菌寄生真菌几丁质酶基因的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌寄生真菌产生的几丁质酶直接参与寄生过程,可降解病原真菌的细胞壁,抑制病原真菌的菌丝生长、孢子萌发和芽管伸长,普遍认为是一种与抗真菌病害有关的酶。菌寄生真菌几丁质酶的应用非常广,除了用于植物病害的生物防治之外;还可用于几丁质的生物转化,几丁质经几丁质酶部分水解后产生生物活性物质几丁寡糖,被广泛应用在农业、医药、化工、食品、环境等许多领域。转真菌几丁质酶基因的作物具有高的抗病性,抗病性持久,抗病谱广,而且还可以提高抗虫能力。目前,菌寄生菌几丁质酶及其基因研究主要以木霉菌为主,对其他菌寄生真菌几丁质酶基因的克隆和转化研究较少。因此从其他菌寄生真菌资源中克隆新的几丁质酶基因,研究其表达产物的酶学性质和抑菌抗病活性,对于生物防治和植物分子抗病育种研究具有重要意义。
     粉红聚端孢(Trichothecium roseum)和黄蓝状菌(Talaromyces flavus)是两种重要的菌寄生菌,本研究运用RT-PCR、RACE-PCR和TAIL-PCR技术,从中克隆了3个完整的几丁质酶基因和1个几丁质酶基因的部分序列,成功的在毕赤酵母中表达了3个几丁质酶基因,研究了表达产物的性质;将克隆自T. roseum的几丁质酶基因转入烟草,检测了转基因植物的抗病性。
     1利用几丁质酶同源保守序列设计简并引物,运用RT-PCR、RACE-PCR和TAIL-PCR技术,从菌寄生菌T. roseum中克隆一个几丁质酶基因trchi1。该基因包含一个1278 bp的开放阅读框ORF,编码425个氨基酸,具有由20个氨基酸组成的信号肽序列,属于糖苷水解酶18家族几丁质酶。该几丁质酶基因mRNA在GenBank中的登录号为GU361768,DNA登录号为GU361767。构建酵母表达载体将trchi1基因转化到毕赤酵母中进行分泌表达,得到了有几丁质酶活性的目的蛋白,该蛋白分子量为43.97 kDa,最适反应温度为50℃,最适反应pH值为6.5,45℃以下、pH 6-8之间稳定;金属离子Hg~(2+)、Cu~(2+)、Ag+、Zn~(2+)、Fe~(2+)对表达的几丁质酶有显著的抑制作用,最适底物为胶体几丁质。重组几丁质酶对板栗疫病病菌菌丝生长抑制作用较强,可强烈抑制烟草炭疽病菌和烟草赤星病菌的孢子萌发;对玉米弯孢病菌的孢子萌发有明显的影响,在低浓度下可促进孢子萌发,但是在高浓度下能抑制孢子萌发。
     2从菌寄生菌黄蓝状菌(Talaromyces flavus) ACCC30960菌株中克隆了tfchi1和tfchi2 2个几丁质酶基因。tfchi1基因包含一个1194 bp的开放阅读框ORF,编码397个氨基酸,没有信号肽序列,属于糖苷水解酶18家族几丁质酶。该基因mRNA在GenBank中的登录号为GU361770,DNA登录号为GU361769。tfchi1基因转化到毕赤酵母中,分泌表达了有几丁质酶活性的目的蛋白,该蛋白分子量为42.53 kDa,Tfchi1几丁质酶的最适反应温度为35℃,最适反应pH值为5.5,30℃以下、pH 6-8之间稳定;Hg~(2+)、Zn~(2+)、Cu~(2+)、Fe~(2+)、Ag~+对几丁质酶有显著的抑制作用,最适底物为胶体几丁质。重组几丁质酶对板栗疫病病菌和杨树腐烂病菌菌丝生长抑制作用最强,对烟草赤星病菌和小麦赤霉病菌抑制作用较弱,酶浓度越高抑制作用越强;几丁质酶对玉米弯孢病菌的孢子萌发有明显的抑制作用,并且孢子萌发后芽管基本不再伸长。
     tfchi2基因包含1个1191 bp的开放阅读框ORF,编码396个氨基酸,没有信号肽序列,属于糖苷水解酶18家族。该基因在GenBank中的登录号为HQ896839。构建tfchi2酵母分泌型表达载体并转化到毕赤酵母中,成功表达了有几丁质酶活性的目的蛋白,该蛋白分子量为44.06 kDa,Tfchi2几丁质酶的最适反应温度为70℃,最适反应pH值为6,在55℃以下、pH 5-9之间稳定;Ba~(2+)、K~+对重组几丁质酶有激活作用,Fe~(2+)、Hg~(2+)、Mg~(2+)可完全抑制几丁质酶活性,Cu~(2+)、Zn~(2+)、Ag~+、NH_4~+等对表达的几丁质酶有显著的抑制作用,特异性降解胶体几丁质。重组几丁质酶可抑制病原真菌菌丝生长、孢子萌发和芽管伸长。其中对板栗疫病病菌和杨树腐烂病菌菌丝生长抑制作用较强,在低浓度下可抑制烟草炭疽病菌的孢子萌发,在高浓度下可完全抑制烟草炭疽病菌的孢子萌发;在较低浓度下可促进烟草赤星病菌和玉米弯孢叶斑病菌孢子萌发,在高浓度下可抑制孢子萌发,并且可抑制萌发后芽管的伸长。
     3运用RT-PCR、RACE-PCR技术,从T. flavus菌株ACCC30404中克隆了1个几丁质酶基因tfchit3的部分序列,已克隆的tfchit3基因序列cDNA长865 bp,终止密码子TAA,编码267个氨基酸。属于糖苷水解酶18家族。
     4构建了几丁质酶trchi1的植物表达载体,通过农杆菌介导的叶盘法成功地转化了烟草,Southern杂交及表达分析试验结果表明,trchi1基因已经整合到烟草基因组中,并在烟草中有效表达。转几丁质酶基因trchi1的烟草对烟草赤星病和炭疽病抗性明显增强。
Chitinases produced by mycoparasites are directly involved in the parasitic process. Chintinase is thought to be an enzyme related to fungi disease resistance, because it can degrade the cell wall of pathogenic fungal hosts, suppress mycelium growth, spore germination and germ tube elongation. Except in bio-control against plant diseases, mycoparasitic chitinase is widely used in bio-conversion of chitin, where chitin can be partially hydrolyzed by chitinase to generate chitooligosaccharide. Chitooligosaccharide is a kind of bio-activator with broad application in agriculture, medicine, chemical, food industry and environmental fields. Transgenic crops encoding mycoparasitic chintinase gene have high disease resistance with long persistence and broad spectrum and their pest resistance could also be enhanced. So far, studies in chitinase and its genes are mainly focusing on Trichoderma spp., but less on other mycoparasites. Cloning chintinase genes from other mycoparasites will lead us to understanding its enzymatic properties and activities to suppress pathogens, which is important for researches in bio-control and breeding disease-resistant crops at the molecular level.
