酶法合成糖苷及其酯类衍生物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着糖生物学的飞速发展,糖类化合物的多样性和复杂性被阐明,它们众多的生物学功能也逐渐为人们所认识。在药物化学领域,这类化合物愈来愈受到人们的重视。糖苷及糖苷酯类化合物均是重要的候选糖类药物,化学法合成糖苷及糖苷酯存在选择性差、需要保护/脱保护步骤和环境不友好等诸多问题。无疑,反应条件温和、高效、高选择性和绿色的酶法合成是一条极具前景的替代途径。基于上述情况,本论文首先进行了植物来源糖苷酶的筛选,并以其为催化剂,合成了各种烷基及芳基糖苷;研究了在含离子液体介质中糖苷酶的催化特性;随后以熊果苷为模型糖苷化合物,揭示了在不同反应体系中固定化Penicillium expansum旨肪酶(PEL)催化其酰化反应的特性,并在此基础上探讨了固定化PEL在催化熊果苷酰化反应中对酰基供体的识别规律。
     研究表明,桃仁粗酶具有最高的水解活力,为75.2 U/g;其次是黑布林籽、苹果籽、西梅籽和苦杏仁粗酶,为20.3-34.7 U/g;而西瓜籽、郁李仁和柚子籽粗酶的比活较低,仅为7.1-12.4 U/g。其中黑布林籽、西梅籽、郁李仁、西瓜籽和柚子籽为新的β-葡萄糖苷酶来源。无溶剂体系中,所筛选的几种糖苷酶均能催化逆水解反应合成各种醇糖苷,收率介于14-78%之间。随着烷基醇链长的增加,糖基化产物收率逐渐下降,这可能由于碳链较长的糖基受体空间位阻较大。经NMR鉴定,所合成的糖苷均为β-葡萄糖苷。
     在含离子液体介质中,离子液体的组成和含量对糖苷酶的催化特性影响显著。研究结果表明,离子液体对糖苷酶催化糖基化反应的影响规律不遵循Hofmeister序列,其对酶反应的影响不能简单地归结于离子效应。以不同芳醇为糖基受体时,离子液体对酶反应的影响规律类似,但影响幅度却存在较大差异。在所研究范围内,在反应体系中添加适量的离子液体均能有效提高糖苷酶催化芳基糖苷的合成收率。在含10%(v/v)BMIm·I的介质中,西梅籽β-糖苷酶催化各种芳基糖苷(熊果苷除外,收率6%)合成的收率介于15-28%之间。尤其值得一提的是,在该反应介质中,酶催化对硝基苯甲醇糖基化反应的平衡收率达15%,是不添加该离子液体介质中的1.56倍。底物识别研究表明,糖基受体的结构对酶促糖基化反应速率和产物收率影响显著。这是由酶活性中心结构、大小、形状以及底物分子空间位阻和羟基亲核性共同决定的。
     探讨了有机溶剂中利用廉价的固定化脂肪酶PEL催化熊果苷区域选择性丁酰化反应特性。发现该反应的最适反应介质、酶量、底物摩尔比(丁酸乙烯酯/熊果苷)、反应温度分别为脱水四氢呋喃、50 U/mL、7.5和35℃。在上述条件下,反应初速度、熊果苷最大转化率和6’-区域选择性分别为75.1 mM/h、>99%及>99%。酰基供体结构对固定化脂肪酶PEL催化熊果苷酰化反应速度影响显著,然其对反应的区域选择性影响甚微。产物的NMR分析表明,酶促熊果苷酰化反应均发生在6’-羟基上,其区域选择性高达99%以上。在所所研究的酰基供体[10种直链脂肪酸乙烯酯(C2-C18)和6种带取代基或官能团的羧酸乙烯酯]中,固定化PEL催化熊果苷10-十一烯酸酰化活性最高。当酰基供体α-位含有取代基(如甲基或乙基)或含有与羰基共轭的不饱和键(如双键)时,由于空间位阻或共振效应,酶促酰化反应速度显著降低。在固定化PEL催化各种熊果苷芳香酸酯合成中,以苯丙酰化反应最快,反应4 h,转化率达99%。当酰基供体中含有与羰基共轭的不饱键时,酶反应速度降低。当酰基供体的苯环上含有取代基时,由于空间位阻或电子效应,酶促反应速度和转化率急剧下降。所建立的糖苷酰化反应体系具有较好的普适性,基于该体系,成功合成了26个结构新颖的熊果苷酯类衍生物(脂肪酸酯与芳香酸酯)。尤其值得一提的是,在本研究中熊果苷肉桂酸酯的分离产率可达到88%,大大高于前人报道的对应值(28%)。并且,该酶在重复使用至11批次时,其残余活性达63%。
     以熊果苷香草酰化为模型反应,研究了混合溶剂中固定化PEL催化熊果苷区域选择性酰化反应的特性。在四氢呋喃-异丙醚(20%,v/v)中,该酶可高效、高6’-区域选择性(>99%)地催化熊果苷香草酰化。采用3因素5水平的响应面法探讨了混合体系中酶量、底物摩尔比和反应温度对熊果苷香草酰化反应的影响。其最优酶量、底物摩尔比(香草酸乙烯酯/熊果苷)和反应温度分别为93 U/mL、11和50℃。在上述条件下,反应初速度、熊果苷最大转化率及6’-区域选择性分别为8.2 mM/h、93%及>99%,其中熊果苷最大转化率远高于在纯四氢呋喃体系中的对应值(30%)。当以对羟基肉桂酸乙烯酯、对甲氧基肉桂酸乙烯酯或3,4-二甲氧基肉桂酸乙烯酯为酰基供体时,熊果苷转化率分别由四氢呋喃中的36%、80%和70%提高到97%、99%和99%。此外,与纯四氢呋喃体系相比,混合溶剂中酶的操作稳定性有所提高,重复使用至11批次,其残余活性仍高达71%。研究结果表明利用混合溶剂体系不仅能有效促进酶催化熊果苷芳香酰化反应的发生,而且还能增强酶的操作稳定性。
     本研究不仅丰富了酶学基础理论知识,而且开辟了一条可用于糖苷及其酯衍生物高效、高选择性合成的新途径。同时,本研究合成了一系列糖苷及其酯类衍生物,为研究糖类化合物的构效关系、筛选糖类新药奠定了物质基础。
With the rapid development of glycobiology over the last decade, the diversity and complexity of glycoconjugate compounds have been well elucidated, and their biological functions have been gradually understood. So these compounds are attracting increasing attention in medicinal chemistry. Glycosides and their esters are an important group of candidates of glycoconjugate drugs. The conventional chemical approaches are characterized by low selectivity, the requirement of protection/deprotection, and being environmentally unfriendly. Doubtlessly, green enzymatic routes with mild reaction conditions, high efficiency and high selectivity are a promising alternative. Hence, in the dissertation, a variety of glycosidases of plant origin were screened to catalyze the synthesis of alkyl and aryl glycosides. Besides, the catalytic performance of glycosidase in ionic liquids-containing systems was examined. Then, with the acylation of arbutin as a model reaction, the catalytic performance of immobilized Penicillium expansum lipase (PEL) in various reaction media was examined. At last, the acyl donor recognition of immobilized PEL in the acylation of arbutin was explored.
