):419-28.
    [148]Sheldon IM, Roberts MH. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium [J]. PLoS One,2010,5(9):e12906.
    [149]Popa C, Abdollahi-Roodsaz S, Joosten LA, et al. Bartonella quintana lipopolysaccharide is a natural antagonist of Toll-like receptor 4[J]. Infect Immun, 2007,75(10):4831-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700