肝癌患者CD4~+CD25~+CD127~(low/-)CD49d~-调节性T细胞与肝癌复发转移关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞肝癌(hepatocellular carcinoma, HCC)是全球最常见的恶性肿瘤之一,在恶性肿瘤相关死亡率中位居第三位。我国是肝癌高发地区,约占全球肝癌病例一半以上。肝癌严重影响我国人民的健康事业,并带来了巨大的社会负担。由于肝癌早期诊断较难,患者就诊时往往已属晚期。虽然近来手术切除、肝移植、射频消融、肝动脉栓塞化疗和分子靶向治疗等手段对肝癌的治疗取得了很大的进步,但总体上术后高复发率和高死亡率近来未有明显改善。免疫治疗作为肿瘤最有希望的治疗手段越来越受到重视。同时肝脏作为免疫特惠器官又是免疫治疗理想的靶器官。既往对肝癌的研究集中在肝癌细胞本身的生物学行为上,忽略了肝癌演进过程中肝癌细胞与肿瘤微环境(tumor microenvironment)中各种免疫细胞之间的相互作用,而后者被认为在肿瘤的发展、侵袭中发挥重要的作用。具有免疫抑制性作用的调节性T细胞(regulatory T cell, Treg)在肿瘤细胞逃避局部微环境的免疫监视从而发生免疫逃逸的过程中,扮演着重要的角色。
     本研究从肿瘤微环境中调节性T细胞的特异性表面标志入手,证实了在免疫微环境中CD4+CD25+CD127low/-CD49d-调节性T细胞的浸润和表达,表现为更强的免疫抑制表型,并与肝癌的临床病理特征相关。进而我们通过全基因芯片筛选出较重要的调控肿瘤浸润调节性T细胞的免疫抑制功能相关的功能基因,分析肿瘤浸润调节性T细胞与肿瘤细胞相互作用的免疫信号通路。基于凝集素芯片检测HCC患者外周血调节性T细胞膜特征性的聚糖改变。最后通过对调节性T细胞与galectin-1在HCC中表达的相关性分析,为HCC预后的预测和免疫治疗提供新的选择。
     第一部分HCC患者CD4+CD25+CD127low/-CD49d-调节性T细胞的表达和表型研究
     本部分研究旨在探索CD4+CD25+CD127loW/-CD49d-调节性T细胞在HCC患者体内不同部位(外周血、癌旁肝脏和癌灶)的分布和表达。
     我们通过梯度离心结合酶消化法,建立了稳定的获取外周血、组织内浸润淋巴细胞分离方法。借助于流式细胞仪,首次采用四色荧光分选淋巴细胞,配对比较分析了三处不同来源的CD4+CD25+CD127low/-CD49d-调节性T细胞的分布表达和表型。发现在HCC患者外周血、癌旁肝组织和癌灶中,CD4+CD25+CD127low/-CD49d-调节性T细胞的分布和免疫表型截然不同。首先,HCC患者肿瘤微环境中存在高表达FoxP3的CD4+CD25+CD127low/-CD49d-调节性T细胞。其次,HCC患者外周血调节性T细胞占整个CD4+T细胞比例显著高于健康对照者。HCC患者肿瘤浸润调节性T细胞占整个CD4+T细胞比例显著高于配对的癌旁肝组织和外周血。最后,HCC患者癌灶浸润调节性T细胞表达较高的免疫抑制表型,如FoxP3、CTLA-4和GITR。混合淋巴细胞实验显示CD4+CD25+CD127low/-CD49d-调节性T细胞对活化分子CD154的抑制率较对照明显增强,表明具有较强的免疫抑制能力。结合体外扩增实验结果,这群淋巴细胞分泌高水平的免疫抑制因子IL-10和TGF-B1,扩增后的细胞仍保持较高的抑制表型。我们分选出的肿瘤浸润的这群具有抑制能力的淋巴细胞较癌旁肝组织和外周血来源的显示出更强的免疫抑制能力。
     我们首次采用四色荧光分选出的CD4+CD25+CD127low/-CD49d-T淋巴细胞高表达调节性T细胞的特异性标志FoxP3,较其他相关研究文献可获得更高纯度的调节性T细胞,并且这群高表达FoxP3的T淋巴细胞保持活性状态,可用于下游的功能实验。CD4+CD25+CD127low/-CD49d-T细胞高表达于肝癌肿瘤微环境中,表现出更强的免疫抑制表型,体现了肿瘤免疫微环境中调节性T细胞的免疫抑制功能,参与HCC的肿瘤生物学进程。
     第二部分基于全基因芯片的CD4+CD25+CD127low/-CD49d-调节性T细胞基因表达谱分析
