嗜热真菌纤维二糖水解酶(CBHⅠ、CBHⅡ)和内切葡聚糖酶(EGⅠ)的分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶自1906年Seilliere在蜗牛的消化液中发现以来一直是研究的热点,那是因为纤维素废料是地球上最丰富的可再生资源,利用纤维素酶对其降解既无污染又可以得到各种有用的产物,是一条变废为宝的好途径;再者纤维素酶已经被应用在纺织、造纸、饲料、食品加工以及洗涤剂生产等工业领域;目前利用纤维素酶降解木质纤维素生产燃料乙醇又成为了研究热点。因此,能获得一个高产纤维素酶菌株,并且其酶活力、热稳定性和pH稳定性等酶学指标都能满足工业生产的需要,这是每个纤维素酶研究者梦寐以求的。
     本实验室一直从事嗜热真菌产酶的研究,分离到了嗜热子囊菌光孢变种(Thermoascus aurantiacus var.levisporus)和嗜热毛壳菌(Chaetomium thermophilum CT2)产酶菌株,其生长上限温度较高,产生的纤维素酶的活性及耐热性都很高,具有极大的研究和应用价值。本研究先构建来源于嗜热毛壳菌(Chaetomium thermophilum CT2)的纤维二糖水解酶Ⅱ和纤维二糖水解酶Ⅰ的工程菌WTCBHⅡ、WTCBHⅠ,然后利用定向进化的方法对其进行改造。采用易错PCR方法建立突变体库后,以高活力作为筛选压力,先后以小量发酵法和摇瓶发酵法筛选突变体库。对工程菌WTCBHⅡ进行定向进化得到了两株酶活力是出发菌株所产酶活力的3倍的突变菌株:CBHⅡX16和CBHⅡX305,测得的序列与野生基因比较,发现CBHⅡX16中有5个氨基酸发生突变,它们是R1S、A29T、L203Y,、Q204K和E252G; CBHⅡX305中有6个氨基酸发生突变,它们是A29T,、T115I,、I195V、L203Y,、Q204K和E252G。对工程菌WTCBHⅠ进行定向进化得到了两株酶活力是出发菌株所产酶活力的2倍的突变菌株:CBHⅠX88和CBHⅠX26,测得的序列与野生基因比较,发现CBHⅠX88有10个突变位点它们是C13Y、S15P、S84P、N86D、N179D、D212E、C225R、M348K、D383G和S412G; CBHⅠX260有7个突变位点它们是C13Y、S15P、S101Y、M208T、D212E、N290T和Q473R。通过硫酸铵沉淀、DEAE-Sepharose阴离子交换柱层析等步骤纯化了突变蛋白,酶学性质与野生酶进行了比较,突变酶在最适反应温度、最适反应pH值和热稳定性方面都有提高。
     用同源建模的方法对6个工程菌所产酶的三维结构进行预测,对突变酶性质改变的可能机制从空间结构上进行了探讨,发现在突变酶CBHⅡX16和CBHⅡX305的L203 Y、CBM1中A29T,可能与酶活提高有关; K204Q、E252G、突变位点29和位点37、突变位点203和位点227之间氢键的增加都有利于突变酶的稳定性, T115I有利于热稳定性的提高, Q204K、E252G与突变酶最适反应pH值提高可能有关;在突变酶CBHⅠX88中的C225R和突变酶CBHⅠX260中的M208T,都是位于劈开纤维素的活性位点附近,CBHⅠX260中的Q473R是位于结合结构域(CBM),它们的改变可能与提高酶活有关;两个突变酶的突变位点C13Y、S15P、S84P、C225R,这些改变的氨基酸的侧链都比原来的变大而复杂了,加强了包埋效应,提高了热稳定性,C225R、M348K和Q473R,R和K都是碱性氨基酸,可能是突变酶反应pH值升高的原因。
     利用定点突变的方法对本实验室已经构建成功的来自嗜热子囊菌光孢变种(Thermoascus aurantiacus var.levisporus)的内切葡聚糖酶eg1进行分子改造,先对比了多个纤维素酶第5家族(Cel5)内切葡聚糖酶序列,排除共同保守的氨基酸,选择其附近的非保守氨基酸作为突变点。选择了5个突变位点:N41D、L52M、Y129H、W165Y和H193A。通过硫酸铵沉淀、DEAE-Sepharose阴离子交换柱层析等步骤纯化了点突变突工程菌L52M EG1、Y129H EG1和W165Y EG1所产的内切葡聚糖酶,酶学性质与野生酶进行了比较,突变酶在最适反应温度、最适反应pH值和热稳定性方面都有改变。并用同源建模的方法对4个工程菌所产酶的三维结构进行预测,对突变酶性质改变的可能机制从空间结构上进行了探讨。His193是糖苷水解酶第5家族(GH5)的His~(198)保守氨基酸,致使H193A点突变的工程菌H193AEG1所产酶活力大幅度降低,N41D点突变的工程菌N41DEG1所产酶的活力也大幅度降低,可能与该位点静电力的改变有关。
Many researches have been focused on cellulases since Seilliere found the enzyme in the digestive juice of snails in 1906. It has been shown that cellulases unpollutedly degrade cellulose waste, the most abundant renewable resources on earth, into a variety of useful products. Cellulases can also be used in industries including textile, paper pulp, food, feed and detergent. Recently, lignocellulose is degradated by cellulases to produce the fuel ethanol. Therefore, many researchers have begun to find a stain that can produce cellulases with the higher activity, the enhanced thermal stability and the increased pH stability to meet the needs of industrial production.