     Trichothecium roseum and Talaromyces flavus are two important mycoparasites. In this work, three chitinase genes were completely and one was partially sequenced under using RT-PCR, RACE-PCR and TAIL-PCR technology. These three chitinases with complete sequences were successfully expressed in Pichia pastoris and their properties were well studied in this work. One of the chintinases from T. roseum was transformed into tobacco and its effect on disease resistance was analyzed.
     1 Degenerate primers were designed according to conserved regions in homologous sequences of chitinase genes. Chitinase gene trchi1 (accession number in GenBank GU361768 for mRNA, and GU361767 for DNA, respectively) was cloned from T. roseum, by using RT-PCR, RACE-PCR and TAIL-PCR technology. trchi1 belonged to Family 18 glycoside hydrolases, its ORF was 1278 bp and it encoded 425 amino acids containing a signal peptide with 20 amino acids. Yeast expression vector with trchi1 was transformed into Pichia pastoris to produce secretory protein. A protein, Trchi1, its molecular weight was 43.97 kDa, with optimal temperature was 50℃and optimal pH 6.5. Trchi1 also was stable at the temperature below 45℃and pH ranging from 6-8. Its activity was significantly suppressed by metal ions such as Hg~(2+), Cu~(2+), Ag~+, Zn~(2+) and Fe~(2+). Its optimal substrate was colloidal chitin. It could strongly inhibit mycelium growth of Cryphonectria parasitica, and could obviously suppress spore germination of Colletotrichum nicotianae and Alternaria alternate, it had significant effect on spore germination of Curvularia lunata, namely promoting germination at low concentration, but inhibiting at high concentration.
     2 Two chitinase genes, tfchi1 and tfchi2, were cloned from T. flavus ACCC3096. tfchi1 (accession number in GenBank GU361770 for mRNA, and GU361769 for DNA, respectively) was 1194 bp and encoded 397 amino acids which had no signal peptide. The chitinase encoded by tfchi1 was a member of Family 18 glycoside hydrolases. A protein, Tfchi1, having chitinase activity was expressed in Pichia pastoris. Its MW was 42.53 kDa, optimal temperature at 35℃and optimal pH at 5.5. Tfchi1 was stable at the temperature below 30℃and ranging from 6-8. It was significantly suppressed by Hg~(2+), Zn~(2+), Cu~(2+), Fe~(2+) and Ag~+. Its optimal substrate was colloidal chitin. It had strongest inhibition to mycelium growth of Cryphonectria parasitica and Cytospora chrysosperma, but had weaker inhibition to that of Alternaria alternate and Fusarium graminearum. The higher chitinase concentration there is, the stronger inhibition is observed. It significantly influenced spore germination of Curvularia lunata and the germ tube hardly extended after the spore germination.
     The gene, tfchi2 (accession number in GenBank was HQ896839) included an ORF with 1191 bp and encoded 396 amino acid which had no signal peptide. The chitinase encoded by tfchi2 was also involved in Family 18 glycoside hydrolases. A protein, Tfchi2, with chitinase activity was detected. Its MW was 44.06 kDa, with optimal temperature at 70℃and optimal pH at 6. Tfchi2 was stable at the temperature below 55℃and pH ranging from 6-9. It could be activated by Ba~(2+), K~+, completely inactived by Fe~(2+), Hg~(2+), Mg~(2+) and significantly reduced its activity by Cu~(2+), Zn~(2+), Ag~+ and NH4. The protein had a specific activity to degrade colloidal chitin. It inhibited mycelium growth of fungal pathogen, as well as spore germination and germ tube extending. Therein, strong inhibition to mycelium growth of Cryphonectria parasitica and Cytospora chrysosperma was observed. It partially inhibited spore germination of Colletotrichum gloeosporioedes at lower concentration, while completely inhibited it at high concentration. But results also showed that spore germination of Alternaria alternate and Curvularia lunata was facilitated at low recombinant chitinase concentration but inhibited at high concentration. High concentration of recombinant chitinase also inhibited germ tube elongation after spore germinating.
     3 One partial sequences of chitinase gene, tfchi3 were cloned from T. flavus ACCC30404. cDNA of the cloned sequences had 865 bp with TAA as termination codon and encoded 267 amino acid which was predicted as a member of Family 18 glycoside hydrolases.
     4 Plant expression vector with gene trchi1 was constructed and successfully transformed into tobacco using Leaf Disc via Agrobacterium rhizogines. The Southern blot and protein expression analysis result indicated that trchi1 was integrated into tobacco genome, and was expressed effectively in tobacco. It was observed that the resistance of tobacco with gene trchi1 against Alternaria alternate and colletotrichum gloeosporioedes was obviously enhanced.
引文
陈述,李多川,刘开启,王自良,杨怀光.黄蓝状菌一种几丁质酶的纯化、性质及抗菌活性.中国森林病虫, 2003, 22(3): 6-9.
    陈振明,王政逸,郭泽建,林福呈,李德葆.绿色木霉内切几丁质酶基因的克隆及其毛壳菌转化.菌物系统, 2002, 21(3): 375-382.
    陈广艳.国内研究植物锈菌重寄生菌的现状.安徽农业科学, 2006, 34(8): 1531-1532.
    陈凌.几丁质酶在抗真菌感染中的研究现状及展望.国外医学预防诊断治疗用生物制品分册, 2005, 28 :208-210.
    崔欣,杨庆凯.植物几丁质酶在抗真菌病害基因工程中的应用.植物保护, 2002, 28(1): 39-42.
    甘中伟,杨金奎,陶南,黄静文,张克勤.刀孢轮枝菌胞外几丁质酶的基因克隆及系统发育分析.菌物学报, 2008, 27: 368-376.