     结合前部分研究结果和其他相关文献报道,我们可以认为癌灶浸润性调节性T细胞之所以表达增强的抑制表型,必然是受到肿瘤微环境中肿瘤细胞和其他免疫细胞的影响,导致其与免疫抑制功能相关的基因表达上调和信号通路激活。但具体参与的调控基因和信号通路尚未有系统的报道。在本部分研究中,我们利用Agilent全基因芯片对9例HCC患者配对的癌灶和癌旁肝组织中的调节性T细胞进行全基因表达谱的对比分析,以期找出与免疫抑制功能相关的关键差异基因及相应的信号通路。
     我们利用酶消化法和梯度离心法分离出癌灶和癌旁肝组织浸润淋巴细胞,再利用流式细胞仪分选CD4+CD25+CD127low/-CD49d-调节性T细胞。细胞RNA抽提后与Agilent全基因芯片杂交,GenePix4000B芯片扫描仪扫描分析结果。结果显示Hierarchical聚类分析样本划分不同组别明显。将标准设为Fold Change≥2,P<0.05后,癌灶浸润调节性T细胞相对于癌旁肝组织浸润调节性T细胞共有1032个基因表达上调,1357个基因表达下调。PATHWAY结果显示两组间有7条上调通路和9条下调通路差异。GO分析显示癌灶浸润调节性T细胞相对于癌旁肝组织调节性T细胞有431条GO条目上调,237条GO条目下调。我们选取与肿瘤免疫和T细胞免疫相关的GO条目并按照Fold Change大小,从前15条中选取基因CD46、BCL6、TNFRSF11A、MDM4、P2RX7、CD276和IL6R进行分析,并对选取的基因进行RT-PCR验证。
     其中高表达RANK (TNFRSF11A基因编码)的调节性T细胞与高表达RANKL的HCC肿瘤细胞之间的RANK-RANKL信号通路,高表达IL-6R的调节性T细胞与高表达IL-6的HCC肿瘤细胞之间的IL6-IL-6R信号通路在HCC肿瘤免疫逃逸中可能起到很重要的作用。
     第三部分凝集素芯片检测CD4+CD25+CD127low/-CD49d-调节性T细胞和肝癌细胞株HCCLM3、MHCC97H、MHCC97L和Hep3B特征性糖基化改变
     肿瘤特征性糖基化改变影响着肿瘤细胞的恶性生物学行为。同样,异常的糖基化改变也影响着调节性T细胞的功能。目前,糖生物方兴未艾,是研究肿瘤发生发展的一个新的领域。肿瘤细胞异常的糖基化改变已证实与肿瘤细胞的恶性生物学行为相关。糖基转移酶调控糖基化改变。现已证实糖基化改变在淋巴细胞的成熟,阴性阳性分化选择,归巢,凋亡等过程中起着非常重要的作用。调节性T细胞的功能也必然伴随着糖基化的改变而改变。凝集素是一种可以与特定糖链结合的糖蛋白,利用此特性可以检测出特定糖链的表达和改变。国内目前尚未广泛开展基于凝集素芯片的肝癌相关研究。
     我们已于前期成功构建检测糖基化改变的凝集素芯片,并检测出不同来源的甲胎蛋白之间细微的聚糖改变,为我们这部分的实验奠定了基础。本部分实验首先在前期的基础上扩大凝集素芯片上凝集素的种类至32种,以便能够更准确地捕捉糖链的改变。我们构建的对细胞膜表面糖链可进行即时、高通量检测的凝集素芯片,优点在于将凝集素与芯片技术相结合,利用芯片高通量、高特异性、高灵敏度等优点,对提取的膜蛋白糖链进行自动捕获,成功地实现对细胞膜表面糖链进行高通量的检测分析,获得细胞膜表面糖链全面而综合的信息。甘露糖抑制实验和胎球蛋白实验充分显示我们构建的凝集素芯片具有糖链结合的特异性、准确性和稳定性。最后我们将分选的HCC患者与健康志愿者的外周血CD4+CD25+CD127low/-CD49d-调节性T细胞提取细胞膜蛋白后与芯片杂交后发现HCC患者外周血调节性T细胞较健康对照的外周血调节性T细胞膜表面α1-6岩藻糖、α1-6甘露糖、GalNac、β型半乳糖链、复杂型N-聚糖增加。另外,我们选取转移潜能梯度降低的人肝癌细胞株HCCLM3、MHCC97H、MHCC97L和几乎不转移的Hep3B,经细胞膜蛋白提取和Trizol提取RNA后,分别与凝集素芯片和糖基转移酶PCR芯片杂交。结果提示,HCCLM3相对于Hep3B,代表唾液酸糖链的MAL-Ⅰ、MAL-Ⅱ、WGA明显增加;代表甘露糖链的ConA和GNA明显增加;代表岩藻糖链的LTL、LCA、PSA和UEA-1明显增加;代表半乳糖链的BPL、EEL、jacalin, GSL-1增加;代表GlcNAc的PHA-L增加;代表GalNAc的VVA、DBA、SBA明显增加。糖基转移酶PCR芯片结果提示HCCLM3较Hep3B,ST3Ga11、FUT8和MGAT5等转移酶增高。其中MAL-Ⅰ,MAL-Ⅱ和WGA变化相对于ST3Gall, PSA、LCA相对于FUT8,PHA-L相对于MGAT5。
