锌α2糖蛋白对线粒体生物合成相关因子的影响及其信号通路机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建重组小鼠锌α2糖蛋白(Zinc-α2-glycoprotein )真核表达载体,并稳定转染3T3-L1细胞,观察3T3-L1细胞过表达ZAG后对线粒体生物合成相关因子的影响。
     方法:提取正常小鼠肝脏组织总RNA,通过RT-RCR方法扩增出ZAG序列,克隆入经XbaⅠ和HindШ双酶切后的pcDNA3.1(-),重组小鼠ZAG真核表达质粒(pcDNA3.1(-)-mZAG)经转化大肠杆菌JM109,筛选阳性克隆,酶切和核苷酸测序鉴定后经脂质体转染3T3-L1细胞,G418筛选阳性克隆扩增,RT-PCR法鉴定ZAG阳性细胞株并检测过氧化物酶增殖型受体γ辅助活化因子1α(PGC-1α)、核呼吸因子1/2(NRF-1/2)、线粒体转录因子A(mtTFA)mRNA表达,Western Blot检测PGC-1α、NRF1/2、mtTFA蛋白的表达。
     结果:成功克隆小鼠ZAG cDNA全序列,并将其与pcDNA3.1(-)载体片段连接,构建成pcDNA3.1(-)-mZAG表达质粒。重组真核表达质粒经限制性核酸内切酶XbaⅠ和HindШ酶切后获得5.4kb和924bp两个片段,大小与理论值一致,并由核苷酸序列测定证实。pcDNA3.1(-)-mZAG成功转染3T3-L1细胞,在转染的3T3-L1细胞中ZAG基因的转录明显上调,过表达ZAG后,PGC-1α、NRF-1/2、mtTFA表达均上调。
     结论:成功构建ZAG基因的真核表达质粒pcDNA3.1(-)-mZAG,构建ZAG稳定过表达细胞系,在稳定转染的3T3-L1细胞中,ZAGmRNA表达水平与线粒体生物合成有关,ZAG对线粒体生物合成相关因子PGC-1α、NRF-1/2、mtTFA的表达有促进作用。
     目的:探讨锌α2糖蛋白(Zinc-α2-glycoprotein, ZAG)促进3T3-L1细胞线粒体生物合成相关因子的PKA和p38MAPK信号通路机制。
     方法:体外培养3T3-L1细胞,分别加入ZAG、PKA抑制剂(H89)、H89+ZAG、p38MAPK抑制剂(SB203580)和SB203580+ZAG。应用RT-PCR法检测过氧化物酶增殖型受体γ辅助活化因子1α(PGC-1α)、核呼吸因子1/2(NRF-1/2)、线粒体转录因子A(mtTFA)的表达水平。
     结果: RT-PCR法显示ZAG促进线粒体生物合成相关因子的表达,PKA特异性抑制剂H89和p38MAPK特异性抑制剂SB203580抑制线粒体生物合成相关因子的表达,而H89+ZAG和SB203580+ZAG处理细胞则抑制ZAG对线粒体生物合成相关因子的促进作用。
     结论:ZAG能够促进线粒体生物合成相关因子的表达,这种作用可能是通过PKA和p38MAPK信号通路介导。
Objective: To construct pcDNA3.1(-)-mZAG recombinant mammalian expression vector , which was transfected into 3T3-L1 cell and observe its effects on relevant factors of mitochondria biogenesis after overexpression of ZAG.
     Methods: The total RNA was extracted from mouse liver cell, and the sequence of ZAG was amplified with RT-PCR.The PCR product was then cloned into the prokaryotic expression vector pcDNA3.1(-) after enzyme by XbaⅠand HindШ. After identification by double restriction enzyme digestion and DNA sequencing, the recombinant eukaryotic expression plasmid pcDNA3.1(-)-mZAG was transfected into 3T3-L1 cell by lipofectamine 2000. The stable transfected 3T3-L1 cell line was established after selection with G418. The expression of ZAG mRNA and PGC-1α、NRF-1/2、mtTFA mRNA were detected by RT-PCR. The expression of PGC-1α、NRF-1/2、mtTFA protein were detected by Western Blot.