     In our laboratory, thermostable cellulases have been isolated from the thermophilic fungi and thermophilic fungi Thermoascus aurantiacus var. Levisporus and Chaetomium thermophilum CT2. In this study, the cellobiohydrolase genes cbh2 and cbh1 were isolated from C. thermophilum CT2 and were expressed in Pichia pastoris. Then, two expression strains were gotten through screening and were named as WTCBHⅡand WTCBHⅠ. After that, methods of direct evolution and high throughput screening for higher activity in P. pastoris were used to enhance the activity and stability of the cellobiohydrolase from C. thermophilum CT2. As a result, CBHⅡof two transformants showed 2 fold higher activities than that expressed from a wide-type cbh2 gene. The mutant CBHⅡin the two selected transformants were designed CBHⅡX16 and CBHⅡX305, respectively. CBHⅡX16 had five mutant amino acids: R1S, A29T, L203Y, Q204K and E252G. Meantime, A29T, T115I, I195V, L203Y, Q204K and E252G were exhibited in CBHⅡX305. In contrast, CBHⅠof two transformants exihibited 1 fold higher activities than that expressed from a wide-type cbh1 gene. The mutant CBHⅠin the two selected transformants were designed CBHⅠX88 and CBHⅠX260. We found 10 mutant amino acids (C13Y, S15P, S84P, N86D, N179D, D212E, C225R, M348K, D383G and S412G) in CBHⅠX88 and 7 mutant amino acids (C13Y, S15P, S101Y, M208T, D212E, N290T and Q473R) in CBHⅠX260. After the mutant and wild-type cellobiohydrolases were purified by using methods of the fractional ammonium sulphate precipitation and ion exchange chromatography on DEAE-Sepharose, their natures were compared.
     To understand how mutant amino acids affect CBH property, 3-dimentional structures of the wide-type and mutant CBH proteins from C. thermophilum in the study were predicted by the method of homology modeling. In CBHⅡX16 or CBHⅡX305, L203Y and A29T suggested that the activity was improved, and K204Q, E252G and T115I indicated the increasing of the thermal stability, while Q204K and E252G might be the reasons that the optimum reaction pH was enhanced. In CBHⅠX88 or CBHⅠX260, C225R, M208T and Q473R might lead to the increase in activity. In C13Y, S15P, S84P and C225R, the side chain of Y, P and R could improve the packing efficiency which might cause the thermal stability to be increased. Meantime, C225R, M348K and Q473R might be the reasons that the optimum reaction pH was enhanced.
     The method of site-directed mutagenesis was used to modify endo-β-glucanases encoded by eg1 gene from T. aurantiacus var. Levisporus. The enzymes with five mutant non-conservative amino acids (N41D, L52M, Y129H, W165Y and H193A) were expressed in P. pastoris. Endo-β-glucanase activities were significantly reduced by two amino acid mutation N41D and H193A. The enzymes with L52M, Y129H and W165Y were separately expressed in P. pastoris, and the constructed engineering stains were named as L52MEG1, Y129HEG1 and W165YEG1, respectively. After the mutant and wild-type endo-β-glucanases were purified by using fractional ammonium sulphate precipitation and ion exchange chromatography on DEAE-Sepharose, their characterizations were compared. The three-dimensional structure of enzymes produced from L52MEG1, Y129HEG1 and W165YEG1 were predicted by using the method of homology modeling, and the possible mechanisms of the changes in the natures of the mutant enzymes were discussed.
引文
蔡勉,刘纯强.野油菜黄单胞菌S-152遗传转移系统的建立及外源性内切葡聚糖酶基因在其体内的表达.遗传, 1994, 16(1): 40-44.
    陈偿.甲醇毕赤氏酵母表达体系.热带农业科学, 1999, 2: 36-43.
    陈洪章,李佐虎.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析.纤维素科学与技术, 1999, 7: 14-22.
    陈洪章,李佐虎.影响纤维素酶解的因素和纤维素酶被吸附性能的研究.化学反应工程与工艺, 2000, 16(1): 30-35.
    陈红歌,朱静,梁改芹等.黑曲霉木聚糖酶的纯化与性质.菌物系统, 2000, 19: 111-116.
    陈静,李多川,张玉芹.嗜热子囊菌光孢变种热稳定外切纤维二糖水解酶基因cbh1的cDNA克隆及在毕赤酵母的高效表达.农业生物技术学报, 2006, 14: 406-411.
    陈力宏.纤维素酶在食品发酵中的应用.中国酿造,1990, 5:2~5.
    陈新爱,夏黎明.里氏木霉纤维二糖酶bglⅡ基因的cDNA克隆及其在大肠杆菌中的表达.菌物系统, 2002, 21: 223-227.
    陈小华,朱洪光.农作物秸秆产沼气研究进展与展望.农业工程学报, 2007, 23(3): 279-282.
    高洁等.纤维素科学.北京:科学出版社. 1996.
    高培基,曲音波,王祖农.绿色木霉产生的葡萄糖苷酶类.生物化学杂志, 1992, 8: 735. 功靓,卓小龙,沈青.纤维素功能化研究的新进展II.纤维素功能化的新型溶剂.纤维素科学与技术, 2010, 18: 70-78.
    官家发,范成英,吴怡庆等.耐热芽孢杆菌E2菌株纤维素酶基因克隆的研究.遗传学报, 1995, 22: 322-328.
    何冰芳,欧阳平凯.极端微生物与工业生物催化剂开发.化工进展, 2006, 25: 1124-1127.
    胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展.生物技术, 2003, 13: 43-45.
    黄瑛,蔡勇,杨江科,闫云君.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化.生物工程学报, 2008, 3: 445-451.
    黄培堂,王嘉玺,朱厚础等译.分子克隆实验指南.北京:科学出版社, 2003, 1080-1087
    姜世民.体外定向进化大肠杆菌β-半乳糖苷酶和农杆菌介导DREB1A基因转化苹果的研究.南京农业大学博士论文, 2003.
    姜涌明,戴祝英,陈俊刚,胡健.分子酶学导论,中国农业大学出版社,中国,北京, 2000, 145-158.
    雷光鸿,崔素芬,柳嘉等.甘蔗叶蒸气爆破法提取木糖的工艺研究.食品科技, 2009, 34: 146-150.
    李明华,张大伟,楚杰等.饲料纤维素酶的研究与应用进展.新饲料, 2006, 7: 65-68.
    李文俊,杨玲.纤维素酶用于废纸脱墨.西南造纸, 2002, 6: 11-13.
    李宪臻,黄云战,徐德贵.天然纤维素的微生物降解机理研究进展.食品与发酵工业, 1996, 2: 74-78.