     因此我们可以认为调节性T细胞特征性糖基化改变可能伴随着免疫功能的变化。HCC细胞的特征性糖基化改变及相应的糖基转移酶改变为肿瘤的治疗从糖生物学的角度提供了新的方向。
     第四部分Galectin-1对HCC复发转移的影响及与调节性T细胞相关性的研究
     异常的糖基化改变影响着肿瘤的恶性生物学行为。Galectin-1是半乳凝素家族重要成员之一,通过与肿瘤细胞表面聚糖(glycan)形成galectin-glycan结构参与调控肿瘤的分化、迁移、凋亡和信号转导等生物学过程。在许多肿瘤中都发现galectin-1表达的增高与肿瘤的浸润、转移密切相关。许多高表达galectin-1的肿瘤都提示不良预后。近来研究表明调节性T细胞参与介导肿瘤细胞免疫逃逸的过程中受到肿瘤细胞来源的galectin-1的信号调控。同时,我们前面的实验结果也显示HCC患者外周血Treg膜表面表达较高的半乳糖链。目前在HCC中尚未有关galectin-1和Treg的表达及相关性的报道。
     在本部分研究中我们通过免疫组化的方法,对包含386例HCC患者的组织芯片检测FoxP3+Treg和galectin-1的表达,并通过生存分析观察galectin-1与预后的关系。同时通过流式细胞仪和ELISA分别检测31例HCC患者的外周血中的CD4+CD25+FoxP3+Treg和galectin-1的表达,以期发现两者在组织和外周血之间的相关性。最后我们利用ELISA法验证了147例HCC患者血清中galectin-1的表达水平。研究结果发现galectin-1在HCC肿瘤组织中高表达,是独立的预后指标。高表达galectin-1的HCC患者预后较差。Galectin-1与HCC的临床病理特征相关,如肿瘤大小、包膜是否完整和血管侵犯等等。在BCLC早期的HCC患者中,galectin-1也显示出预测预后的价值。肝癌组织中Galectin-1的表达与FoxP3+Treg数量两者呈正相关,但是在外周血中两者的表达无相关性。
     我们的结果提示肿瘤微环境中的galectin-1可能促进Treg在HCC中扩增,进而影响肿瘤的发展和预后,为肿瘤的免疫治疗提供了新的靶点。
     结论
     1.CD4+CD25+CD127low/-CD49d-T淋巴细胞高表达调节性T细胞的特异性标志FoxP3。
     2.肿瘤浸润性调节性T细胞可能通过IL6WIL6、RANK/RANKL信号通路参与HCC肿瘤细胞的免疫逃逸。
     3.HCC患者外周血调节性T细胞较健康对照的外周血调节性T细胞膜表面α1-6岩藻糖、α1-6甘露糖、GalNac、p型半乳糖链、复杂型N-聚糖增加。调节性T细胞特征性糖基化的改变可能伴随着细胞免疫抑制功能的变化。
     4.肝癌细胞具有α2-3,α2-6唾液酸、岩藻糖、平分型GlcNAc等糖链表达上调,可能受糖基转移酶ST6GALNAC1、ST3Ga11、FUT8和MGAT5等调控。
     5. Galectin-1在HCC中的高表达伴随着调节性T细胞数量的增加,联合调节性T细胞和galectin-1可增加预测HCC患者预后的准确性。可作为HCC免疫治疗的靶点。
     创新点
     1.首次在HCC患者中分选出具有活性的可供功能实验所需的CD4+CD25+CD127low/-CD49d-调节性T细胞。
     2.首次提出IL6WIL6、RANK/RANKL信号通路可能参与HCC肿瘤浸润性调节性T细胞介导的肿瘤免疫逃逸。
     3.HCC患者外周血调节性T细胞特征性糖基化的改变可能伴随着细胞免疫抑制功能的变化。