     It was found that peach seed meal displayed the highest hydrolytic activity (75.2 U/g) among the seeds tested. The glycosidases from the seeds of black plum, prune, apple and almond exhibited moderate hydrolytic activities (20.3-34.7 U/g), while the activity of glycosidases from the seeds of watermelon, bunge cherry and pomelo was low (7.1-12.4 U/g). To the best of our knowledge, the seeds from black plum, prune, bunge cherry and pomelo as the sources ofβ-glucosidase have not been reported. In solvent-free systems, these glycosidases could catalyze the synthesis of alkyl glycosides via reverse hydrolysis with 14-78% yields. With increasing chain length of alcohols, the enzymatic glucosylation became unfavorable possibly due to the steric hindrance. The products were exclusivelyβ-glycosides as characterized by 13C NMR and 1H NMR.
     In ionic liquid (IL)-containing media, the effects of the nature and content of ILs on the catalytic performance of glycosidases were remarkable. It was revealed that the effects of ILs on the enzymactic reaction did not follow the Hofmeister series, and it could not be ascribed simply to the ion effect. With different aryl alcohols as glycosyl acceptors, the effects of various ILs on the enzymatic reaction were similar, but they were different with each other in the degree. Among ILs tested, the yields of aryl glucosides were efficiently improved by adding these ILs of moderate amount. In the BMIm·I (10%, v/v)-containing mixtures, prune seed could efficiently catalyze the synthesis of alyl glycosides via reverse hydrolysis with 15-28% yields (except for arbutin with a yield of 6%). It was worth noting that the yield of p-nitrobenzylβ-D-glucopyranoside in this medium was 15%, which is 1.56 times that in IL-free systems. The investigation of enzyme substrate recognition revealed that the structure of glycosyl acceptors exerted significant effects on the enzymatic reaction. It might be attributed to the structure, size and shape of the enzyme active center as well as steric hindrance of the substrates or nucleophilicity of.hydroxyl groups.
     In organic solvents, the characteristics of the regioselective butanoylation of arbutin catalyzed by inexpensive immobilized PEL were elucidated. The optimum reaction medium, enzyme dosage, molar ratio of vinyl butyrate to arbutin and reaction temperature were anhydrous THF,50 U/mL,7.5 and 35℃, respectively. Under the optimal conditions, the initial rate, the maximum substrate conversion and the 6'-regioselectivity were 75.1 mM/h, >99% and>99%, respectively. The structures of acyl donors showed a great influence on the reaction rate, while little effect on the regioselectivity was observered. The acylation reaction occurred exclusively on 6'-hydroxyl of arbutin (regioselectivity>99%) as characterized by 13C NMR and 1H NMR. Among the acyl donors tested [10 straight-chain fatty acid vinyl esters (C2-C18) and 6 other carboxylic acid vinyl esters bearing different substituents or functional groups], immobilized PEL showed the highest catalytic activity toward the regioselective acylation of arbutin with vinyl 10-undecenoate. Drastic decrease of the initial rate was observed in the acylation of arbutin with acyl donors bearing a substitute (i.e. methyl or ethyl) at the a-position or an unsaturated bond (i.e. C-C double bond) conjugated with the carbonyl group, due to steric hindrance or resonance effect. Among the synthesis of various aromatic acid esters of arbutin, the lipase was the most specific towards vinyl 3-phenylpropionate, with which a substrate conversion of 99% was recorded in 4 h. The reaction rate decreased significantly when the acyl donors had an unsaturated bond (i.e. C-C double bond) conjugated with the carbonyl group. Moreover, the substituents present in the phenyl moiety of the acyl donor exerted a negative impact on the reaction which could be attributed to the unfavorable resonance effect or steric hindrance. The enzymatic acylation route with immobilized PEL proved to be quite applicable and was successfully used for the synthesis of 26 novel ester derivatives of arbutin. It was noteworthy that the isolated yield of arbutin cinnamate was 88%, which is much higher than that (28%) reported previously. In addition, the lipase retained the residual activity of 63% when reused for 11 runs.