    李湘,魏秀英,董仁杰.秸秆微生物降解过程中不同预处理方法的比较研究.农业工程学报,2006,22(1):110-116.
    廖文彬,彭明.热带地区纤维素酶的研究进展.热带农业科学, 2007, 27(5): 68-72.
    梁靖,须海荣.纤维素酶在速溶茶中的应用研究.茶叶, 2002, 28: 25-26.
    刘洁.天然纤维素生物降解机制和外切纤维素酶合成机制的研究.山东大学博士学位论文, 1996.
    刘守安,李多川,俄世瑾等.嗜热毛壳菌纤维素酶(CBHⅡ)cDNA的克隆及在毕赤酵母中的表达.生物工程学报, 2005, 21: 892-899.
    刘守安,李多川,张燕等.嗜热毛壳菌CT2纤维二糖水解酶Ⅰ在毕赤酵母中的高效表达. 菌物学报, 2006, 25: 256-262.
    刘翔,何国庆.纤维素酶及相关酶在食品生物技术中的应用.粮油加工与机械, 2003, 6: 61-63.
    刘发来,范建平,苏士,张子仪.纤维素生物转化研究进展.安徽农业科学, 2008, 36: 7059-7060,7140.
    罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究.林业科技, 2005, 30(3): 53-56.
    欧阳嘉,李鑫,王向明等.纤维素结合域的研究进展.生物加工过程, 2008, 6(2): 10-16.
    浦秋君,夏方远.生物技术在木质纤维素转化乙醇中的应用.环境科学与杂志, 2009, 32: 226-229.
    乞永立,耿月霞,任章启.纤维素酶的生产及应用.河北化工,2000,(1):25-26.
    乔宇,毛爱军,何永志,刘伟丰,董志扬.里氏木霉内切-β-葡聚糖酶Ⅱ基因在毕赤酵母中的表达及酶学性质研究.菌物学报, 2004, 23: 388-396.
    孙志浩,柳志强.酶的定向进化及其应用.生物加工过程, 2005, 3:7-13.
    方芳,曹以诚,陈晓曦,曾炳佳. 49P(del)点突变提高中性纤维素内切酶EGV热稳定性的初步研究.现代生物医学进展, 2009, 9: 2634-2636.
    王建荣,张曼夫.绿色木霉纤维素酶CBHⅡ基因的分子克隆.真菌学报, 1994, 13: 235-240.
    王建荣,张曼夫,黄涛.绿色木霉纤维素霉CBHⅡ基因的结构研究.遗传学报, 1995, 1: 74-80.
    王禄山,张玉忠,高培基.纤维二糖水解酶I吸附结构域的新功能.中国科学C辑:生命科学, 2008, 38:678 -686.
    王玉芝.纤维素酶的生产和应用.湖北化工,1997, 2: 56-57.
    吴彤,张曼夫.绿色木霉纤维素酶CBHⅠ基因的cDNA分子克隆.农业生物技术学报, 1994, 28-36.
    吴梧桐.蛋白质工程技术与新型生物催化剂设计.药物生物术, 2004, 11: 1-6.
    巫小琴,徐强,李燚等.纤维素酶产生菌的分离及其酶活力测定.安徽农业科学, 2009,37(35): 17323-17325, 17357.
    席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究, 2003, 16(2): 58-60.
    夏黎明,萧庆,余世袁.碳源对固定里氏木霉合成纤维素酶的影响.纤维素科学与技术, 1994, 2: 72-77.
    夏黎明.可再生纤维素资源酶法降解的研究进展.化工通讯,1999, 33(1): 23—28.
    肖志壮,王婷,汪天虹等.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达. 微生物学报, 2001, 41: 391-396.
    谢占玲,吴润.纤维素酶的研究进展.草业学, 2004, 4:72-76.
    徐卉芳,张先恩,张治平等.大肠杆菌碱性磷酸酶的体外定向进化研究.生物化学与生物物理进展, 2003, 1:89-94.
    徐天鹏.里氏木霉纤维素酶基因的克隆及其在毕赤酵母中的表达的研究.东北农业大学博士论文, 2007.
    阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学, 1995, 5:22-25.
    阎伯旭,齐飞,张颖舒.纤维素酶分子结构和功能进展.生物化学和生物物理进展,1999, 26: 233-240.
    杨浩萌,王亚茹,伍宁丰,姚斌. N13D、S40E点突变提高木聚糖酶XYNB的热稳定性. 微生物学通报, 2007, 34: 33-36.
    杨艳,任健,谢明杰,曹文伟.纤维素酶酿酒酵母工程菌的研究进展.微生物学杂志, 1997, 17: 45-49.
    张传富,顾文杰,彭科峰等.微生物纤维素酶的研究现状.生物信息学, 2007, 1: 34-36.
    张今.进化生物技术-酶定向进化.北京:科学出版社, 2004
    张晓勇,陈秀霞,高向阳.纤维素酶的蛋白质工程.纤维素科学与技术, 2006, 14 :55-58.
    张秀艳.β-葡聚糖酶的定向进化及热稳定性研究.浙江大学博士论文, 2006.
    张亚波,刘连盟,徐荣艳,李多川.嗜热子囊菌光孢变种内切葡聚糖酶Ⅰ基因在毕赤酵母中的表达及部分酶学性质.应用与环境生物学报, 2009, 15(3): 419-422. 张亚波.嗜热真菌热稳定纤维素酶分子改造.山东农业大学博士论文. 2009.
    张煜,刘刚,余少文,汤新,邢苗.里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达. 菌物学报, 2005, 24:367-375.
    赵志刚,程可可,张建安等.木质纤维素可再生生物质资源预处理技术的研究进展.现代化工,2006, 26(2): 39-42.
    曾盈宇,陈介南,何钢等.纤维素酶及相关基因克隆的研究进展.湖南农业科学, 2009, 12: 1~3,7.
    张浩,毛秉智.定点突变技术的研究进展.免疫学杂志, 2000, 16: 108-110.
    周春晖,孙加龙.纤维素酶及其应用.中国商办工业,2002 (2): 43~44.