     Results: Mouse ZAG coding sequence was amplified successfully and ligated with vector fragments by T4 ligase. The construction of pcDNA3.1(-)-mZAG plasmid containing mouse ZAG coding sequence of 5.4kb fragment and another 924bp fragment when digested by XbaⅠand HindШ. PcDNA3.1(-)-ZAG was transfected into the 3T3-L1 cell successfully, the expression of PGC-1α、NRF-1/2、mtTFA and ZAG mRNA were up-regulated in the transfected 3T3-L1 cell.
     Conclusion: The recombinant eukaryotic expression vector pcDNA3.1(-)-ZAG was constructed successfully. The stable 3T3-L1 cell line over-expression of ZAG was established. In the stable transfected 3T3-L1 cell, the expression of ZAG mRNA is correlated with mitochondria generation, which have promote effects on expression of relevant factors of mitochondria biogenesis.
     Objective: To explore whether PKA and p38MAPK could mediate the effects of ZAG on relevant factors of mitochondria biogenesis.
     Methods: 3T3-L1 cells were treated with ZAG、PKA inhibitor H89、H89+ZAG、p38MAPK inhibitor SB203580 and SB203580+ZAG. The expression of PGC-1α、NRF-1/2、mtTFA mRNA and protein were detected by the method of RT-PCR and Western Blot.
     Results: ZAG promoted the expression of relevant factors of mitochondria biogenesis, PKA inhibitor H89、p38MAPK inhibitor SB203580 inhibited the expression of relevant factors of mitochondria biogenesis, H89+ZAG、SB203580+ZAG decreased the promote effects of ZAG on mitochondria biogenesis.
     Conclusion: ZAG have a promote effect on relevant factors of mitochondria biogenesis, PKA and p38MAPK signal pathway can mediate this effect.
引文
[1].Hotamisligil GS. In?ammation and metabolic disorders[J]. Nature, 2006, 444(7121): 860–7.
    [2]. Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance[J]. Mol Endocrinol, 2008, 22(5): 1023-31.
    [3]. Wang P, Mariman E, Renes J, et al. The secretory function of adipocytes in the physiology of white adipose tissue[J]. J Cell Physiol, 2008, 216(1): 3-13.
    [4]. Ueyama H, Deng HX, Ohkubo I. Molecular cloning and chromosomal assignment of the gene for human Zn-a2- glycoprotein[J]. Biochemistry , 1993;32(48):12968– 76.
    [5]. Rolli V, Radosavljevic M, Astier V, et al. Lipolysis is altered in MHC class I zinc-alpha (2)-glycoprotein deficient mice[J]. FEBS Lett, 2007, 581(3):394-400.
    [6]. Gong FY, Zhang SJ, Deng JY, et al. Zinc-alpha2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue[J]. Int J Obes (Lond), 2009, 33(9):1023-30.
    [7]. Russell ST, Zimmerman TP, Domin BA, et al. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein[J]. Biochimica Biophysica Acta, 2004, 1636 (1):59-68.
    [8]. Russell ST, Tisdale MJ. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia[J]. Prostaglandins Leukot Essent Fatty Acids , 2005, 72(6):409-14.
    [9]. Choo HJ, Kim JH, Kwon OB, et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice[J]. Diabetologia, 2006, 49(4):784-791
    [10]. Blaak EE, Hul G, Verdich C, et al. Impaired fat-induced thermogenesis in obese subjects: the NUGENOB study[J]. Obesity (Silver Spring), 2007, 15(3):653-63.
    [11]. Crunkhorn S, Dearie F, Mantzoros C, et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation[J]. J Biol Chem, 2007, 282(21):15439-50.
    [12]. Heilbronn LK, Gan SK, Turner N, et al. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects[J]. J Clin Endocrinol Metab, 2007, 92(4):1467-73.
    [13]. Burgi W, Schmid K. Preparation and properties of Zn-α2-glycoprotein of normalhuman plasma[J].J Biol Chem 1961, 236:1066-74.
    [14]. Bing C, Bao Y, Jenkins J, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia[J]. Proc Natl Acad Sci USA, 2004, 101(8):2500-5.
    [15]. Bao Y, Bing C, Hunter L, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes[J]. FEBS Lett, 2005, 579(1):41-7.