     In co-solvent mixtures, the acylation of arbutin with vanillic acid vinyl ester catalyzed by immobilized PEL was examined. In anhydrous THF-diisopropyl ether (20%, v/v), the lipase showed a high activitiy and an excellent regioselectivity (>99%). The effects of several key variables on the reaction were investigated in detail by response surface methodology of five-level-three-factors. The optimal enzyme dosage, the molar ratio of vinyl vanillic acid to arbutin and the reaction temperature were 93 U/mL,11 and 50℃, respectively, under which the initial reaction rate, the maximum arbutin conversion and the 6'-regioselectivity were 8.2 mM/h,93% and>99%, respectively. The maximum arbutin conversion of 93% was much higher in co-solvent system than that (30%) in THF. And the conversion in the p-hydroxylcinnamoylation,p-methoxylcinnamoylation and 3,4-dimethoxycinnamoylation were 97%,99% and 99%, respectively, which were much higher than those (36%,80% and 70%, respectively) in THF. Besides, the operational stability of the immobilized PEL in co-solvent mixtures was improved, as compared to that in THF. The lipase remained the residual activity of 71% when reused for 11 batches. It was revealed that using co-solvent system not only enhanced enzymatic acylation of arbutin, but also improved the operational stability of the enzyme.
     This study not only enriches the knowledge of fundamental enzymology, but also provides a novel, selective and efficient route to glucosides and their ester derivatives. Meanwhile, a group of novel glucosides and their ester derivatives have been successfully synthesized, which can be used for the investigation of structure-function of the glycoconjugate compounds and the screening of new glycoconjugate drugs.
引文
[1]Zaks A., Klibanov A.M. Enzyme catalysis in organic media at 100℃[J]. Science, 1984,224(4654):1249-1251
    [2]Rariy R.V., Klibanov A.M. On the relationship between enzymatic enantioselectivity in organic solvents and enzyme flexibility [J]. Biocatal. Biotransform.,2000,18(5): 401-407
    [3]Klibanov A.M. Improving enzymes by using them in organic solvents [J]. Nature, 2001,409(6817):241-246
    [4]Lee M.Y., Dordick J.S. Enzyme activation for nonaqueous media [J]. Curr. Opin. Biotech.,2002,13(4):376-384
    [5]Klibanov A.M. Enzymes that work in organic solvent [J]. Chem. Technol.,1986,16(6): 354-359
    [6]Zaks A., Klibanov A.M. Enzymatic catalysis in non-aqueous solvents [J]. J. Biol. Chem.,1988,263(7):3194-320
    [7]Ducret A., Giroux A., Trani M., et al. Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure [J]. Biotechnol. Bioeng.,1995,48(3):214-221
    [8]Knez Z., Habulin M. Compressed gases as alternative enzymatic-reaction solvents:a short review [J]. J. Supercrit. Fluids,2002,23(1):29-42
    [9]Krishna S.H. Developments and trends in enzyme catalysis in nonconventional media [J]. Biotechnol. Adv.,2002,20(3-4):239-267
    [10]Park S., Kazlauskas R.J. Biocatalysis in ionic liquids-advantages beyond green technology [J]. Curr. Opin. Biotechnol.,2003,14(4):432-437
    [11]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis [J]. Chem. Rev.,1999,99(8):2071-2084
    [12]van Rantwijk F.,Madeira Lau R., Sheldon R.A. Biocatalytic transformations in ionic liquids [J]. Trends Biotechnol.,2003,21(3):131-138
    [13]Zaks A., Klibanov A.M. The effect of water on enzyme action in organic media [J]. J. Biol. Chem.,1988,263(17):8017-8021
    [14]Chin J.T., Wheeler S.L., Klibanov A.M. On protein solubility in organic solvent [J]. Biotechnol. Bioeng.,1994,44(1):140-147
    [15]袁勤生.现代酶学[M].华东理工大学出版社.2001:211-236
    [16]罗贵民.酶工程[M].化学工业出版社.2002:203-250
    [17]Halling P.J. Salt hydrates for water activity control with biocatalysts in organic media [J]. Biotechnol. Tech.,1992,6(3):271-276
    [18]Halling P.J. Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis [J]. Enzyme Microb. Technol.,1994,16(3):178-206
    [19]Klibanov A.M. Why are enzymes less active in organic solvents than in water? [J] Trends Biotechnol.,1997,15(3):97-101
    [20]Lee M.Y., Dordick J.S. Enzyme activation for nonaqueous media [J]. Curr. Opin. Biotechnol.,2002,13(4):376-384
    [21]Lau R.M., Van Rantwijk F., Seddon K.R., et al. Lipase-catalyzed reactions in ionic liquids [J]. Org. Lett.,2000,2(26):4189-4191
    [22]Lou W.Y.,Zong M.H., Liu Y.Y, et al. Efficient enantioselective hydrolysis of D, L-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems [J]. J. Biotechnol.,2006,125(1):64-74
    [23]Lou W.Y, Zong M.H., Smith T.J. Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol [J]. Green Chem.,2006,8(2):147-155
    [24]Kaftzik N., Wasserscheid P., Kragl U. Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine [J]. Org. Proc. Res. Dev.,2002,6(4):553-557
    [25]张玉彬.生物催化的手性合成[M].化学工业出版社.2002:125-167
    [26]Grout D.H.G, Vic G. Glycosidases and glycosyl transfereases in glycoside and oligosaccharide synthesis [J]. Curr. Opin. Chem. Biol.,1998,2(1):98-111