     4.首次报道galectin-1在HCC患者预后中的作用。
     研究展望
     1.进一步研究HCC肿瘤浸润性调节性T细胞的免疫相关差异表达基因和信号通路的作用机制,为HCC的治疗提供更为准确的治疗靶点。
     2.进一步研究调节性T细胞和肿瘤细胞特征性糖基化改变及相关性,从新的角度研究肿瘤的侵袭、转移机制。
Part I Increased prevalence of CD4+CD25+CD127low/-CD49d FoxP3+regulatory T cells in HCC tumor microenvironment
     Objective Expansion of regulatory T cells (Tregs) in tumor microenvironment was one of the mechanisms by which cancer cells escaped host defense. The purpose of this study was to investigate the increasing prevalence of Tregs in HCC cancer microenvironment. Methods Levels of CD4+CD25+CD127low/-CD49d-FoxP3+Tregs in peripheral blood mononuclear cells (PBMCs) from HCC patients (n=58) and healthy donors (n=12), tumor infiltrating lymphocytes (TILs) extracted from HCC (n=20), matched peri-tumor and PBMCs were measured by flow cytometry. Their suppression were determined by using activation marker expression (CD154). Superana levels of interleukin (IL)-10and transforming growth factor (TGF)-β1were measured by enzyme linked immunosorbent assay. Results The prevalence of Tregs in PBMCs from HCC patients was significantly higher than that from healthy donors and expressed high levels of IL-10and TGF-β1Similarly, the frequency of Tregs in tumor tissues was increased compared with that in matched peri-tumor and PBMCs. TIL Tregs were more suppressible by approximately30%than their peri-tumor and PBMCs counterparts. CTLA-4, GITR and MFI of FoxP3at higher levels on tumour-infiltrating Tregs compared with matched peri-tumor and periphery. Conclusions This study identified an increased frequency of CD4+CD25+CD127low/-CD49d-FoxP3+Tregs in patients with HCC. Further effort is needed to establish new immunotherapeutic strategies to modulate Tregs to promote a competent antitumor response.