    邸宏,肖智敏,刘昭军.马铃薯原生质体转几丁质酶基因研究.中国蔬菜, 2008, (3): 18-20.
    邓力超,邱道寿,屠乃关,谭铭喜,张振臣,陈俊标,李淑玲,王泽清. PVP对烟草基因组DNA提取的影响.广东农业科学, 2009, 5: 37-39,57.
    杜建中,孙毅,王景雪,郝曜山,刘龙龙,李润开.转基因抗丝黑穗病玉米的遗传、表达及选育研究.分子植物育种. 2007, 5(4): 467-474.
    杜建中,孙毅,王景雪,郝曜山,程林梅.转基因玉米中目的基因的遗传表达及其抗病性研究.西北植物学报, 2007, 27(9): 1720-172.
    戴富明,徐同.农杆菌介导木霉几丁质酶基因转化拟南芥及其T1代对油菜菌核病抗性提高.上海交通大学学报(农业科学版), 2005, 23 (1): 36-40+45.
    方玉达,刘大钧.转水稻几丁质酶基因烟草植株及其对烟草赤星病的抗性.南京农业大学学报, 2000, 23 (1): 5-9
    付道林,王兰岚.将抗真菌病基因导入马铃薯的研究.激光生物学报, 2000, 9(3): 189-193.
    冯俊丽,朱旭芬.微生物几丁质酶的分子生物学研究.浙江大学学报(农业与生命科学版), 2004, 30(1): 102-108.
    冯金荣,惠丰立,文祯中.真菌几丁质酶及其在植物真菌病害防治中的作用.河南农业科学, 2006, 8: 83-86.
    甘中伟,杨金奎,陶南,黄静文,张克勤.刀孢轮枝菌胞外几丁质酶的基因克隆及系统发育分析.菌物学报, 2008, 27(3): 368-376.
    郭润芳,李多川.王荣.疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究.微生物学报, 2005, 45(2): 270-274.
    郭润芳,史小琴,李多川,魏青,贾英民.一种耐热几丁质酶的产生及其热稳定性的研究.微生物学通报, 2008, 35 :481-485.
    顾丽红,张树珍,杨本鹏,蔡文伟,黄东杰,王文治,李娇.几丁质酶和β-1,3-葡聚糖酶基因导入甘蔗.分子植物育种, 2008, 6 (2 ): 277-280.
    高必达.转几丁质酶基因防植物病害研究进展、问题与展望.生物工程进展, 1999, 19(2): 21-28.
    黄彩红,杨谦,宋营琦.哈茨木霉几丁质酶基因的cDNA克隆及表达.哈尔滨工业大学学报, 2008, 40: 1609-1612.
    何迎春,贺思学,高必达.几丁质酶及其在植物遗传转化中的应用.生物学通报, 2003, 38(7): 9-13.
    胡仕凤,高必达,陈捷.木霉几丁质酶及其基因的研究进展.中国生物防治. 2008, 24(4): 369-375.
    金波,蒋福升,余美荣,陈铌铍,丁志山.农杆菌介导几丁质酶及β-13-葡聚糖基因转化半夏的研究.中国中药杂志, 2009, 34: 1765-1767.
    蓝海燕,田颖川,王长海,刘桂珍,张丽华,王兰岚,陈正华.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报, 2000, 27(l): 70-77.
    蓝海燕,王长海,张丽华,刘桂珍,王岚兰,陈正华,田颖川.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究.生物工程学报, 2000, 16 :141-146.
    李世贵,顾金刚,姜瑞波,牛永春.生防木霉菌产几丁质酶特性研究.生物技术通报, 2009, 4: 135-138.
    李国庆,胡圣远,王道本.菌核寄生菌Talaromyces flavus的生物学特性及寄生菌核规律初探.微生物学通报, 1995, 22(3): 131-135.
    李继红,邵寒霜,郑楷.烟草Ⅰ类几丁质酶和β-1,3-葡聚糖酶植物双价表达载体的构建及转化番茄的研究.热带植物学报, 1999, 20(1): 29-33.
    李春娟,单世华,许婷婷,宫清轩.几丁质酶和β-1,3-葡聚糖酶基因研究进展.生物技术通讯, 2004, 15(5): 502- 505.
    李多川.菌寄生真菌分子生物学研究进展.微生物学通报, 1998, 25(6): 345-347.
    李多川,沈崇尧.菌寄生菌物与寄主菌物相互作用的研究进展.西北农业学报, 1997, 6(4): 94-98.
    梁成真,张锐,孙国清,孟志刚,周焘,丁忠涛,郭三堆.优化TAIL-PCR方法克隆棉花抗逆相关转录因子编码基因.棉花学报, 2010, 22(3): 195-201.
    梁晨,吕国忠.辽宁省农田作物根围的真菌.沈阳农业大学学报, 2002, 33(3): 185-187.
    梁晨,赵云福,路炳声,李宝笃.紫薇白粉病菌及其重寄生菌的初步研究.青岛农业大学学报, 2007, 24(1): 14-16.
    林超,孙辉,王瑞宾,杨金奎,黄晓玮,张克勤.菌寄生真菌的研究进展.菌物研究, 2005, 3(1): 46-52.
    刘梅.利用生防木霉基因提高水稻抗病性研究.浙江大学博士学位论文. 2003.
    刘梅,孙宗修,徐同.哈茨木霉(Trichoderma harzianum)多种胞壁降解酶基因表达载体的构建及转化水稻.浙江大学学报(农业与生命科学版), 2004, 30(6): 596-602.
    刘桂珍,蓝海燕.利用激光微束穿刺法获得抗黄萎病转基因棉花的研究.中国激光, 2000, 27(3): 279-283.
    刘霞,王燕,安磊,杨平平.木霉几丁质酶应用研究进展.饲料工业, 2008, 29(14): 58-60.
    刘艳梅,韩建民,董金皋.玉米大斑病菌钙调磷酸酶B亚基基因的克隆与生物信息学分析.微生物学报, 2008, 48(9): 1175-1180.
    刘立强,张维宏,刘占良,李亚宁,杨文香,刘大群.链霉菌几丁质酶基因分子检测、克隆及原核表达.植物病理学报, 2005, 35: 141-142.
    刘志华,杨谦.球毛壳菌二烯醇内酯水解酶基因克隆及序列分析.东北林业大学学报, 2005, 33(4): 48-51.