    祝令香,于巍.康宁木霉K801纤维素酶CBHⅡ基因的克隆及序列分析.菌物系统, 2001, 20: 174-177.
    Aaroni A, Griffiths A D, Tawfik D S. Highthroughput screns and selections of enzyme-encoding genes. Curr Opin Chem boil, 2005, 9: 210-216.
    Abuja, P M, Pilz L, Claeyssens M, Tomme P. Domain structure of cellobiohydrolase II as studied by small angle X- ray scatter: close resemblance to cellobiohydrolase I. Biochem. Biophys. Res. Commun., 1988, 156: 180-185.
    Adney W S, Himmel M E, Tueker M P, et al. Thermostable Purified endoglucanase from Acidothermus cellulolyticus ATCC43068. United States Patent, 2002, 13: 587-594.
    Aho S, Arffman A, Korhola M. Saccharomyces cerevisiae mutants selected for increasedproduction of Trichoderma reesei cellulases. Appl. Microbiol. Biotechnol., 1996, 46: 36-45.
    Ahsan M,Matsumoto M,Kimura T, Sakka K, et al. . Purifieation and eharacterization of the fanllly J catalyticdomain derived from the Clostridium thermocellum endoglucanase CelJ,Biosci Biotechnol Bioehem, 1997, 61:427-31.
    Ait N, Creuzet N, Cattaneo J. Properties of glueosidase Purified from Clostridium thermoeellum. J.Gen. Microbiol, 1982, 128:569-577.
    Alexander V, Gusakov, Arkady P, Sinitsyn, Tatyana N, Salanovich, Fedor E,Bukhtojarov, Markov, Boris B. Ustinov, Zeijl C, Punt P and Burlingame R. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme and Microbial Technology, 2005, 36: 57-69.
    Ando S, Ishida H, Kosugi Y, et a.l. HyPerthermostable Endoglueanase from Pyroeoecus horikoshii, Appl Environ Microbiol, 2002, 68:430-433.
    Andrew J H, Maria H, Ross D G, Joseph N V, Geoffrey B F. Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins: Struct. Func. Genet., 2000, 41: 257-269.
    Angenent L T, Karim K, Al-Dahhan M H, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol, 2004, 22(9): 477-485.
    Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics, 2006, 22: 195-201.
    Beguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiology Review, 1994, 13: 25-58.
    Bhat M K, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 1997, 15: 583-620.
    Bhat M K. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 2000, 5: 355~383.
    Blazej A, Biely P. In Wood and Cellulosics [M]. Chichester:Wllis Horwood Limited, 1987.
    Bok J D, Yernool D A, Eveleigh D E. Purification characterization and molecular analysis ofthermostable cellulases CelA and CelB from Thermotoga neapolitana. Applied Environmental Microbiology, l998, 64:4774-4781.
    Boraston A B, Bolam D N, Gilbert H J, et al.. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382:769-781.
    Bornscheuer U T, Altenbuchner J, Meyer H H. Directed evolution of an esterase: Screening of enzyme libraries basedon pH-indicators and a growth assay. Bioorganic & Medicinal Chemistry, 1999, 7: 2169-2173.
    Borriss, Rainer, Hofemeister. Thermostable (1,3-1,4)–beta-glucanase. United States Patent, 1995,28: 5470725.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal.Biochem., 1976, 72: 248-254.
    Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer W L, Hofemeister J. Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol, 1997, 63: 3902-100.
    Bylina E J, Coleman W J, Dilworth M R, et al.Solid-phase enzyme screening. ASM News, 2000, 66: 211-217.
    Cadwell R C,Joye G F.Randomization of genes by PCR mutagenesis.In PCR Methods Applic,1992,2:28-33.
    Cadwell R C, Joyce G F. Mutagenic PCR. PCR Methods Application, 1994, 6:136-140
    Cavaco-Paulo A J, Morgado J, Andreaus, et al.. Interac-tions of cotton with CBD peptides. Enzyme Microb. Technol, 1999, 25:639-643.
    Chen K, Arnold F H. Enzyme engineering for nonaqueous solvents: Random mutagenesis to enhance activity of subtilisin E inpolar organic media. Bio/Technology, 1991, 9: 1073-1077
    Cheng C, Tsukagoshi N, Udaka S. Nucleotide sequence of the cellobiohydrolase gene from Trichoderma viride.Nucleic Acids Research , 1990, 18: 55-59.
    Clarke A J. Biodegradation of cellulose, Enzymology and biotechnology, Technomic Publishing Company Inc., Lancaster. 1997.
    Cooper J B, Khan G, Taylor G, et al. X-ray analyses of aspartic proteinases. II.Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3? resolution. J Mol Biol, 1990, 214: 199-222.
    Coughlan M P. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology and Genetic Engineering Reviews, 1985, 3: 39-109.
    Cowan D, Meyer Q, Stafford W, et a1. Metagenomic gene discovery: past, present and future. Trends in Biotechnology, 2005, 23(3): 321-392.
    Crameri A, Raillard S A, Bermudez E, Stemmer W P C. DNA Shuffling of a family of genes from diverse species accelerates evolution. Nature, 1998, 391: 288-291.
    Cregg J M, Barringer K J, Hessler A Y. Pichia pastoris as a host system for transformations. Molecular cellular biology, 1985, 5: 3376-3385.
    Cregg J M , Vedvick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology, 1993, 11: 905-910.
    Divne C, Stahlberg J, Reinikainen T, Rouhonen L, Pettersson G, Knowles J KC, Teeri T T, Jones T A. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994, 265: 524-528.
    Esterbauer H, llayn M, Abuja P M, Claeyssens M. Structure ofcellulolytic enzymes. Enzymes in Biomass Conversion, ACS Syrup. Ser., 1991, 460: 301-312.
    Fagerstam L G, Pettersson L G. 1,4-13-Glucan ceUobiohydrolases of Trichoderma reesei QM9414 A new type of cellulolytic synergism. FEBS Lett, 1980, 119: 97-100.
    Freeman A, Cohen-Hadar N, Abramov S, Modai-Hod R, Dror Y, Georgiou G. Screening of large protein libraries by the‘cell immobilized on adsorbed bead’approach. Biotechnology and Bioengineering, 2004, 86: 196-200.