     Part Ⅱ Comparative gene expression profile of CD4+CD25+CD127low/-CD49d-regulatory T cells in human hepatocellular carcinoma
     Objective The aim of this study was to compare gene expression profile of regulatory T cell (Treg) in HCC tumor sits with that of peri-tumor by Agilent whole genome oligo microarray. Methods Levels of CD4+CD25+CD127low/-CD49d-Tregs in HCC tumor (n=9), matched peri-tumor and PBMCs were measured by flow cytometry. Tregs from tumor and peri-tumor were hybridized on an Agilent whole genome microarray. Functional analysis of the microarray data was performed using KEGG PATHWAY and Gene Ontology (GO) analyses. Results The prevalence of Tregs in HCC tumor was significantly higher than that in peri-tumor. There were1032genes up-regualtion and1357genes down-regulation in tumor Tregs compared to peri-tumor. KEGG PATHWAY showed that7pathway up-regulation and9down-regulation of intratumoral Tregs compared to peri-tumor. GO showed that431terms up-regulation and237terms down-regulation. Microarray gene expression analysis showed that CD46, BCL6, TNFRSF11A, MDM4, P2RX7, CD276, TNFRSF18and IL6R were among the most upregulated genes in tumor Tregs compared with peri-tumor Tregs. The selected genes were validated by RT-PCR. Functional analysis showed that the complement and p53pathways were significantly upregulated in tumor Tregs, and that the GO terms related to cell differentiation, proliferation, apoptosis and migration were significantly affected. Conclusions This study identified IL6/IL6R, RANK/RANKL signalling might play an impotant role in intratumoral Tregs between HCC tumor cells.
     Part III Lectin Microarray based glycan profiling change of periphery regulatory T cell in patients with HCC
     Objective The aims of this section was to assess the applicability of application of lectin microarray to screen the glycosylation changes in complex biological systems. Based on that, glycosylation profilings were screened to search for the characteristic glycan structures associated with periphery regulatory T cells in HCC patients. Methods Firstly, we selected one pair of model protein:FET and its sialic acid defective strains ASF, of which characteristic glycan structures on the cell surface were well defined. Integrated protein was labeled with Cy3, then frozen in liquid nitrogen to terminatate the labeling. Next, membrane protein of Tregs was extracted by natural membrane protein extraction kit.10μg of protein was added to each chip and incubated for2hours, after washing, scanning and statistical analysis, lectin affinity profiling was obtained from the chip. Different batches of samples were loaded to detect the reproducibility of lectin microarray. HCC cell lines HCCLM3, MHCC97H, MHCC97L and Hep3B were used to hydratied with lectinarray and glycotranferase PCR microarray. Results The results showed that the characteristic glycosylation difference between ASF and FET were dtermined by defined lectin microarray. Comparing with ASF, FET showed increased affinity and decreased signals for SNA, MAL-Ⅰ and MAL-Ⅱ. HCC patients periphery Tregs presented elevated signals for LCA, UEA-Ⅰ, VVA, SBA, ACA, LEL and decreased signals for RCA-I with contrast to healthy controls. MAL-Ⅰ, MAL-Ⅱ, WGA, PHA-L were correlated with ST6GALNAC1、ST3Ga11、FUT8and MGAT5. Conclusions Our results proved that lectin microarray is an applicable glcan analysis tool, and could be used in clinical to screen HCC related Tregs glycan profiling, in search of better glycol-biomarkers for tumor immuno-escape. Besides, our study also presented reference and technology platform for the evaluation of the relationship between complex biological systems and glycan alteration.