    刘自勇,孙宪昀,曲音波.斜卧青霉114-2 cbh1基因的TAIL-PCR克隆及与抗阻遏突变株JU-A10的比较.微生物学报, 2008, 48(5): 667-671.
    刘玲玲,张金文,王旺田,陈正华.几丁质酶基因和β-1,3-葡聚糖酶基因克隆微生物表达和抑菌效果研究.甘肃农业大学学报, 2004, 39(3) :261-265.
    刘丕钢.杨谦.哈茨木霉几丁质酶cDNA基因的克隆及在酿酒酵母中的表达.微生物学报, 2005, 45(2): 253-257.
    刘丕钢,杨谦,王奇慧.哈茨木霉Chiv基因的原核表达及优化.哈尔滨工业大学学报, 2008, 40: 1252-1255.
    卢建平,林福呈,李德葆.转几丁质酶基因毛壳菌的抗病原真菌作用.浙江大学学报(农业与生命科学版), 2006, 32(2): 127-133.
    罗小英,曾雪嘉,肖月华,罗明,杨星勇,裴炎.抗菌肽和几丁质酶基因提高烟草对黑胫病菌和赤星病菌的抗性研究.植物病理学报, 2005, 35(3): 249-255
    罗竞红,游自立.巴斯德毕赤酵母表达系统在外源基因表达中的研究进展.生物技术通报, 2007, 3: 75-79.
    马龙彪,徐香玲.几丁质酶基因转化甜菜的初步研究.中国甜菜, 2000, 3: 18-20.
    马慧,徐正进,赵开军.植物遗传转化方法及其在水稻遗传改良上的应用.沈阳农业大学学报, 2003, 34(5): 394-400.
    马晶.菌生真菌形态学及分类学研究.吉林农业大学硕士学位论文,2008.
    毛碧增.转基因水稻抗病性的遗传和对发育调控的机理研究.浙江大学博士学位论文, 2008.
    孟亮,李红双,金德敏,崔德才,王斌.转几丁质酶基因黑杨的获得.生物技术通报, 2004, 3: 48-51.
    潘洪玉.菌寄生真菌粉红聚端孢生防机制的研究.南京农业大学博士学位论文, 2000.
    乔宇,毛爱军,何永志,刘伟丰,董志扬.里氏木霉内切-β-葡聚糖酶Ⅱ基因在毕赤酵母中的表达及酶学性质研究.菌物学报, 2004, 23(3): 388-396.
    邱敦莲.真菌寄生菌星孢寄生菇的子实体形成和栽培特性以及寄主专一性.作物育种信息, 2006, 12: 9-9.
    宋金柱,王允,杨谦.球孢白僵菌几丁质酶基因chit1真核表达.哈尔滨工业大学学报, 2009, 41: 98-101.
    邵长文,梅茜,孙涌栋,郭素英,侯瑞贤,张兴国.植物组织培养中玻璃化控制研究进展.长江蔬菜, 2004, 5: 34-336.
    时焦, Cooper J I.几丁质酶基因在烟草栽培品种中表达.中国烟草科学, 1997, (4): 47–50.
    时焦,韩锦峰,徐宜民, Cooper J I,刘华山.转几丁质酶基因烟草酶活性及抗病性研究.华北农学报, 2002, 17(4): 1~4.
    覃宏涛,肖晗,孙宗修,徐同.哈茨木霉几丁质酶基因提高水稻抗病性研究.云南农业大学学报, 2000, 15(3): 212-215.
    汤浩茹, Wallbraun M,任正隆, Reustle G M, Krczal G, Tang Haoru, Wallbraun M, Ren Zhenglong, Reustle G M, Krczal G.通过农杆菌介导法将哈兹木霉几丁质酶ThEn-42 基因导入核桃.园艺学报, 2001, 28(1): 12-18.
    王晶晶,屈淑平,崔崇士.农杆菌介导几丁质酶基因转化南瓜的研究.北方园艺, 2007, 10 : 184~185.
    王景雪,孙毅,崔贵梅,胡晶晶.花粉介导法获得玉米转基因植株.植物学报. 2001, 43(3 ): 275-279.
    王金芳,刘光英,翟逸,万永继,莱氏野村菌Cq菌株几丁质酶基因的克隆与表达分析,微生物学报, 2010, 50(4) : 493-499.
    王节之,郝晓芬,郑向阳,王路英,孙毅,王景雪.谷子花粉介导法转几丁质酶基因的研究.生物技术, 2004, l4(5): 5-6.
    王果萍,王景雪,孙毅,崔贵梅,孟玉平,乔燕祥.几丁质酶基因导入西瓜植株及其抗病性鉴定研究.植物遗传资源学报, 2003, 4(2): 104~109.
    王艳君,杨谦.角毛壳菌几丁质酶基因chi58多点突变及在毕赤酵母中的高效表达. 微生物学通报, 2008, 35(10): 1544-1549.
    王瑾,邬敏辰,周晨妍.内切葡聚糖酶基因在大肠杆菌与毕赤酵母中的表达.生物技术通报, 2008, (3): 110-114.
    王颖,王俊琦,胡红焱.烟曲霉几丁质酶基因的克隆与表达.生物工程学报, 2004, 20: 843-850.
    吴云,叶华智,严吉明,秦芸,叶茂.黄柏鞘锈菌重寄生菌研究初报.植物保护, 2007, 33 (5): 118-121.
    吴家和,张献龙,罗晓丽,聂以春,田颖川,陈正华.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性.遗传学报, 2004, 31(2): 183-188.
    魏毅,刘开启,张传云,张世宏,李多川,潘洪玉.粉红聚端孢菌TrEn39cDNA基因的原核表达.吉林农业大学学报, 2004, 26: 399-401.
    徐香玲,邹联沛.向大豆导入几丁质酶基因的初步研究.大豆科学, 1999. 18(2): 101-107.
    徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报. 2002, 32(2): 97-102.
    徐凌飞,王贵章,梁东,张军科,马锋旺.抗真菌病害基因转化苹果的研究.西北农林科技大学学报(自然科学版), 2007, 35(9): 127-131.
    熊爱生,彭日荷,李贤.信号肽序列对毕赤酵母表达外源蛋白的影响.生物化学与生物物理学报, 2003, 32: 154-160.
    谢志兵,钟晓红,邓子牛.农杆菌介导几丁质酶基因对草莓转化条件的建立.湖南农业大学学报(自然科学版), 2008, 34(1):2 5-28.