    [16]. Tzanavari T, Bing C, Trayhurn P.Postnatal expression of zinc-α2-glycoprotein in rat white and brown adipose tissue[J].Mol Cell Endocrinol, 2007, 279(1-2):26-33.
    [17]. Ring AE, Zabaglo L, Ormerod MG, et al. Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques[J]. Br J Cancer , 2005, 92(5):906-12.
    [18]. Bondar OP, Barnidge DR, Klee EW et al .LC-MS/MS Quantification of Zn-α2 Glycoprotein: A Potential Serum Biomarker for Prostate Cancer[J].Clin Chem , 2007, 53(4):673-8.
    [19]. Abdul-Rahman PS, Lim B, Hashim OH. Expression of high-abundance proteins in sera of patients with endometrial and cervical cancers: analysis using 2-DE with silver staining and lectin detection methods[J]. Electrophoresis, 2007, 28(12):1989-96.
    [20].Selva DM, Lecube A, Hernández C et al. Lower zinc-α2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance[J]. J Clin Endocrin Metab. 2009, 94(11):4499-507.
    [21]. Araki T, Gejyo F, Takagaki K, et al. Complete amino acid sequence of human plasma Zn-a2-glycoprotein and its homology to histocompatibility antigens[J]. Proc Natl Acad Sci USA. 1988, 85(3):679-83.
    [22]. Maasen JA. Mitochondria, body fat and type 2 diabetes: what is the connection[J]? Minerva Med, 2008, 99 (3):241-51.
    [23]. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005, 307(5708):384-7.
    [24]. De Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences[J]. Clin Chem, 2008, 54(6):945-55.
    [25]. Green H, Meuth M. An established preadipose cell line and its differentiation in culture[J ]. Cell, 1974, 3 (2) :127-133.
    [26]. Richard M,Reznick and Gerald I,Shulman.The role of AMP-activated protein kinase in mitochondrial biogenesis[J]. J Physiol, 2006, 574(1):33-39.
    [27]. Wright DC, Han DH, Garcia-Roves PM, et a1. Exercise Induced Mitochonerial Biogenesis Begins before the Increase in Muscle PGC-lαExperssion[J].J Biol Chem, 2006, 282(1):194-9.
    [28]. Semple RK, Crowley VC, Sewter CP, et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects[J]. Int J Obes Relat Metab Disord, 2004, 28(1):176-9.
    [29]. Tiraby C, Tavernier G, Lefort C, et al. Acquirement of brown fat cell features by human white adipocytes[J]. J Biol Chem, 2003, 278(35):33370-6.
    [30]. ST Pierre J, Lin J, Krauss S, et a1. Bioenergetic analysis of peroxisome proliferator activated receptor gamma coactivatom 1 alpha and 1 beta(PGC-1alpha and PGC-1beta)in muscle cells[J].J Biol Chem, 2003, 278(29):50047-50052.
    [31]. Suliman HB, Carraway MS, Welty - Wolf KE, et al. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1[J] . J Biol Chem ,2003 ,278:41510 - 41518.
    [32]. Choi YS, Kim S, Kyu Lee H, Lee KU, Pak YK. Invitromet hylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A [J].Biochem Biophys Res Commun, 2004, 314:118-122.
    [33]. Huo L, Scarpulla RC. Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice [J].Mol Cell Biol, 2001, 21:644-654.
    [34]. Chinenov Y, Coombs C, Martin ME. Isolation of a bi-directional promoter directing expression of the mouse GABP alpha and ATP synthase coupling factor 6 genes[J]. Gene, 2000, 261:311-320.
    [35]. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice [J]. Nat Genet, 1998 ,18: 231-236.
    [36]. Garst ka HL, Schmitt WE, Schultz J, et al. Import of mitochondrial transcription factor A ( TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA [J] . Nucleic Acids Res, 2003, 31:5039-5047.
    [37]. Ekst rand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals [J]. Hum Mol Genet , 2004,13: 935-944.
    [38]. Suliman HB, Carraway MS, Piantadosi CA. Postlipopolysaccharide oxidative damage of mitochondrial DNA[J]. Am J Respir Crit Care Med, 2003, 167:570-579.
    [39]. Wallace DC. Mitochondrial diseases in man and mouse[J]. Science , 1999, 283: 1482-1488.