     Part IV Overexpression of Galectin-1Associates with Poor Prognosis in Human Hepatocellular Carcinoma Following Resection
     Objective High expression of the galectin-1predicted poor patient outcome in several tumors. The aim of this study was to investigate its prognostic value in patients with hepatocellular carcinoma (HCC) after resection. Methods Galectin-1and tumor-infiltrating FoxP3+regulatory T cells (Tregs) were validated by tissue microarrays from HCC patients (n=386) and statistically assessed for correlations with the clinical profiles and the prognosis of the patients. Serum galectin-1levels and frequency of FoxP3+Tregs in circulation was measured by ELISA and flowcyte, respectively. And serum levels of galectin-1was validated by ELISA in147HCC patients. Results We found that galectin-1, prevalently up-regulated in HCC, was significantly associated with tumor invasive characteristics (such as vascular invasion, incomplete encapsulation, poor differentiation, multiple number and large tumor size). Patients with high galectin-1expression had a significantly poorer tumor recurrence (p=0.025) and overall survival (p=0.021) than those with low galectin-1expression. Even in early-stage disease, high galectin-1expression also independently associated with shortened survival (p<0.001) and increased tumor recurrence (p=0.005). Multivariate Cox proportional hazards analysis showed that galectin-1was an independent marker for predicting poor prognosis of HCC. Galectin-llevel was positively related to number of tumor-infiltrating FoxP3+Tregs (r=0.416,p<0.001) and their combination served as a better prognosticator. The postoperative tumor recurrence and survival of HCC patients with galectin-1high and FoxP3high were significantly poorer than the other groups (both p<0.001). Conclusions Galectin-1may be a new prognostic factor for HCC after resection and potentially be a high-priority therapeutic target.
引文
1. Elserag H, Rudolph K. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology.2007; 132:2557-76.
    2. Rimassa L, Santoro A. The present and the future landscape of treatment of advanced hepatocellular carcinoma. Dig Liver Dis.2010;42 Suppl 3:S273-80.
    3. Jelic S, Sotiropoulos GC. Hepatocellular carcinoma:ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol.2010;21 Suppl 5:v59-64.
    4. Llovet J, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008☆. Journal of Hepatology.2008;48:S20-S37.
    5. Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell. 2011;144:646-74.
    6. Korangy F, Hochst B, Manns MP, Greten TF. Immune responses in hepatocellular carcinoma. Dig Dis.2010;28:150-4.
    7. Palmer DH, Hussain SA, Johnson PJ. Gene-and immunotherapy for hepatocellular carcinoma. Expert Opin Biol Ther.2005;5:507-23.
    8. Ladhams A, Schmidt C, Sing G, Butterworth L, Fielding G, Tesar P, et al. Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. J Gastroenterol Hepatol.2002;17:889-96.
    9. Sheu BC, Chang WC, Huang SC. New Era of Regulatory T Cells in Tumor Immunity:Insights in Cancer Immunotherapy. J Formos Med Assoc.2010; 109:1-3.
    10. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol.2007;25:267-96.
    11. Baatar D, Olkhanud PB, Wells V, Indig FE, Mallucci L, Biragyn A. Tregs utilize β-galactoside-binding protein to transiently inhibit PI3K/p21ras activity of human CD8+ T cells to block their TCR-mediated ERK activity and proliferation. Brain, Behavior, and Immunity.2009;23:1028-37.
    12. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4(+)CD25(+) regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol.2004;34:336-44.
    13. Fox BA, Petrausch U, Poehlein CH, Jensen SM, Twitty C, Thompson JA, et al. Cancer Immunotherapy:The Role Regulatory T Cells Play and What Can be Done to Overcome their Inhibitory Effects. Curr Mol Med.2009;9:673-82.
    14. Beyer M, Schultze JL. Immunoregulatory T Cells:Role and Potential as a Target in Malignancy. Curr Oncol Rep.2008; 10:130-6.
    15. Guinn BA, Kasahara N, Farzaneh F, Habib NA, Norris JS, Deisseroth AB. Recent advances and current challenges in tumor immunology and immunotherapy. Mol Ther. 2007;15:1065-71.