    [27]Milosavic N.B., Prodanovic R.M., Jankov R.M. A simple and efficient one-step, regioselective, enzymatic glucosylation of arbutin by a-glucosidase [J]. Tetrahedron Lett.,2007,48(40):7222-7224
    [28]Moon Y.H., Nam S.H., Kang J. Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB [J]. Appl. Microbiol. Biotechnol.,2007,77(3):559-567
    [29]Lu W.Y, Lin G.Q., Yu H.L. Facile synthesis of alkyl β-D-glucopyranosides from D-glucose and the corresponding alcohols using fruit seed meals [J]. J. Mol. Catal. B: Enzym.,2007,44(2):72-77
    [30]Yamanoi T., Yoshida N., Oda Y. Synthesis of mono-glucose-branched cyclodextrins with a high inclusion ability for doxorubicin and their efficient glycosylation using Mucor hiemalis endo-β-N-acetylglucosaminidase [J]. Bioorg. Med. Chem. Lett.,2005, 15(4):1009-1013
    [31]Kobayashi T., Adachi S., Nakanishi K. Synthesis of alkyl glycosides through β-glucosidase-catalyzed condensation in an aqueous-organic biphasic system and estimation of the equilibrium constants for their formation [J]. J. Mol. Catal. B: Enzym.,2000,11(1):13-21
    [32]Perugino G, Trincone A., Rossi M. Oligosaccharide synthesis by glycosynthases [J]. Trends Biotechnol.,2004,22(1):31-37
    [33]Scigelova M., Singh S., Crout D.H.G Glycosidases—a great synthetic tool [J]. J. Mol. Catal. B:Enzym.,1999,6(5):483-494
    [34]Daines A.M., Maltman B.A., Flitsch S.L. Synthesis and modifications of carbohydrates using biotransformations [J]. Curr. Opin. Chem. Biol.,2004,8(2): 106-113
    [35]Nilsson K.GL. Enzymatic synthesis of oligosaccharides [J]. Trends Biotechnol.,1988, 6(10):256-264
    [36]郁惠蕾,许建和,林国强.糖苷水解酶在糖苷合成中的应用概况[J].有机化学,2006,26(8):1052-1058
    [37]Vic G, Crout D.H.G Synthesis of alkyl and benzyl β-D-glucopyranosides, and alkyl β-D-galactopyranoside from D-glucose or D-galactose and the corresponding alcohol using almond β-D-glucosidases [J]. Carbohydr. Res.,1995,279:315-319
    [38]Ismai A., Samia S., Ghoul M. Enzymatic-catalyzed synthesis of alkylglycosides in monophasic and biphasic systems. II. The reverse hydrolysis reaction [J]. J. Biotechnol.,1999,69(2-3):145-149
    [39]Vic G, Thomas D., Grout D.H.G Solvent effect on enzyme-catalyzed synthesis of β-D-glucosides using the reverse hydrolysis method:application to the preparative-scale synthesis of 2-hydroxybenzyl and octyl β-D-glucopyranosides [J]. Enzyme Microb. Technol.,1997,20(8):597-603
    [40]Yi Q., Sarney D.B., Khan J.A., et al. A novel approach to biotransformations in aquous-organic two phase systems:Enzymatic synthesis of alkyl β-D-glucosides using microencapsulated β-glucosides [J]. Biotechnol. Bioeng.,1998,60(3):387-390
    [41]Gold A.M., Oser M.P. a-D-Glucopyranosyl fluoride:a substrate of sucrose phosphorylase [J]. Biochem. Biophys. Res. Commun.,1971,42(3):469-474
    [42]Drueckhammer D.G, Wong C.H. Chemoenzymic synthesis of fluoro sugar phosphates and analogs [J]. J. Org. Chem.,1985,50(26):5912-5913
    [43]Kobayashi S., Kiyosada T., Shoda S. A novel method for synthesis of chitobiose via enzymatic glycosylation using a sugar oxazoline as glycosyl donor [J]. Tetrahedron Lett.,1997,38(12):2111-2112
    [44]Chiffoleau-Giraud V., Spangenberg R., Rabiller C.β-Galactosidase transferase activity in ice and use of vinyl-β-D-galactoside as donor [J]. Tetrahedron:Asymmetry,1997, 8(12):2017-2023
    [45]Andersson M., Adlercreutz P.A. kinetic study of almond-β-glucosidase catalysed synthesis of hexyl-glycosides in low aqueous media:Influence of glycosyl donor and water activity [J]. J. Mol. Catal. B:Enzym.,2001,14:69-76
    [46]Lang M., Kamrat T., Nidetzky B. Influence of ionic liquid cosolvent on transgalactosylation reactions catalyzed by thermostable β-glycosylhydrolase CelB from Pyrococcus Furiosus [J]. Biotech. Bioeng.,2006,95(6):1093-1100
    [47]Vilas. Applied and Environmental Microbiology [M]. World Scientific Publishing Co. pte. Ltd.,1998,64:3607
    [48]李华,高丽.β-葡萄糖苷酶活性测定方法的研究进展[J].食品与生物技术学报,2007,26(2):107-112
    [49]Vic G, Thomas D. Enzyme-catalysed synthesis of alkyl β-D-Glucosides in organic media [J]. Tetrahedron Lett.,1992,60(4):4567-4570
    [50]Kengen S.W.M., Luesink E J., Stams A.J.M., et al. Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus [J]. Eur. J. Biochem.,1993,213(1):305-312
    [51]Voorhorst W.G.B., Eggen R.L.L., Leusink E.J., et al. Characterization of the celB gene coding for β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli [J]. J. Bacteriol.,1995, 177(24):7105-7111
    [52]Goncalves P.M.L., Roberts S.M., Wan P.W.H. Regioselective acylation of carbohydrate derivatives using lipases leading to a facile two-step procedure for the separation of some a-and β-glucopyranosides and galactopyranosides [J]. Tetrahedron, 2004,60(4):927-932
    [53]Cauglia F.,Canepa P. The enzymatic synthesis of glucosylmyristate as a reaction model for general considerations on sugar esters production [J]. Bioresour. Technol., 2008,99(10):4065-4072
    [54]Ferrero M., Gotor V. Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides, and C-nucleosides [J]. Chem. Rev.,2000,100(12): 4319-4347