    [40]. Choi YS, Kim S, Kyu Lee H, et al. Invitromethylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A [J]. Biochem Biophys Res Commun, 2004, 314:118 - 122.
    [41]. Wong-Riley MT, Yang SJ, Liang HL, et al. Quantitativeimmuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex[J].Vis Neurosci, 2005,22:1-18.
    [1].Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo[J]. Diabetes, 2005, 54(5):1392–9.
    [2].Choo HJ, Kim JH, Kwon OB, et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice[J]. Diabetologia, 2006, 49(4):784–91.
    [3].Blaak EE, Hul G, Verdich C, et al. Impaired fat-induced thermogenesis in obese subjects: the NUGENOB study[J]. Obesity (Silver Spring), 2007, 15(3):653-63.
    [4].de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences[J]. Clin Chem, 2008, 54(6):945-55.
    [5].Himms-Hagen, Melnyk A, Zingaretti M.C, et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes[J]. Am J Physiol Cell Physiol, 2000, 279 (3):C670–81.
    [6].Jimenez M, Barbatelli G, Allevi R, et al. Beta 3 adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat[J]. Eur J Biochem, 2003, 270 (4) 699–705.
    [7].Russell ST, Zimmerman TP, Domin BA, et al. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein[J]. Biochim Biophys Acta, 2004, 1636 (1) : 59-68.
    [8].Russell ST, Hirai K, Tisdale MJ. Role of beta3-adrenergic receptors in the action of a tumour lipid mobilizing factor[J]. Br J Cancer, 2002, 86 (3) : 424-8.
    [9].Russell ST, TisdaleMJ. Effect of a tumour-derived lipid-mobilising factor on glucose and lipid metabolism in vivo[J]. Br J Cancer, 2002, 87 (5) : 580-4.
    [10].Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator[J]. Endocr Rev, 2003, 24(1):78-90.
    [11].Scapulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis[J]. Biochem Biophys Acta, 2002,1576(1-2): 1-14.
    [12].Gugneja S, Crbasius JV, Scarpulla RC.Four structurally distinct, nom-DNA-binding subunits of human nuclear respiratory factor 2 share aconserved transcriptional activation domain[J]. Mol Cell Biol, 1995, 15(1):102-11.
    [13].Evansm MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells[J]. Genes Dev, 1990, 4(6):1023-34.
    [14].Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates[J]. Annu Rev Biochem, 1997, 66:409-35.
    [15].Máire E.Doyle,Josephine M.Egan.Mechanisms of action of glucagon-like peptide in the pancreas[J].Pharmacology&Therapeutics, 2007, 113(3):546-93.
    [16].Chijiwa T, Mishima A, Hagiwara M, et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinas, N-[2-(p-bromocinnamylamino)ethy]- 5- isoquinolinesulfonamide(H89), of PC12D pheochromocytoma cells[J].J Biol, Chem, 1990,265(9):5267-72.
    [17].Jameel NM, Thirunavukkarasu C, Wu T, et al. p38-MAPK-and caspase-3- mediated superoxide-induced apoptosis of rat hepatic stellate cells: reversal by retinoic acid [J]. J Cell Physiol, 2009, 218 ( 1 ):157- 66.
    [18].LoGrasso PV, Frantz B, Rolando AM, et al. Kinetic mechanism for p38 MAP kinase[J] . Biochemisy, 1997, 36( 34) :10422-7.
    [19].Gum RJ, Mclaughlin MM, Kumar S, et a l. Acquisition of sensitivity of stress-activeated protein kinases to the p38 inhibit or , SB 203580, by alteration of one or more amino acids within the ATP binding pocket[J] . J Biol Chem, 1998, 273( 25) : 15605-10.
    [1].Burgi W, Schmid K. Preparation and properties of Zn-α2-glycoprotein of normal human plasma[J].J Biol Chem 1961, 236:1066– 74.
    [2].Tzanavari T, Bing C, Trayhurn P.Postnatal expression of zinc-α2-glycoprotein in rat white and brown adipose tissue[J].Mol Cell Endocrinol,2007 ,279(1-2):26-33.
    [3].Bao Y, Bing C, Hunter L, et al. Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed and secreted by human (SGBS) adipocytes[J]. FEBS Lett, 2005, 579(1):41–7.