    邢晓科,郭顺星.菌寄生真菌与寄主相互作用的生化研究进展.菌物系统, 2002, 21(1): 141-146.
    袁红旭,许新萍,张建中,郭建夫,李宝健.转几丁质酶基因(RC24)水稻中大2号抗纹枯病特性研究.中国水稻科学, 2004, 18(1): 39-42.
    袁秀英,白玉明,袁登胜.重寄生菌对花棒锈病的抑制作用.中国沙漠, 2006, 26(6): 1020-1023.
    杨文博.链霉菌S01菌株几丁质酶对植物病原真菌的拮抗作用.微生物学通报, 1997, 24(4): 224 -227.
    杨帆,林俊芳,苗灵凤,郭丽琼.利用TAIL-PCR和RT-PCR技术克隆云芝植酸酶基因. 应用与环境生物学报, 2006, 12(5): 618 -622.
    杨月梅,江贤章,黄建忠.扩展青霉(Penicillium expansum)PF898基因组DNA提取方法的比较.福建师范大学学报(自然科学版), 2007, 23(7): 81 -84.
    杨艳红,陈玉惠.植物病原菌重寄生菌作用机理的研究进展.西南林学院学报, 2004, 24(2): 70-75.
    阎瑞香,吴仲,侯建华,李明钢.重组巴斯德毕赤酵母发酵生产几丁质酶的条件优化研究.微生物学通报, 2007, 34: 468-471.
    张世宏,李多川,魏毅,刘开启.粉红聚端孢菌胞外几丁质酶纯化、特性及抗菌活性.植物病理学报, 2002, 32(3): 262-266
    张世宏,李多川,刘开启,魏毅.哈茨木霉S30胞外几丁质酶的纯化及特性.中国生物防治2000, 16(3): 107-110.
    张婕,谢晨,郭晓红,李多川.嗜热子囊菌原变种Thermoascus aurantiacus var. aurantiacus热稳定几丁质酶的克隆表达及活性研究菌物学报, 2010, 29(5): 691-697.
    张志忠,吴菁华,吕柳新,林义章.植物几丁质酶及其应用研究进展.福建农林大学学报(自然科学版), 2005, 34(4): 494-499.
    朱新霞,孙黎,陶春萍.甜瓜离体再生继代培养中玻璃化现象的研究.西北植物学报, 2006, 26(7): 1468– 1472
    赵宇玮,郝建国,步怀宇,王英娟,贾敬芬.青稞HvBADH1基因的克隆及其转化烟草的初步研究.作物学报, 2008, 34 (7): 1153- 1159.
    赵培宝,任爱芝,李多川.菌寄生真菌纤细齿梗孢FUS3/KSS1类MAPK基因的克隆和序列分析,微生物学通报, 2010, 37(1): 55?60.
    赵培宝.轮枝镰孢及菌寄生真菌纤细齿梗孢蛋白激酶基因的克隆与功能分析.山东农业大学博士论文, 2008.
    赵培宝,任爱芝,李多川.菌寄生真菌纤细齿梗孢一丝氨酸-苏氨酸蛋白激酶基因OPK1的克隆及序列分析.植物病理学报, 2010, 40(3): 329-332.
    左清凡,许新萍,袁红旭,许新萍,李宝健.抗稻瘟病转基因水稻竹转68的选育.杂交水稻, 2001, 16(1): 10-11.
    Andronopoulou E, Vorgias C E, Purification and characterization of a new hyperthermostable, allosamidin insensitive and denaturation resistant chitinase from the hyperthermophilic archaeon Thermococcus chitonophagus. Extremophiles, 2003, 7: 43-53.
    Baek J M, Howell C R, Kenerley C M. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet, 1999, 35: 41-50.
    Baratto C M, Da Silva M V, Santi L. Expression and characterization of the 42 kDa chitinase of the biocontrol fungus Metarhizium anisopliae in Escherichia coli. Canadian Journal of Microbiology, 2003, 49: 723-726.
    Berger R G. Application of genetic methods to the generation of volatile flavors. In: Hui H Y, Katchatourians G G, (eds): Food Biotechnology. VCH Weinheim, 1995, 281-295.
    Bliffeld M, Mundy J, Potrykus I, Fütterer J. Genetic engineering of wheat for increased resistance to powdery mildew disease. TAG Theoretical and Applied Genetics, 1999,98(6) :1079- 1086.
    Blaiseau P L, Lafay J F. Primary structure of a chitinase-encoding gene (chi1) from the filamentous fungus Aphanocladium album:similarity to bacterial chitinases. Gene, 1992, 120(2), 243-248.
    Blaiseau P L, Kunz C, Grison R, Bertheau Y, Brygoo Y. Cloning and expression of chitinase gene from the hyperparasitic fungus Aphanocladium album. Curr Genet, 1992, 21: 61-66.
    Bolar J P, Norelli J L, Harman G E. Expression of fungal chitinol ytic enzymes in transgenic apples confers high levels of resistance to scab scab. In : Altman A. (ed. ) Plant Biotech. and In Vitro Biology in the 21st Century. Netherlands: Kluwer Academic Publishers, 1999, 465~468
    Bolar J P, Norelli J L, Wong K W, Hayes C K, Harman G E, Aldwinckle H S. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology, 2000, 90: 72-77.
    Bolar J P, Norelli J L, Harman G E, Brown S K, Aldwinckle H S. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T.harzianum) against the Pathogenic fungus (Venturia inaequalis) in transgenic apple Plants.Transgenic Research, 2001, 10(6) : 533 -543.
    Bxoglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plant swith enhanced resistance to the fungal pathogen Rhizoctonia solnai . Science, 1991, 254: 1194-1197.
    Bonfim S M, Cruz A H, Jesuino R S, Ulhoa C J, Molinari-Madlum E E, Soares C M, Pereira M. Chitinase from Paracoccidioides brasiliensis: molecular cloning, structural, phylogenetic, expression and activity analysis. FEMS Immunol Med Microbiol, 2006, 46: 269-283.
    Carsolio C, Benhamou N, Haran S, Cortes C, GutierrezA, Chet I, Herrera-Estrella A. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol, 1999, 65: 929-935.
    Cereghino J L, Cregg J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS microbiology Reviews, 2001, 24: 45-66
    Cohen-Kupie R, Chet I. The molecular biology of chitin digestion. Current Opinion Biotechnology, 1998, 9: 270-277.