    [55]Li N., Ma D., Zong M.H. Enhancing the activity and regioselectivity of lipases for 3'-benzoylation of floxuridine and its analogs by using ionic liquid-containing systems [J]. J. Biotechnol.,2008,133(1):103-109
    [56]Li N., Zong M.H., Liu X.M. Regioselective synthesis of 3'-O-caproyl-floxuridine catalyzed by Pseudomonas cepacia lipase [J]. J. Mol. Catal. B:Enzym.,2007,47(1-2): 6-12
    [57]Li N., Zong M.H., Ma D. Regioselective acylation of nucleosides and their analogs catalyzed by Pseudomonas cepacia lipase:enzyme substrate recognition [J]. Tetrahedron,2009,65(5):1063-1068
    [58]Akoh C.C. Enzymatic synthesis of acetylated glucose fatty acid esters in organic solvent [J]. J. Am. Oil Chem. Soc.,1994,71(3):319-323
    [59]Sarney D.B., Virto M., Barnard M.J., et al. Enzymatic synthesis of sorbiton esters using low boiling azeotropes as a reaction solvent [J]. Biotechnol. Bioeng.,1997, 54(4):351-356
    [60]Skagerlind P., Larssonb K., Barfoedb M., et al. Glucoside ester synthesis in microemulsions catalyzed by Candida antarctica Component B Lipase [J]. J. Am. Oil Chem. Soc.,1997,74(1):39-42
    [61]Mutua L.N., Akoh C.C. Synthesis of alkyl glycoside fatty acid esters in non-aqueous media by Candida sp. lipase [J]. J. Am. Oil Chem. Soc.,2007,70(1):43-46
    [62]Habulin M., Sabeder S., Knez Z. Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity [J]. J. Supercrit. Fluids.,2008,45(3):338-345
    [63]Millqvist-Fureby A., Gao C., Vulfson E.N. Regioselective synthesis of ethoxylated glycoside esters using β-glucosidase in supersaturated solutions and lipases in organic solvents [J]. Biotechnol. Bioeng.,1998,59(6):747-753
    [64]Bousquet M.P., Willemot R.M., Monsan P., et al. Enzymatic synthesis of unsaturated fatty acid glucoside esters for dermo-cosmetic applications [J]. Biotechnol. Bioeng., 1998,63(6):730-736
    [65]Wei D.Z., Zou P., Tu M.B., et al. Enzymatic synthesis of ethyl glucoside lactate in non-aqueous system [J]. J. Mol. Catal. B:Enzym.,2002,18(4-6):273-278
    [66]Yu H.L., Xu J.H., Lu W.Y., et al. Synthesis of novel salidroside esters by lipase-mediated acylation with various functional acyl groups [J]. J. Biosci. Bioeng., 2008,106(1):65-68
    [67]Nakajima N., Ishihara K., Matsumura S., et al. Lipase-catalyzed synthesis of arbutin cinnamate in an organic solvent and application of transesterification to stabilize plant pigments [J]. Biosci. Biotechnol. Biochem.,1997,61(11):1926-1928
    [68]Tokiwa Y., Kitagawa M., Raku T. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase [J]. Biotechnol. Lett.,2007, 29(3):481-486
    [69]Tokiwa Y., Kitagawa M., Raku T., et al. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis [J]. Bioorg. Med. Chem. Lett., 2007,17(11):3105-3108
    [70]Watanabe Y., Nagai M.,Yamanaka K., et al. Synthesis of lauroyl phenolic glycoside by immobilized lipase in organic solvent and its antioxidative activity [J]. Biochem. Eng.J.,2009,43(3):261-265
    [71]Chigorimbo-Murefua N.T.L., Rivab S., Burtona S.G. Lipase-catalysed synthesis of esters of ferulic acid with natural compounds and evaluation of their antioxidant properties [J]. J. Mol. Catal. B:Enzym.,2009,56(4):277-282
    [72]张力田.碳水化合物化学[M].北京:轻工业出版社,1988,13
    [73]桑已曙,闵知大.脑苷脂类化合物研究进展[J].中国生化药物杂志,2001,21(4):211-213
    [74]Kim H.E., Oh J.H., Lee S.K. Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen-and caspase-dependent but Bcl-X(L)-independent pathway [J]. Life Sci.,1999,65(3):33-40
    [75]彭师奇,李立,吴建伟.苷类化合物研究(Ⅰ)-天麻苷类似物的合成[J].高等学校化学学报,1989,47:512-515
    [76]朱汝潘,张楚富.生物化学[M].武汉:武汉大学出版社,1989,11-12
    [77]章思规.精细有机化学品技术手册[M].北京:科学出版社,1993,712-713
    [78]劳国强,李颖.展示APG的美好前景[J].日用化学品科学,2001,31(2):30-32
    [79]秦好丽,杨兆禧,钟振声.烷基糖苷的研究现状[J].河北化工,2004(2):5-15
    [80]Sarney D.B., Vulfson E.N. Application of enzymes to the synthesis of surfactants [J]. Trends Biotechnol.,1995,13(5):164-172
    [81]Kernan M.R., Amarquaye A., Chen J.L. Antiviral phenylpropanoid glycosides from the medicinal plant Markhamia lutea [J]. J. Nat. Prod.,1998,61(5):564-570
    [82]Kashiwada Y., Nonaka G.I., Nishioka I., et al. Galloyl and hydroxycinnamoyl glucoses from Rhubarb [J]. Phytochemistry,1988,27(5):1473-1477
    [83]Andary C. Caffeic acid glycoside esters and pharmacology [J]. Polyphenolic Phenom., 1993,237-345
    [84]Elliger C.A., Haddon W.F., Harden L., et al. Insect inhibitory steroidal saccharide esters from Physalis peruviana [J]. J. Nat. Prod.,1994,57(3):348-356
    [85]Riva S. Enzymatic modification of the sugar moieties of natural glycosides [J]. J. Mol. Catal. B:Enzym.,2002,19-20:43-54
    [86]Perrone G.G., Barrow K.D., Mcfarlane I.J. The selective enzymatic synthesis of lipophilic esters of swainsonine [J]. Bioorg. Med. Chem.,1999,7(5):831-835
    [87]Kontogianni A., Skouridou V., Sereti V., et al. Regioselective acylation of flavonoids catalysed by lipase in non-toxic media [J]. Eur. J. Lipid Sci. Technol.,2001,103(10): 655-660