    Fromant M, Blanquet S, Plateau P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction . Anal Biochem, 1995, 224: 347-353.
    Fukuda T, Kato-Murai& M, Kuroda K, Ueda M, Suye S I. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Appl Microbiol Biotechnol, 2008, 77: 1225-1232.
    Gao Wenzhong, Xing Bengang, Tsien R Y, et al.. Novel fluorogenic subst rates for imag- ingβ-lactamase gene expression. Am.Chem.Soc., 2003, 37:11146-11147.
    Gibbons I. Microfluidic assays for high-throughput submicroliter assays using capillary electrophoresis. Drug Discov.Today, 2000, 1:33-36.
    Gideon J D, Marek B, Miroslawa D, Annabelle V, Martin S. Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 ? resolution. Biochem J, 2000, 348: 201-207.
    Giligan W, Reese E T. Evidence for multiple components in microbial cellulases. Capt. J. Microbiol., 1954, 1: 90-107.
    Gilkes N R, Henrissat B, Kilburn D G, Miller R C, Warren R A J. Domains in microbial β-1,4-glycanases sequence conservation, function, and enzyme families. Microbiol Rev, 1991, 55: 303-315.
    Godbole S, Decker S R, Nieves R A. Cloning and expression of Trichoderma reesei cellobiohydrolase I in Picha pastors. Biotechnology Progress, 1999, 15: 828-833.
    González-Blasco G., Sanz-Aparicio J, González B,et al. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. J. Biol. Chem., 2000, 275: 13708-13712.
    Guex N, Peitsch M C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18: 2714-2723.
    Gundllapalli Moses S B, CorderoOtero R R, Pretorius I S. Domain engineering of Saccharomyces cerevisiae exoglucanases. Biotechnology Letters, 2005, 27: 355-362.
    Gundllapalli S B, Cordero Otero R R, Pretorius I S. Development of a screening method for the identification of a novel Saccharomyces cerevisiae mutant over-expressing Trichoderma reesei cellobiohydrolase II. Annals of Microbiology, 2006, 56 (2): 143-150.
    Guntas G, Ostermeier M. Creation of an allosteric enzyme by domain insertion. J Mol. Biol., 2004, 336: 263—273.
    Haan R D, Mcbride J E, Dani?l C. La Grange, Lynd L R, Willem H. Van Zyl. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme and Microbial Technology, 2007, 40:1291-1299.
    Hakanada Y, Endo K, Takizawa S. Enzymatic properties crystallization and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochimica et biophysica Acta., 2002, 1570:174-180.
    Halldórsdóttir SThórólfsdóttir E, Cloning sequencing and overexPression of a Rhodother- mus marinus gene eneoding a thermostable cellulose of glyeosilhydrolase family 12, Applied Microbiology and Biorechnogy, 1998, 49:277-284.
    Harayama S. Artificial evolution by DNA shuffling.TrendsBiotech, 1998,16(2):76-81. Henrissat B, Driguez H, Viet C, Schulein M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technol, 1985, 3: 722-726.
    Heinzelmana P, Snowa C D, Wua, I. A family of thermostable fungal cellulases created by structure-guided recombination. PNAS., 2009, 106: 5610-5615.
    Heyn A N. The microcrystalline structure of cellulose in cell walls of cotton, ramie, and fibers as revealed by negative staining of sections. J Cell Biol, 1966, 29: 181.
    Hong J, Tamaki H, Yamamoto K, Kumagai H. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl. Microbiol. Biotechnol, 2003, 63: 42-50.
    HrmováM, Biely P, VranskáM. Cellulose and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme Microb Technol, 1989,11:610-616.
    HrmováM, PetrákováE, Biely P. Induction of cellulose and xylan-degrading enzyme systems in Aspergillus terreus by homo and hetero-disaccharides composed of glucose and xylose. J Gen Microbiol, 1991, 137:541-547.
    Huang Y, Kraussq G, Cottaz SDriguez H, Lipps G, A highly acid-stable and thermo- stable endo-β-glucanase from the thermoacido Philic arehaeon Sulfolobus solfaricus, Biochem. J., 2005, 385:581-588.
    Hui J P M, Lanthier P, White T C, McHugh S G, Yaguchi M, Roy R. Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry, J Chromatogr B, 2001, 752: 349~368.
    Ine?s G M, Wimal U, Hongbin H, Istvan S, Goran P, GunnarJ, Sherry L M, Jerry S. Family 7 cellobiohydrolases from phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 ? resolution and homology models of the isozymes. Mol Biol, 2001,314:1097-1111.
    Ilmén M, Saloheimo A, Onnela M, Penttil? M. Regulation of cellulase gene expression in thefilamentous fungus Trichoderma reesei. Appl Environ Microbiol, 1997, 63: 1298-1306.
    Ionescu R M, Eftink M R. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Biochemistry, 1997, 36: 1129-1140.
    Jens W, Marco M,Tannock Gerald W. Construction,analysis,andβ-glucanase screening of a bacterial artificial chromosome library from the large-bwel microbiota of mice. Applied and Environmental Microbiology, 2005, 71(7): 2347~2354.
    Kaper T, Brouns S J, Geerling A C, De Vos WM, Van der Oost J. DNA Family shuffling of hyperthermostable beta-glycosidases. Biochem. J., 2002, 368: 461-470.
    Kamrat T, Nidetzky B. Entrapment in E.coli improves the operational stability of recombinant beta-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. Jourlol of Biotechnology, 2007, 129:69-76.
    Karmakar S, Greene H L. Oxidative destruction of chlorofluorocarbons(CFC11 and CFC12) by zeolite catalysts. J Catal., 1992, 138: 364-376.
    Karr W E, Holtzapple M T. The multiple benefits of adding nonionic surfactant during the enzymatic hydrolysis of corn stover. Biotechnology and Bioengineering, 1998, 59: 419-427.
    Kashima Y, Mori K, Fukada H et al.. Analysis of the function of a Hyperthermophilic endoglueanase from Pyroeoeeus horikoshii that hydrolyzes crystalline cellulose, Extre- mophilies, 2005, 9:37-43.