    Cherif M, Benhamou N. Cytochemical aspects of chitin breakdown during the parasite action of Trichoderma sp. on Fusarium oxysporum sp. radius lypopersic. Phytopathol. 1990, 80: 1406-1414
    Cruz J, Rey M, Lora J M, Hidalgo-Gallego A, Domínguez F, Pintor-Toro J A, Llobell A & Benítez T. Carbon source control onβ-glucanases, chitobiose and chitinase from Trichoderma harzianum. Archives of Microbiology, 1993, 159(4): 316–322.
    Da Silva M V, Santi L, Staats C C, Da Costa A M, Colodel E M, Driemeier D, Vainstein M H, Schrank A. Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Research in Microbiology, 2005, 156: 382-392.
    Karabi Datta, Jumin Tu, Norman Oliva, Isabelita Ona, Rethinasamy Velazhahan, Twng Wah Mew, Subbaratnam Muthukrishnan and Swapan K Datta. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Science, 2001, 160 (3): 405 - 414.
    M. de las Mercedes Dana, M. Carmen Limón, Rebeca Mejías, Robert L. Mach, Tahía Benítez, JoséA. Pintor-Toro and Christian P. Kubicek. Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Current Genetics. 2001, 38(6): 355-342.
    De Wulf P, Soetacert W, Schwengers D. Screening and mutational improvement of a D-Ribose secreting Candida pelliculosa strain. Journal of fermentation and bioengineering, 1996, 82: 1-7.
    Di Giambattista R, Federici F, Petruccioli M. The chitinolytic activity of Penicillium janthinellum P9: purification, partial characterization and potential applications. J Appl Microbiol, 2001, 91: 498-505.
    Di Pietro A, Lorito M, Hayes C K, BroadwayR M, Harman G H. Endochitinase from Gliocladium virens:isolation,characterization and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 1993, 83: 308-313.
    Dong L Q, Yang J K, Zhang K Q. Cloning and phylogenetic analysis of the chitinase genefrom the facultative pathogen Paecilomyces lilacinus. Appl. Microbiol. 2007, 103 (6), 2476-2488.
    Draborg H, Christgau S, Halkier T. Secretion of an enzymatically active Trichoderma harzianum endochitinase by Saccharomyces cerevisiae. Curr Genet, 1996, 29: 404-409.
    Esposito S, Colucci M G, Frusciante L. Antifungal transgenes expression in Petunia hybrida. Proceedings of the Nineteenth International Symposium on Improvement of Ornamental Plants. Breeding ornamentals in the future: goals, genes tools Angers France. Acts Horticulturae. 2000, 50(8):157-161.
    Fang W, Leng B, Xiao Y. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol, 2005, 71: 363-370.
    Gan Z, Yang J, Tao N, Yu Z, Zhang K Q. Cloning and Expression Analysis of a Chitinase Gene Crchi1 from the Mycoparasitic Fungus Clonostachys rosea (syn. Gliocladium roseum). Microbiol. 2007, 45 (5), 422-430.
    Ganapathi Sridevi, Chidambaram Parameswari, Natarajan Sabapathi, Vengoji Raghupathy, Karuppannan Veluthambi. Combined expression of chitinase andβ-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani.Plant Science, 2008, 175(3), 283-290.
    Giandomenico Corrado, Stefania Arciello, Paolo Fanti, Luisa Fiandra, Antonio Garonna, Maria Cristina Digilio, Matteo Lorito, Barbara Giordana, Francesco Pennacchio and Rosa Rao. The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco.Transgenic Res, 2008, 17:557–571.
    Ghareyazie B, Menguito C A, Rubia L G, de Palma J M, Alinia F, Cohen M B, Khush G S, Bennett J. Inheritance of enhanced resistance to striped stem borer in transgenic rice (Oryza sativa L. ) containing a synthetic CrylA(b) gene and a barley chitinase gene. Crop Science, 1996, 30(1): 21 -27.
    Grison R, Grezes B B, Schneider M, Lucante N, Olsen L, Leguay J J, Toppan A. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology, 1996, 14(10) : 643 -646.
    Haran S, Schickler H, Oppeheim A, Chet I.New components of the chitinolytic system ofTrichoderma harzianum. Mycological Research, 1995, 99(4): 441-446
    Hollak C E, van Weely S, van Oers M H, Aerts J M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 1994, 93:1288-1292.
    Henrissat B,Bairoch A.New families in the classfication of glycosylhydrolases based on amino acid sequence similarities.Biochem.J, 1993, 293: 781-788.
    Henrissat B. Classification of chitinase modules. In: Jolles P., Muzzarelli R.A.A. (ed.) Chitin and chitinases. Birkh?user Veriag Basel, 1999, pp. 137-159.
    Hoell I A, Klemsdal S S, Vaaje-Kolstad G, Hora S J, Eijsink V G. Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1. Biochim Biophys Acta, 2005, 1748: 180-190.
    Huang X, Zhang H, Zen K C, Muthukrishnan S and Kramer K J. Homology modelling of the insect chitinase catalytic domain-oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Insect Biochemistry and Molecular Biology, 2000, 30: 107 - 117.
    Ike M, Nagamatsu K, Shioya A. Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Appl Micribiol Biotechnol, 2006, 71: 294-303.
    Irene G, Jose M L, De La Cruz J, Tahia B, Antonio L, Jose A, Pintor T. Cloning and characterization of chitinase (CHIT42) cDNA from mycoparasitic fungus Trichoderma harzianum. Curr Genet, 1994, 27: 83-89.
    Jana Morav?íková, Jana Libantová, Ján Heldák, Ján Salaj, Miroslav Bauer, IldikóMatu?íková, Zdenka Gálováand ?udmila Mlynárová.Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifoliaβ-1,3-glucanase genes in transgenic potato plants.Acta Physiol Plant , 2007, 29: 133–141.
    Jach G, Logeman S, Wolf G. Expression of a bacterial chitinase leads to improved resistance of transgenlc tobacco plants against fungal infection. Biology Practice, 1992, (1) :33 -40.
    Jayaraj J. and Z. Punja K .Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens .PlantCell Rep ,2007,26:1539–1546.
    Jongedijk E, Tigelaar H, van Roekel J S C, Bres-Vloemans S A, Dekker I, van den Elzen P J M, Cornelissen B J C, Melchers L S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants.Euphytica. 1995, 85: 173-180.
    Kang S,Park S,Lee D G. Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae. FEMS Microbiol Lett, 1998, 165: 267-271.