    [88]Kontogiannia A., Skouridoua V., Seretia V., et al. Lipase-catalyzed esterification of rutin and naringin with fatty acids of medium carbon chain [J]. J. Mol. Catal. B: Enzym.,2003,21(1-2):59-62
    [89]Mellou F.,Lazari D., Skaltsa H., et al. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity [J]. J. Biotechnol.,2005,116(3):295-304
    [90]Wood T.M., Mccrae S.I. Purification and some properties of the extracellular β-D-glucosidase of the cellulolytic Fungus Trichoderma koningii [J]. J. Gen. Microbiol.,1982,128:2973-2982
    [91]Woodward J., Wiseman A. Fungal and other β-D-glucosidases—Their properties and applications [J]. Enzyme Microb. Technol.,1982,4(2):73-79
    [92]Saha B.C., Bothast R.J. Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata [J]. Appl. Environ. Microbiol.,1996,62(9):3165-3170
    [93]Yan T.R., Lin C.L. Purification and characterization of a glucose-tolerant β-glucosidase form Aspergillus niger CCRC 31494 [J]. Biosci. Biotechnol. Biochem., 1997,61:965-970
    [94]Decker C.H., Visser j., Schreier P.β-Glucosidase multiplicity from Aspergillus tubingensis CBS 643.92:purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance [J]. Appl. Microbiol. Biotechnol.,2001,55(2):157-163
    [95]Ducret A., Trani M., Lortie R. Screening of various glycosidases for the synthesis of octyl glucoside [J]. Biotechnol. Bioeng.,2001,77(7):752-757
    [96]Tong A.M., Lu W.Y., Xu J.H., et al. Use of apple seed meal as a new source of β-glucosidase for enzymatic glucosylation of 4-substituted benzyl alcohols and tyrosol in monophasic aqueous-dioxane medium [J]. Bioorg. Med. Chem. Lett.,2004,14(9): 2095-2097
    [97]Yu H.L., Xu J.H., Lu W.Y., et al. Environmentally benign synthesis of natural glycosides using apple seed meal as green and robust biocatalyst [J]. J. Biotechnol., 2008,133(4):469-477
    [98]Svasti J., Phongsak T., Sarnthima R. Transglucosylation of tertiary alcohols using cassava β-glucosidase [J]. Biochem. Biophys. Res. Commun.,2003,305(3):470-475
    [99]Yoshimoto K., Itatani Y, Tsuda Y.13C-Nuclear magnetic resonance spectra of O-acylglucose. Additivity of shift parameters and its application to structure elucidations [J]. Chem. Pharm. Bull.,1980,28(7):2065-2207
    [100]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,9(8):39-42
    [101]Hirata T., Koya K., Sarfo K.J., et al. Glucosylation of benzyl alcohols by the cultured suspension cells of Nicotiana tabacum and Catharanthus roseus [J]. J. Mol. Catal. B: Enzym.,1999,6(1-2):67-73
    [102]Ki H.N., Min W.S., Kwang Y.H. Structural insights into the substrate recognition properties of β-glucosidase [J]. Biochem. Biophys. Res. Commun.,2010,391: 1131-1135
    [103]Erbeldinger M., Mesiano A.J., Russell A.J. Enzymatic catalysis of formation of Z-aspartame in ionic liquid-An alternative to enzymatic catalysis in organic solvents [J]. Biotechnol. Prog.,2000,16(6):1129-1131
    [104]Itoh T., Matsushita Y, Abe Y, et al. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid [J]. Chem.Eur. J.,2006,12(36):9228-9237
    [105]Kim M.J., Choi M.Y., Lee J.K., et al. Enzymatic selective acylation of glycosides in ionic liquids:significantly enhanced reactivity and regioselectivity [J]. J. Mol. Catal. B:Enzym.,2003,26(3-6):115-118
    [106]Park S., Kazlauskas R.J. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations [J]. J. Org. Chem., 2001,66(25):8395-8401
    [107]Magnuson D.K. The activity of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate [J]. J. Solution Chem.,1984,13(3):583-587
    [108]Li X.F., Lou W.Y., Smith T.J., et al. Efficient regioselective acylation of 1-β-D-arabinofuranosylcytosine catalyzed by lipase in ionic liquid containing systems [J]. Green Chem.,2006,8:538-544
    [109]Ganske F., Bornscheuer U.T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids [J]. Org. Lett.,2005,7(14):3097-3098
    [110]Kragl U., Eckstein M., Kaftzik N. Enzyme catalysis in ionic liquids [J]. Curr. Opin. Biotechnol.,2002,13(6):565-571
    [111]Zhao H., Luo R.G, Malhotra S.V. Kinetic study on the enzymatic resolution of homophenylalanine ester using ionic liquids [J]. Biotechnol. Prog.,2003,19(3): 1016-1018
    [112]Yang Z. Hofmeister effects:an explanation for the impact of ionic liquids on biocatalysis [J]. J. Biotechnol.,2009,144(1):12-22
    [113]Kaar J.L., Jesionowski A.M., Berberich J.A., et al. Impact of ionic liquid physical properties on lipase activity and stability [J]. J. Am. Chem. Soc.,2003,125(14): 4125-4131
    [114]Kim K.W., Song B., Choi M.Y., et al. Biocatalysis in ionic liquids:markedly enhanced enantioselectivity of lipase [J]. Org. Lett.,2001,3(10):1507-1509
    [115]Zhao H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids [J]. J. Mol. Catal. B:Enzym.,2005, 37(1-6):16-25
    [116]Sheldon R.A., Lau R.M., Sorgedrager M.J., et al. Biocatalysis in ionic liquids [J]. Green Chem.,2002,4(2):147-151
    [117]Ljunger G, Adlercreutz P., Mattiasson B. Enzymatic synthesis of octyl-β-glucoside in octanol at controlled water activity [J]. Enzyme Microb. Technol.,1994, 16(9):751-755