    [4].Rolli V, Radosavljevic M, Astier V, et al. Lipolysis is altered in MHC class I zinc-alpha(2)-glycoprotein deficient mice[J]. FEBS Lett, 2007, 581(3):394-400.
    [5].Selva DM, Lecube A, Hernández C et al .Lower zinc-α2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance[J]. J Clin Endocrin Metab. 2009, 94(11):4499-507.
    [6].Mracek T, Gao D, Tzanavari T,et al. Downregulation of zinc-α2-glycoprotein, a lipid mobilising factor, in adipose tissue and liver of obese ob/ob mice[J]. J Endocrinol,2010, 204(2):165-72.
    [7]. Yeung DC, Lam KS, Wang Y, et al. Serum zinc-alpha2-glycoprotein correlates with adiposity, triglycerides and the key components of the metabolic syndrome in Chinese subjects[J]. J Clin Endocrin Metab, 2009, 58(10):1210-17.
    [8].Ueyama H, Deng HX, Ohkubo I. Molecular cloning and chromosomal assignment of the gene for human Zn-a2-glycoprotein[J]. Biochemistry , 1993, 32(48):12968 -76.
    [9].Freije JP, Fueyo A, Uria JA, et al. Human Zn-a2-glycoprotein:complete genomicsequence, identification of a related pseudogene and relationship to class I major histocompatibility complex genes[J]. Genomics, 1993, 18(3):575-87.
    [10].Araki T, Gejyo F, Takagaki K, et al. Complete amino acid sequence of human plasma Zn-a2-glycoprotein and its homology to histocompatibility antigens[J]. Proc Natl Acad Sci USA , 1988, 85(3):679-83.
    [11].Ring AE, Zabaglo L, Ormerod MG, et al. Detection of circulating epithelial cells in the blood of patients with breast cancer: comparison of three techniques[J]. Br J Cancer , 2005, 92(5):906-12.
    [12].Bondar OP, Barnidge DR, Klee EW et al. LC-MS/MS Quantification of Zn-α2 Glycoprotein: A Potential Serum Biomarker for Prostate Cancer[J]. Clin Chem , 2007, 53(4):673-8.
    [13].Abdul-Rahman PS, Lim B, Hashim OH. Expression of high-abundance proteins in sera of patients with endometrial and cervical cancers: analysis using 2-DE with silver staining and lectin detection methods[J]. Electrophoresis, 2007, 28(12):1989-96.
    [14].Garc1′a-Ram1′rez M, Canals F, Herna′ndez C, et al. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy[J]. Diabetologia, 2007, 50(6):1294-303.
    [15].Jain S, Rajput A, Kumar Y, et al. Proteomic analysis of urinary protein markers for accurate prediction of diabetic kidney disorder[J]. J Assoc Physicians India , 2005, 53:513-20.
    [16].Varghese SA, Powell TB, Budisavljevic MN, et al. Urine biomarkers predict the cause of glomerular disease[J]. J Am Soc Nephrol , 2007, 18(3):913-22.
    [17].Lopez-Boado YS, Diez-Itza I, Tolivia J, et al.Glucocorticoids and androgens up-regulate the Zn-a2-glycoprotein messenger RNA in human breast cancer cells[J]. Breast Cancer Res Treat, 1994, 29(3):247-58.
    [18].Russell ST, Tisdale MJ. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia[J]. Prostaglandins Leukot Essent Fatty Acids, 2005, 72(6):409-14.
    [19].Marrades MP, Martínez JA, Moreno-Aliaga MJ. ZAG, a lipid mobilizing adipokine, is downregulated in human obesity[J]. J Physiol Biochem, 2008, 64 (1):61-6.
    [20].Mracek T, Ding Q, Tzanavari T, et al. The adipokine zinc-α2-glycoprotein is downregulated with fat mass expansion in obesity[J]. Clin Endocrinol (Oxf), 2010, 72(3):334-41.
    [21].Bing C, Russell ST, Beckett EE, et al. Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor[J]. Br J Cancer, 2002, 86(4):612-8.
    [22].Sanders PM, Tisdale MJ. Role of lipid-mobilising factor (LMF) in protecting tumour cells from oxidative damage[J]. Br J Cancer, 2004, 90(6):1274-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700