    Kadokura K, Rokutani A, Yamamoto M, Ikegami T, Sugita H, Itoi S, Hakamata W, Oku T, NishioT. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl Microbiol Biotechnol, 2007, 75: 357-365.
    Klemsdal S S, Clarke J L, Hoell I A, Eijsink V G, Brurberg M B. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett, 2006, 256: 282-289.
    Kikkert J R, Ali G S, Wallace P G,Reisch B, Reustle G M. Expression of a fungal chitinase in Vitis vinifera L.′Merlot′and′Chardonnay′plants produced by biolistic transformation. Acta Horticulturae, 2000, 528: 297-303.
    Krishnaveni S, Jeoung J M, Muthukrishnan S, Liang G H.Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J. Genet. & Breed, 2001, 55 (2): 151 -158.
    Kunz C, Sellam O, Bertheau Y. Purification and characterization of a chitinase from the hyperparasitic fungus Aphanocladium album. Physiological and Molecular Plant Pathology, 1992a, 40: 117-131.
    Kubicek C P, Mach R L, Peterbauer C K, Lorito M. Trichoderma:from genes to biocontrol. Journal of Plant Pathology, 2001,83(2)Special issue: 11-23.
    Li A N, Yu K, Liu H Q, Zhang J, Li H, Li D C. Two novel thermostable chitinase genes from thermophilic fungi: Cloning, expression and characterization. Bioresource Techonlogy, 2010, 101: 5546-5551.
    Li D C,Review of fungal chitinases. Mycopathologia, 2006, 161: 345–360
    Li D C, Zhang S H, Liu K Q. Purification and partial characterization of a chitinase from the mycoparasitic fungus Trichothecium roseum. The Journal of General and Applied Microbiology, 2004, 50: 35-39.
    Limon M C, Margoles-Clark E, Benitez T. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of chitins from Trichoderma harzianum. FEMS Microbiology Lett, 2001, 198: 57-63.
    Limón M C, Pintor-Toro J A, Benitez T, Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology, 1999, 89: 254-261.
    Logemann J, Jach G, Logemann S. Expression of a ribosome inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenie plants. Vedag Berlin Heidelberg: Springer, 1993, 446 -448.
    Lorito M, Woo S L, D′Ambrosio M, Harman G E, Hayes C K, Kubicek C P, Scala F. Snnergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Molecular Plant-Microbe Interactions. 1996, 9 (3): 206-213.
    Lorito M, Mach R L, Sposato P, Strauss J, Peterbauer C K, Kubicek C P. Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proe Natl Acad Sci USA, 1996, 93(25): 14868-14872.
    Lorito M, Harman G E, Hayes C K,Broadway R M, Tronsmo A,Woo S L, Di Pietro A. Chitinolytic enzymes produced by Trichoderma harzianum : antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, 1993, 83(3): 302-307.
    Lorito M, Hayes C K, Di Pietro A, Woo S L, Harman G E. Purification, characterization, and synergistic activity of a glucan 1,3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathol, 1994, 84(4): 398-405.
    Lorito M, Di Pietro A, Hayes C K,Woo S L, Harman G E. Antifungal synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterbacter cloacae. Phytopathology, 1993(7), 83: 721-728.
    Lorito M, Peterbauer C, Hayes C K, Harman G E. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology, 1994, 140(3): 623-629.
    Lorito M, Woo S L, Fernandez I G, Colucci G, Harman G E, Pintor-Toro J A, Filippone E, Muccifora S, Law-rence C B, Zoina A, Tuzun S, Scala F. Gene from mycoparasitic fungi as a source for improve plant resistance to fungal pathogens. Proceedings of the National Academy of Science of the USA,1998 ,95 (14) :7860-7865.
    Limón M C, Margolles-Clark E, Ben?t?ez T, Pentti M. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum.FEMS Microbiology Letters, 2001, 198(1): 57-63.
    Liu Z H, Yang Q, Hu S, Zhang J D, Ma J. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity, Appl. Microbiol. Biotechnol. 2008, 80 (2), 241-252.
    Lu Y, Zen K C, Muthukrishnan S, Kramer K J. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142 , D144 , and E146 in Manduca sexta ( tobacco hornworm) chitinase . Insect Biochemistry and Molecular Biology, 2002, 32: 1369 - 1382.
    Lu Z X, Laroche A, Huang H C. Isolation and characterization of chitinases from Verticillium lecanii. Can J Microbiol, 2005, 51: 1045-1055.
    Marchant R, Davey M R, Lucas J A, Lamb C J, Dixon R A, Power J B. Expression of a chitinase transgene in rose ( Rosa hybrida L. ) reduces development of blackspot disease ( Diplocarpon rosae Wolf). Molecular Breeding, 1998, 4 (3): 187 - 194.
    Marcelo Fernando Kern, Simone de Faria Maraschin, Débora Vom Endt, Augusto Schrank, Marilene Henning Vainstein and Giancarlo Pasquali. Expression of a Chitinase Gene from Metarhizium anisopliae in Tobacco Plants Confers Resistance against Rhizoctonia solani. Appl Biochem Biotechnol. Published online: 11 July 2009
    Margolles-Clark E, Hayes C K, Harman G E, Penttila M E. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol, 1996, 62: 2145-2151.
    Mattinena M L, Linderb M, Telemana A. Interaction between cellohexaose and cellulosebinding domains from Trichoderma reesei cellulases. FEBS Letters, 1997, 407(3): 291-296.
    Mavromatis K, Feller G, Kokkinidis M. Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Engineering, 2003, 16: 497-503.
    Migheli Q, Gonzàlez-Candelas L, Dealessi L, Camponogara A, Ramon-Vidal D. Transformants of Trichoderma longibrachiatum overexpressing theβ-l, 4-endoglucanase gene egll show enhanced biocontrol of Pythium ultimim on cucumber.Phytopathology, 1998, 88: 673-677.
    Mora A, Earle E D. Transformation of broccoliwith a Trichoderma harzianum endochitinase gene. Cruciferae Newsletter, 1999, 21: 57-58.
    Montgomery M T, Kirchman D L. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin Appl Environ Microbiol. 1993, 59(2): 373-379.
    Morissette D C, Driscoll B T, Jabaji-Hare S. Molecular cloning, characterization, and expression of a cDNA encoding an endochitinase gene from the mycoparasite Stachybotrys elegans. Fungal Genet Biol, 2003, 39: 276-285.