    [118]曾全明.β-半乳糖苷酶催化5-氟-2’-脱氧尿苷及其类似物区域选择性半乳糖基化反应的研究[D].华南理工大学,2010
    [119]Akita H., Kurashima K., Nakamura T. Chemoenzymatic syntheses of naturally occurring β-glucosides [J]. Tetrahedron:Asymmetry,1999,10(12):2429-2439
    [120]Chen X., Zhang J., Liu J.H., et al. Biotransformation of p-, m-, and o-hydroxybenzoic acids by Panax ginseng hairy root cultures [J]. J. Mol. Catal. B:Enzym.,2008, 54(3-4):72-75
    [121]de Roode B.M., Zuilhof H., Franssen M.C.R., et al. Why are some alcohols easy to glucosylate with β-glucosidases while others are not? A computational approach [J]. J. Chem. Soc., Perkin Trans 2.2000,2217-2224
    [122]徐任生.天然产物化学[M].北京科学技术出版社,1993:3
    [123]Oliver A.E., Hincha D.K., Tsvetkova N.M. The effect of arbutin on membrane integrity during drying is mediated by stabilization of the lamellar phase in the presence of nonbilayer-forming lipids [J]. Chem. Phys. Lipids,2001,111(1):37-57
    [124]Pop C., Vlase L., Tamas M. Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) Fritsch. acclimated in Romania [J]. Not. Bot. Hort. Agrobot. Cluj.,2009,37(1):129-132
    [125]Maeda K., Fukuda M. Arbutin:mechanism of its depigmenting action in human melanocyte culture [J]. J. Pharmacol. Exp. Ther.,1996,276(2):765-769
    [126]Hori I., Nihei K.I., Kubo I. Structural criteria for depigmeuting mechanism of arbutin [J]. Phytother. Res.,2004,18(6):475-479
    [127]Strapkova A., Jahodar L., Nosal'ova G. Antitussive effect of arbutin [J]. Pharmazie., 1991,46:611-612
    [128]Takii H., Matsumoto K., Kometani T., et al. Lowering effect of phenolic glycosides on the rise in postprandial glucose in mice [J]. Biosci. Biotechnol. Biochem.,1997,61(9): 1531-1535
    [129]Yuan C., Lin L., Shi Q.Q., et al. Over expression of Penicillium expansum lipase gene in Pichia pastoris [J]. Chin. J. Biotechnol.,2003,19(2):231-235
    [130]Bian C.B., Yuan C., Lin L., et al. Purification and preliminary crystallographic analysis of a Penicillium expansum lipase [J]. Biochim. Biophys. Acta. Proteins Proteomics,2005,1752(1):99-102
    [131]李南薇,吴虹,宗敏华,等.固定化扩展青霉脂肪酶的制备及其在玉米油转酯反应中的应用[J].催化学报,2007,28(4):333-338
    [132]Huang L., Cheng Z.M. Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis [J]. Chem. Eng. J.,2008,144(1):103-109
    [133]Swern D., Jordan E.F. Vinyl laurate and other vinyl esters [J]. Org. Synth.,1963,30: 106-107
    [134]Li N., Zeng Q.M., Zong M.H. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine [J]. J. Biotechnol., 2009,142(3-4):267-270
    [135]Therisod M., Klibanov A.M. Facile enzymatic preparation of monoacylated sugars in pyridine [J]. J. Am. Chem. Soc.,1986,108(18):5638-5640
    [136]Yoshimoto K., Itatani Y, Tsuda Y.13C-Nuclear magnetic resonance spectra of O-acylglucose. Additivity of shift parameters and its application to structure elucidations [J]. Chem. Pharm. Bull.,1980,28(7):2065-2207.
    [137]陈志锋,吴虹,宗敏华,等.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油[J].催化学报,2006,27(2):146-150
    [138]高阳,谭天伟,聂开立,等.大孔树脂在微水相中催化合成生物柴油的研究[J].生物工程学报,2006,22(1):114-118
    [139]Wang Q., Dordick J.S., Linhardt R.J. Synthesis and application of carbohydrate-containing polymers [J]. Chem. Mater.,2002,14(8):3232-3244
    [140]Fan H., Kitagawa M., Raku T., et al. Enzymatic transesterification of purine nucleoside having a low solubility in organic medium [J]. Biotechnol. Lett.,2004, 26(16):1261-1264
    [141]Ardhaoui M., Falcimaigne A., Engasser J., et al. Acylation of natural flavonoids using lipase of Candida antarctica as biocatalyst [J]. J. Mol. Catal. B:Enzym.,2004, 29(1-6):63-67
    [142]Nakajima N., Ishihara K., Itoh T., et al. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments [J]. J. Biosci. Bioeng,1999,87(1):105-107
    [143]Ferrer M., Soliveri J., Plou F.J., et al. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties [J]. Enzyme Microb. Technol.,2005,36(4):391-398
    [144]Plou F.J., Cruces M.A., Ferrer M., et al. Enzymatic acylation of di-and trisaccharides with fatty acids:choosing the appropriate enzyme, support and solvent [J]. J. Biotechnol.,2002,96(1):55-66
    [145]Li X.F., Zong M.H., Wu H., et al. Markedly improving Novozym 435-mediated regioselective acylation of 1-β-D-arabinofuranosylcytosine by using co-solvent mixtures as the reaction media [J]. J. Biotechnol.,2006,124(3):552-560
    [146]Diaz-Rodriguez A., Fernandez S., Lavandera I., et al. Novel and efficient regioselective enzymatic approach to 3'-,5'-and 3',5'-di-O-crotonyl 2'-deoxynucleoside derivatives [J]. Tetrahedron Lett.,2005,46(35):5835-5838
    [147]Rubio E., Fernandez-Mayorales A., Klibanov A.M. Effect of the solvent on enzyme regioselectivity [J]. J. Am. Chem. Soc.,1991,113(2):695-696
    [148]Mohapatra S.C., Hsu J.T. Optimizing lipase activity, enantioselectivity, and stability with medium engineering and immobilization for β-Blocker Synthesis [J]. Biotechnol. Bioeng.,1999,64(2):213-220