    Kataeva I, Li X L, Chen H, Choi S K, and Ljungdahl LG. Cloning and Sequence Analysis of a New Cellulase Gene Encoding CeIK, a Major Cellulosome Component of Clostridium thermocellum: Evidence for Gene Duplication and Recombination. J.Bacteriol, 1999, 181: 5288-5295.
    Kim J O, Park S R, Lim W J, Ryu S K, Kim M K, An C L, Cho S J, Park Y W, Kim J H, Yun H D. Cloning and characterization of thermostable endoglucanase (Ce18Y) from the hyperthermophilic Aquifex aeohcus VF5. Biochemical. Biophysical Research Communications, 2000, 279: 420-426.
    Kirschner A, Bornscheuer U T. Directed evolution of a Baeyer-Villiger monooxygenase to enhance enantioselectivity. Appl. Microbiol. Biotechnol., 2008, 81: 465-472.
    Klyosov A A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29: 10577.
    Knaust R K C, Nordlund P. Screening for soluble expression of recombinant proteins in a 962well format. Analytical Biochemistry, 2001, 297: 79-85.
    Komeda H, Ishikawa N, Asano Y. Enhancement of the thermostability and catalytic activity of D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3 by directed evolution. J . Mol. Catal. B : Enz. , 2003 , 21: 283-290.
    Kotake T, Kaneko S, Kubomoto A, et al.. Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-galactanase gene. Biochem, 2004, 377: 749-755.
    Kraulis PJ, Clore G M, Nilges M, Jones T A, Pettersson G, Knowles J, Gronenborn A M. Determination of the three-dimensional solution structure of the carboxyl-terminal domain of cellobiohydrolase I from Trichoderma reesei: a study using NMR and hybrid distance geometrydynamical simulated annealing. Biochemistry, 1989, 28: 7241-7257.
    Kumar S, Tsai C J, Nussinov R. Factors enhancing protein thermostability. Protein Eng, 2000, 13: 179-191.
    Kwon I, Ekino K, Oka T, et al.. Effects of amino acid alterations on the transglycosy- lation reaction of endoglucanase I from Trichoderma viride HK-75. Biosci Biotechnol Biochem, 2002, 66: 110-116.
    Kyriaeou A, Mackenzie C I, Neufeld R J. Detection and characterization of the specific and non specific endogiucanases of Trichoderma reesei: evidence demonstrating endoglucanase activity by cdlobiohydrolase II. Enzyme Micro& Technol, 1987, 9: 25- 32.
    Lam K H, Chow K C, Wong W K, Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J. Biotechnol., 1998, 63: 167-177.
    Lantz, S E, Goedegebuur, F, Hommes, R, et al. Hypocrea jecorina CEL6A protein engineering. Biotechnol Biofuels., 2010, 3: 20-33.
    Lazikani B, Jung J, Xiang Z, Honig B. Protein structure p rediction. Curr. Opin. Chem. Biol., 2001, 5: 51-561.
    Lee R L, Paul J W, Willem H, et al.. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 9: 507-511.
    Lee S H, Ryu E J, Kang M J, et a1. Enzym. J. Mol. Catal. B, 2003,26(3-6):119-129.
    Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1989, 1: 11-15
    Leggo L L, Larse S. The 1.62 A structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. 2002, 523: 103-108.
    Liang H K, Huang C M, Ko M T, Hwang J K. Amino acid coupling patterns in thermophilic proteins. Proteins 2005, 59: 58-63.
    Liebl W, Ruffle P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I. Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and Ce1B, and characterization of the recombinant enzymes. Microbiology, 1996, 142: 2533-420.
    Lima A O, Davis D F, Swiatek G, et al. Evaluation of GFP tag as a screening reporter in directed evolution of a hyperthermophilicβ-Glucosidase. Mol Biotechnol, 2009, 42: 205-215.
    Lin L, Meng X, Liu P, Hong Y, Wu G, Huang X, Li C, Dong J, Xiao L, Liu Z. Improved catalytic efficiency of Endo-β-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biotechnol, 2009, 82: 671-679.
    Linder M, Teeri T T. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57: 15-28.
    Linder M, Teere T T. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 12251-12255.
    Liu W, Ding Z Q, Wang H Y. Molecular modelingmethodology in protein structure and function research.Shanghai Biomedical Engineering, 2006, 26(1): 20~24.
    Loo V B, Harald J, Spelberg L. Directed evolution of epoxide hydrolase from Agrobacterium radiobacter toward higher enantios-electivity by Error-prone PCR and DNA Shuffling. Chemistry & Biology, 2004, 11:981-990.
    Love D R, Fisher R, Bergquist P L. Sequence structure and expression of aclonedβ-glucosidase gene from ah extreme thermophile. Mol Gen Genet, 1988, 213: 84-92.
    Lynd L R, Weimer P J, Van W H, et al.. Microbial cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, 2002, 66: 506-577.
    Mandels M, Reese E T. Fungal cellulases and the microbial decomposition of cellulose fabric. Dev. Ind Microbiol., 1964, 5: 5-20.
    Mandels M. Applications of cellulases. Biochem. Soc. Trans., 1985, 13: 414-415.
    Mansfield S D, Swanson D J, Roberts N, Olson J A, Saddler J N. Enhancing Douglas-fir pulp properities with a combination of enzyme treatments and fiber fractionation. Tappi J., 1999, 82(5): 152-158.
    Manuel F, Golyshina Olga V, Chernikova Tatyana N, et a1. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology, 2005, 7(12): 1996~2010.
    Marana S R, Andrade E H, Ferreira C. Investigation of thesubstrate specificity of a beta-glycosidase from Spodopterafrugiperda using site-directed mutagenesis and bioenergeticsanalysis. Eur J Biochem, 2004, 271(21): 4169-4177.
    Maras M, De Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30, Eur J Biochem, 1997,245:617-625.
    Marchessault R H, Monasterios C J, Jesudason J J. Chemical,enzymatic and microbial degradation of bacterial. Gas Chromatogr, 1967, 5: 297-302.