    Nakahara K, Yoshida K, Ito T,Suzakib K, Kudo A. Cloning and sequencing of endochitinase genes from Gliocladium virens and Trichoderma species,Phytopathology And Plant Protection, 2001,33: 519-527.
    Nandakumar R, Babu S, Kalpana K, Raguchander T, Balasubramanian P and Samiyappan R. Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biologia Plantarum, 2007, 51 (1): 142-148.
    Neuhaus J M, Ahl-Goy P, Hinz U, Flores S, Meins F. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molecular Biology, 1991, 16: 141 -151.
    Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theoretical and Applied Genetics, 1999, 99 (3): 383 -390.
    Owen Wally, Jayaraman Jayaraj and Zamir Punja. Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase,β-1,3-glucanase and peroxidise. Eur J Plant Pathol, 2009, 123: 331–342.
    Ollis D F, Chang H T. Batch fermentation kinetics with (unstable) recombinant cultures. Biotechnol Bioeng, 1982, 24: 2583-2586.
    PaPanikolau Y, Prag G, Tavlas G. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Bioehemistry, 2001, 40: 11338-11343.
    Palli S R, Retnakaran A. Molecular and biochemical aspects of chitin synthesis inhibition. Exs, 1999, 87: 85-98.
    Pintor-toro J A, Benitez T. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33kDa chitinase. Phytopathology, 1999, 89: 254- 261.
    Punja Z K, Raharjo S H. Response of transgenic cucumber and carrotp lants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Disease, 1996, 8 (9): 999-1005.
    Shi J, Thomas C J, King L A, Hawes C R, Possee R D, Edwards M L, Pallett D, Cooper J I, The expression of a baculovirus-derived chitinase gene increased resistance of tobacco cultivars to brown spot (Alternaria alternata). Annals Applied Biology, 2000, 136(1): 1 -8.
    Ramot O, Viterbo A, Friesem D. Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Current Genetics, 2004, 45: 205-213.
    Rodriguez J, Copa-Patino J L, Perez-Leblic M I. Purification and properties of a chitinase from Penicillium oxalicum autolysates. Lett Appl Microbiol, 1995, 20: 46-49.
    Rohini V K, Rao K S. Transformation of peanut (Arachis hypogaea L) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Science, 2001, 160 (5): 889 - 898.
    St Leger R J, Charnley A K, Cooper R M. Cuticle degrading enzymes of entomopathogenic fungi: Synthesis in culture on cuticle. J. Invertebr. Pathol. 1986, 48: 85-95.
    Seidl V, Huemer B, Seibotc B and Kubicek C P. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS Journal, 2005, 272 (22): 5923-5939.
    Song J Z, Yang Q, Liu B D, Chen D. Expression of the chitinase gene from Trichoderma aureoviride in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2005, 69: 39-43.
    Synstad B, Gaseidnes S, Van Aalten D M. Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur J Biochem, 2004, 271: 253-262.
    Tsujibo H, Orikoshi H, Shiotani K.Characterization of chitinase C from marine bacterium Alteromonas sp.strain 0-7, and its corresponding gene and domain structure. Applied and Environmental Microbiology, 1998, 64: 472-478.
    Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T and Akutsu K. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Reports, 1997, 17(3) :159 -164.
    Takaya N, Ymazaki D, Horiuchi H. Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem, 1998, 62: 60-65.
    Takatsu Y, Nishizawa Y, Hibi T, Akutsu K. Transgenic chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura] expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Scientia Horticulturae, 1999, 82(2) :113 - 123.
    Ulhoa C J, Peberdy J F. Purification and some properties of the extracellular chitinase produced by Trichderma harzianum. Enzyme Microb. Technol, 1992, 14: 236-240.
    Vasseur V, Arigoni F, Andersen H, Defago G, Bompeix G, Seng J M. Isolation and characterization of Aphanocladium album chitinase-overproducing mutants. Journal of General Microbiology, 1990, 136: 2561-2567.
    Valadares-Inglis M C, Inglis P W and Peberdy J F.Sequence analysis of the catalytic domain of a Metarhizium anisopliae chitinase.Braz J Genet,1997, 20: 161-164.
    Van Aalten D M F, Komander D, Synstad B, G?seidnes S, Peter M G, Eijsink V G H,Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA., 2001, 98(16): 8979-8984.
    Viterbo A, Haran S, Friesem D. Antifungal activity of a novel endochitinase gene (chit36)from Trichoderma harzianum Rifai TM. FEMS Microbiology Letters, 2001, 200: 169-174.
    Viterbo A, Montero M, Ramot O. Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet, 2002, 42: 114-122.
    Viterbo A, Haran S, Friesem D, Ramot O, Chet I. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett, 2001, 200(2): 169-174.
    Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem, 1993, 268: 18567-18572.
    Watanabe T, Uchida M, Kobori K. Site-directed mutagenesisof the Asp-197 and Asp-202 residus in chitinase A1 of Bacillus circulans WL-12. Biosci. Biotechnol. Biochem, 1994, 58: 2283-2285.
    Zhang H, Huang X, Fukamizo T, Muthukrishnan S , Kramer J. K.Site-directed mutagenesis and functional analysis of an active site tryptophan of insect chitinase . Insect Biochemistry and Molecular Biology, 2002, 32 (11): 1477 - 1488.
    Wilson D, Spezio M, Irwin D. Comparisonn of enzymes catalyzing the hydrolysis of insoluble polysaccharides. ACS Symp. Ser., 1995, 618: 1-12.
    Xiaoling He, Susan C. Miyasaka, Maureen M M Fitch, Paul H. Moore and Yun J. Zhu.Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Reports , 2008, 27(5): 903–909
    Yanai K, Takaya N, Kojima N, Horiuchi H, Ohta A, Takagi M. Purification of two chitinases from Rhizopus oligosporus and isolation and sequencing of the encoding genes. Journal of Bacteriology, 1992, 174: 7398-7406.
    Zeilinger S, Galhaup C, Payer K, Woo S L, Mach R L, Fekete C, Lorito M, Kubicek C P. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genetics and Biology, 1999, 26(2): 131 -140.
    Zhu H, Muthukrishana S S, Krishnaveni G, Wilde Jeoung J M, Liang G H, Biolistic transformation of sorghum using a rice chitinase gene. Genetics and Breeding, 1998, 52(2): 243 -252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700