    [149]Li X.F., Zong M.H., Yang R.D. Novozym 435-catalyzed regioselective acylation of 1-beta-D-arabinofuranosylcytosine in a co-solvent mixture of pyridine and isopropyl ether [J]. J. Mol. Catal. B:Enzym.,2006,38(1):48-53
    [150]Woudenbergvan Oosterom M., van Rantwijk F., Sheldon R.A. Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase[J]. Biotechnol. Bioeng.,1996,49(3):328-333
    [151]Pedersen N.R., Wimmer R., Emmersen J., et al. Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides [J]. Carbohydr. Res.,2002,337(13):1179-1184
    [152]Degn P., Pedersen L.H., Duus J.O., et al. Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol [J]. Biotechnol. Lett.,1999,21(4):275-280
    [153]Scheckermann C., Schlotterbeck A., Schmidt M., et al. Enzymatic monoacylation of fructose by two procedures [J]. Enzyme Microb. Technol.,1995,17(2):157-162
    [154]Coulon D., Ismail A., Girardin M., et al. Effect of different biochemical parameters on the enzymatic synthesis of fructose oleate [J]. J. Biotechnol.,1996,51(2):115-121
    [155]Pleiss J., Fischer M., Schmid R.D. Anatomy of lipase binding sites:the scissile fatty acid binding site [J]. Chem. Phys. Lipids,1998,93(1-2):67-80
    [156]Mogensen J.E., Sehgal P., Otzen D.E. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents [J]. Biochemistry,2005,44(5): 1719-1730
    [157]Wang Z.Y., Li N., Zong M.H. A simple procedure for synthesis of potential 6-azauridine prodrugs by Thermomyces lanuginosus lipase [J]. J. Mol. Catal. B: Enzym.,2009,59(1-3):212-219
    [158]Lawson D.M., Brzozowski A.M., Rety S., et al. Probing the nature of substrate binding in Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling [J]. Protein Eng., Des. Sel.,1994,7 (4):543-550
    [159]Martinelle M., Holmquist M., Clausen I.G, et al. The role of glu87 and trp89 in the lid of Humicola lanuginosa lipase [J]. Protein Eng., Des. Sel.,1996,9(6):519-524
    [160]Otto R.T., Scheib H., Bornscheuer U.T., et al. Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids [J]. J. Mol. Catal. B: Enzym.,2000,8(4-6):201-211
    [161]Sin Y.M., Cho K.W., Lee T.H. Synthesis of fructose esters by Pseudomonas sp. lipase in anhydrous pyridine [J]. Biotechnol. Lett.,1998,20(1):91-94
    [162]Li N., Zong M.H., Ma D. Regioselective acylation of nucleosides catalyzed by Candida antarctica lipase B:enzyme substrate recognition [J]. Eur. J. Org. Chem., 2008,2008(32):5375-5378
    [163]Watanabe T., Matsue R., Honda Y., et al. Differential activities of a lipase and a protease toward straight-and branched-chain acyl donors in transesterification to carbohydrates in an organic medium [J]. Carbohydr. Res.,1995,275(1):215-220
    [164]Rosen T.C., Haufe G. Synthesis of enantiopure monofluorinated phenylcyclopropanes by lipase-catalyzed kinetic resolution [J]. Tetrahedron:Asymmetry,2002,13(13): 1397-1405
    [165]Smith M.B., March J. Delocalized Chemical Bonding [M]. John Wiley & Sons, Inc.: Hoboken, New Jersey,2007:32-105
    [166]Natella F.,Nardini M., Di Felice M., et al. Benzoic and cinnamic acid derivatives as antioxidants:structure-activity relation [J]. J. Agric. Food Chem.,1999,47(4): 1453-1459
    [167]Armesto N., Ferrero M., Fernandez S., et al. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives [J]. J. Org. Chem.,2003, 68(14):5784-5787
    [168]Weitkamp P., Vosmann K., Weber N. Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification [J]. J. Agric. Food Chem.,2006,54(19):7062-7068
    [169]Ardhaoui M., Falcimaigne A., Engasser J.M., et al. Enzymatic synthesis of new aromatic and aliphatic esters of flavonoids using Candida antarctica lipase as biocatalyst [J]. Biocatal. Biotransform.,2004,22(4):253-259
    [170]Castillo E., Pezzotti F., Navarro A., et al. Lipase-catalyzed synthesis of xylitol monoesters:solvent engineering approach [J]. J. Biotechnol.,2003,102(3):251-259
    [171]Lue B.M., Karboune S., Yeboah F.K., et al. Lipase-catalyzed esterification of cinnamic acid and oleyl alcohol in organic solvent media [J]. J. Chem. Technol. Biotechnol., 2005,80(4):462-468
    [172]Degn P., Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica [J]. Biotechnol. Bioeng.,2001, 74(6):483-491
    [173]Wu J., Zong M.H., Wu H., et al. Efficient enzymatic regioselective benzoylation of 5-fluorouridine catalysed by Novozym 435 [J]. J. Chem. Technol. Biotechnol.,2008, 83(6):814-820
    [174]Basa D., Boyaci LH. Modeling and optimization I:Usability of response surface methodology [J]. J. Food Eng.,2007,78(3):836-845
    [175]Patel R.N.立体选择性生物催化[M].方唯硕主译.北京:化学工业出版社现代生物技术与医药科技出版中心,2004:1076-1124
    [176]Borole A.P., Cheng C.L., Davison B.H. Substrate desolvation as a governing factor in enzymatic transformations of PAHs in aqueous-acetonitrile mixtures [J]. Biotechnol. Prog.,2004,20(4):1251-1254
    [177]Weber H.K., Weber H., Kazlauskas R.J., et al.'Watching' lipase-catalyzed acylations using 1H NMR:competing hydrolysis of vinyl acetate in dry organic solvents [J]. Tetrahedron:Asymmtry,1999,10(14):2635-2638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700