    Narimatsu S, Imoto K, Isobe T. The roles of amino acidresidues at positions 43 and 45 in microsomal contents andenzymatic functions of rat CYP2D1 and CYP2D2. BiochemBiophys Res Commun, 2004,324(2): 627-633.
    Matsuura T, Yomo T.InvitroEvdutionofProtein.JBiosci Bioeng 2006, 101(6): 449-456. May O, Nguyen P T, Arnold F H. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nature Biotechnology, 2000, 18: 317-320.
    McCarter J P, Withers S G, Mechanisms of enzymatic glycoside hydrolysis. Curr Po Struct Biol, 1997, 4: 885~892.
    McCarthy J K, Uzelac A, Davis D F, Eveleigh D E. Improved catalytic efficiency and active site modification of 1,4-β-D-glucan glucohydrolase a from Thermotoga neapolitana by directed evolution. J. Biol. Chem. 2004, 279: 11495-11502.
    Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J Biol Chem, 2006, 281: 10236-10242.
    Moore J C, Jin H M, Kuchner O, Arnold F H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. Mol Biol, 1997, 272: 336-347.
    Morjanoff P J, Gray P P. Optimization of steam explosion as method for increasing susceptigility of sugarcane bagasse to enzymatic saccharification. Biotechnology and Bioengineering, 1987, 29: 733-741.
    Nathan Mosier. Feature of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6): 673-686.
    Pere J, Siika-Aho M, Buchert J, et al.. Effects of purified Trichoderma reesei cellulases on the fibre properties of kraft pulp. Tappi. J., 1995, 78: 71-78.
    Palackal N, Brennan Y, Callen W N, Dupree P, Frey G, Goubet F, Hazlewood G P, Healey S, Kang Y E, Kretz K A, Lee E, Tan X, Tomlinson G L, Verruto J, Wong V W, Mathur E J, Short J M, Robertson D E, Steer B A. An evolutionary route to xylanase process fitness. Protein Sci, 2004, 13: 494-503.
    Penttila M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J. Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene Gene, 1986, 45: 253-263.
    Post C B. Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry, 1995, 34: 15881.
    Rabinovich M L, Melnick M S, Bolobova A V. The structure and mechanism of action of cellulolytic enzymes. Biochem (Moscow) , 2002, 67: 850-871.
    Rees Helen C, Grant S, Jones B, et al. Detecting celluase and esterase enzyme activities encorded by novel genes present in environmental DNA libraries. Extremophiles, 2003, 7(5): 415-421.
    Reese E T., Siu R G H., Levinson H S.: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol, 1950, 59: 485-488.
    Reese E T.Polysaccharases and the hydrolysis of insoluble substrates.Proc Sess,1976,(6): 9-12.
    Reetz M T, Torre C, Eipper A, et a1. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution J. Org. Lett., 2004, 6: 1 77-1 80.
    Rouvinen J, Bergfors T, Teeri T. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science, 1990, 249: 380-386.
    Rowe L A, Melissa L G, Omar B A, et al.. A comparison of directed evolution approaches using theβ-Glucuronidase model system. Journal of Molecular Biology, 2003, 332: 851-860.
    Saito T, Suzuki T, Hayashi A, Honda H, Taya M, Iijima S, Kobayashi T. Expression of a thermostable cellulase gene from a thermophilic anaerobe in Saccharomyces cerevisiae, J. ferment bioeng, 1990, 69: 282-286.
    Saloheimo M, Lehtovaara P. EGⅢ, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme[J]. Gene, 1988, 63: 11-22.
    Saul D J, Williams L C, Love D R et al.. Nucleotide sequence of a gene from Caldocellum saccharolytlcum encoding for exocellulase and endocellulase activity. Nucleic Acids Research, 1989, 17: 439.
    203.Saul D J, Wi11iams L C, Love D R, et al.. CelB a gene coding for a bi-functional cellulase from the extreme thermophile Caldocellum saccharolytlcum. Applied Environ- mental Microbiology, 1990, 56: 3117-3124.
    Schwede T, Kopp J, Guex N, Peitsch M C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381-3385.
    Schülein M, Protein engineering of cellulases. Biochim Biophys Acta, 2000, 1543: 239-252. Selby K, Maitland C C, Biochem J, The cellulase of Trichoderma viride cellulolytic complex, 1967, 104: 716-724.
    Shen, Shi-Hsiang, Chretien. Lytic beta-1, 3-glucanase gene. United States Patent, 1999, 16: 5883244.
    Shao Z, Zhao H, Arnold F H. Random-priming in vitro recombination:an effective tool for directed evolution.Nucleic Acids Research , 1998, 26: 681-683.
    Sinnott M L.Catalytic mechanism of enzymatic glycosyl transfers. Chem Rev, 1990, 90: 1171-1192.
    Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev, 2006, 70(2): 283-295.
    Smith M E B, Hibbert E G, Jones A B, Dalby P A, Hailes H C. Enhancing and reversing the stereoselectivity of escherichia coli transketolase via single-point mutations. Adv. Synth. Cat., 2008, 350: 2631-2638.
    Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion suface. Science, 1985, 228: 1315-1317.
    Srisodsuk M, Reinikainen T, Penttila M, Teeri T T. Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem, 1993, 268:20756-20761.
    Spee J H, Vos W M, Kuipes O P. Efficient random mutagenesis method with adjustable mutation by use of PCR and dITP. Nucl Acids Res, 1993, 21: 777-778.
    Stemmer W P C. Rapid evolution of a protein in vitro by DNA shufling. Nature, 1994, 370: 389-391.
    Stephen Y L, Edited by David A T, Edwin C J. Potential and Challenge, in Progress in Biomass conversion. Lignin Utilization, 1983, 4: 31-35.
    Sun Ye, Cheng jia-yang. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 2002, 83(1): 1-11.
    Takahashi T T, Austin R J, Roberts R W. mRNA Display: Ligand discovery, interaction analysis and beyond. Trends Biochem Sci, 2003, 28: 159-165.
    Takao S. Expression of a thermostable cellulase gene from a thermophilic anaerobe in Saccharomyces cerevisiae, J. ferment bioeng, 1990, 69: 282-28.
    Takashima S, Nakamura A. Molecular cloning and expression of the novel fungal beta- glucosidase genes from Humicola grisea and Trichoderma reesei. Biochem (Tokyo), 1999, 125:728-736.
    Tann C M, Qi D, Distefano M D. Enzyme design by chemical modification of proteinscaffolds. Curt Opin Chem Bi01, 2001, 5: 696—704.
    Teeri T T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol, 1997, 15: 160-167.
    Thomas M. Wood cellulase of Trichoderma koningii . Methods in Enzymology, 1998, 160: 221-240.
    Thompson N S., In Wood and Agricultural Residues . New York:Academic Press, 1983, 103-147.
    Tilbeurgh H V, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS letters, 1986, 204: 223-227.
    Tomme P, Driver D P, Amandoron E A, MillerJr R C, Antony R, Warren J, Kilburn D G. Comparison of a fungal(familyI) and bacterial(familyII) cellulose-bindingdomain. J.Bacteriol, 1995, 177: 4356-4364.
    Van Peij N N M E, Gielkens M M C, Vries R P, Visser J, Graaff L H. The Transcriptional Activator XlnR Regulates Both Xylanolytic and Endoglucanase Gene Expression in Aspergillus niger. Applied and Environmental Microbiology, 1998, 64(10): 3615-3619.
    Tsuyoshi S, Hirokazu I, Jun-ichi N, Takashi Y, Katsuya O,Yoshihiro H, Susumu I. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. Mol Biol, 2001, 310: 1079-1087.
    Van Rensburg P, van Zyl W H, Pretorius I S. Over-expression of the Saccharomyces cerevisiae exo-beta-1, 3-glucanase gene together with the Bacillus subtilis exo-beta-1, 3-1, 4-glucanase gene and the Butyrivibrio fibrisolvens exo-beta-1, 4-glucanasegene in yeast.J.Biothechnol., 1997, 55: 43-53.
    Voget S, Leggewie C, Uesbeck A, et a1.Prospecting for novel biocatalysts in a soil metagenome.Applied and Environmental Microbiology, 2003, 69(4) : 6235~6242.
    Wada M, Hsu C C, Franke D, Mitchell M, Heine A, Wilson I, Wong C H. Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions. Bioorg. Med. Chem., 2003, 11: 2091-2098.
    Wang C C, Tsou C L. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J, 1993, 7:1515-1517.
    Wang T, Liu X M, Yu Q, Zhang X, Qu Y B, Gao P G, Wang T H. Directed evolution for engineering pH profile ofendoglucanaseⅢfrom Trichoderma reesei. Biomolecular Engineering, 2005, 22: 89-94.
    Wegner E H, Biochemical conversions by yeast fermentation at high-cell dendities, US.Patent, 1983,8: 4,414,329.
    Wey T T, Hseu T H, Huang L. Molecular cloning and sequence analysis of the cellobiohydrolaseⅠgene from Trichoderma koningii G-39 . Curr Microbiol, 1994, 28: 31-39.
    Wilson C R, Tang M R, Christianson T, Expression systems for commercial production of cellulase and xylanase in Bacillus licheniforms. United States Patent 1999, 30: 5888800.
    Wohlfahrt G, Pellikka T, Boer H, Teeri T T, Koivula A T. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Biochemistry, 2003, 42: 10095-10103.
    Wong W K, Gerhard R B, Guo Z M et al, Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene, 1986, 44: 315-324.
    Wood T M. The celloulase of fusarium solani purification and specificity of the (1,4)-glucosidase components. Biochem, 1971, 12l: 353-362.
    Wood T M, MeCrae, S L The purification and properties of the Ca component of Trichoderma koningii cellulases. Biochem, 1972, 128: 1183-1192.
    Wood T M, Properties of cellulolytic enzyme systems. Biochem. Soc.Trans,1985, 13: 407-410.
    Wood T M, McCrae S I.The cellulase of Penicillium pinophilum: Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem, 1986, 234: 93-99.
    Wood T M, Bhat K M. Methods for measuring cellulase activities. Methods in Enzymology, 1988, 160: 87-112.
    Wood T M, McCrae S I, Wilson C, Bhat K M, Cow L. Aerobic and anaerobic fungal cellulases wspecial reference to their mode of attack on crystalline cellulose. Biochemisand Genetics of Cellulose Degradation, FEMS Syrup, 1988, 43: 31-52.
    Wood T M, McCrae S L, Bhat K M. The mechanismof fungal cellulose action. Synergismbetween enzyme components of Penicillium pinophilum cellulose in solubilizing hydrogen bond-ordered cellulose. Biochem, 1989, 260: 37-43.
    Wood T M. Microbial enzymes involved in the degradation of the cellulose component of plant cell walls. Rower Research Institute Ammal Report, 1992, 10-24.
    Xu J, Baase W A, Baldwin E, Matthews B W. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Sci., 1998, 7: 158-177.
    Xu L, Aha P, Gu K, et a1. Directed Evolution of High-affinity Antibody Mimics Using mRNA Display. Chem Biol, 2002, 9:933-942. Yoon H H, Wu Z W,Lee Y Y.Ammonia-recycled percolation process for pretreatment of biomass feedstock. Applied Biochemistry and Biotechnology,1995,51/52: 5-19.
    Zhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: screening and selectiong strategies. Biotechnology Advances, 2006, 24: 452-481.
    Zhao H, Arnold F H. Functional and non-functional mutations distinguished by random recombination of homologous genes. Proc Natl Acad Sci, 1997, 94: 7997-8000.
    Zhao H, Giver L, Shao Z, Affholter J A, Arnold F H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol, 1998, 16: 258-261.
    Zhou S,Yomano L P, Saleh A Z. Enhancement of explession and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coliB. Appl. Environ. Microbiol., 1999, 65: 2439-2445.
    250. Zurbriggen B, Bailey M J, Penttila M E, Pilot scale production of a heterologous Trichoderma reesei cellulase by Saccharomyces cerevisiae. J. Biotechnol., 1990, 13: 267-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700