    16. Shevach EM. Certified professionals:CD4(+)CD25(+) suppressor T cells. J Exp Med.2001;193:F41-6.
    17. Elkord E, Alcantar-Orozco EM, Dovedi SJ, Tran DQ, Hawkins RE, Gilham DE. T regulatory cells in cancer:recent advances and therapeutic potential. Expert Opin Biol Ther.2010;10:1573-86.
    18. Liotta F, Gacci M, Frosali F, Querci V, Vittori G, Lapini A, et al. Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU Int.2011;107:1500-6.
    19. Cichon G, Loddenkemper C, Hoffmann C, Stanke J, Nagorsen D, Baron U, et al. Regulatory (FOXP3(+)) T cells as target for immune therapy of cervical intraepithelial neoplasia and cervical cancer. Cancer Sci.2009; 100:1112-7.
    20. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, et al. T regulatory type 1 cells in squamous cell carcinoma of the head and neck:mechanisms of suppression and expansion in advanced disease. Clin Cancer Res. 2008;14:3706-15.
    21. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+CD25highFoxp3+T cells secreting interleukin-10 and transforming growth factor-beta 1 mediates suppression in the tumor microenvironment. Clin Cancer Res.2007; 13:4345-54.
    22. Shirwan H, Schabowsky RH, Madireddi S, Sharma R, Yolcu ES. Targeting CD4(+)CD25(+)FoxP3(+) regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Invest Dr.2007;8:1002-8.
    23. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, et al. Compromised lymphocytes infiltrate hepatocellular carcinoma:the role of T-regulatory cells. Hepatology.2005;41:722-30.
    24. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res.2007; 13:902-11.
    25. Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol.2006;45:254-62.
    26. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res.2005;65:2457-64.
    27. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated With Prognosis of Hepatocellular Carcinoma After Resection. Journal of Clinical Oncology.2007;25:2586-93.
    28. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature.2003;421:388-92.
    29. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+regulatory T cells. Int Immunol.2004; 16:1643-56.
    30. Mitsui J, Nishikawa H, Muraoka D, Wang L, Noguchi T, Sato E, et al. Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res.2010;16:2781-91.
    31. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, et al. Foxp3-dependent and-independent molecules specific for CD25(+)CD4(+) natural regulatory T cells revealed by DNA microarray analysis. Int Immunol. 2006;18:1197-209.
    32. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD 127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells. J Exp Med.2006;203:1701-11.
    33. Klein S, Kretz C, Krammer PH, Kuhn A. CD1271ow/-and FoxP3+expression levels characterize different regulatory T cell populations in human peripheral blood. J Invest Dermatol.2009;129:S21-S.
    34. Kleinewietfeld M, Starke M, Di Mitri D, Borsellino G, Battistini L, Rotzschke O, et al. CD49d provides access to "untouched" human Foxp3+Treg free of contaminating effector cells. Blood.2009; 113:827-36.
    35. Shen X, Li N, Li H, Zhang T, Wang F, Li Q. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma. J Cancer Res Clin.2010; 136:1745-54.
    36. He G, Karin M. NF-kappaB and STAT3-key players in liver inflammation and cancer. Cell Res.2011;21:159-68.
    37. Azevedo A, Cunha V, Teixeira AL, Medeiros R. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol. 2011;2:384-96.
    38. Tan W, Zhang WZ, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature.2011;470:548-53.
    39. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Bba-Gen Subjects.1999; 1473:21-34.
    40. Lau KS, Dennis JW. N-Glycans in cancer progression. Glycobiology. 2008;18:750-60.
    41. Leeming DJ, Bay-Jensen AC, Vassiliadis E, Larsen MR, Henriksen K, Karsdal MA. Post-translational modifications of the extracellular matrix are key events in cancer progression:Opportunities for biochemical marker development. Biomarkers. 2011;16:193-205.
    42. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T-Cells Mediated by Galectin-1. Nature.1995;378:736-9.
    43. Walzel H, Blach M, Hirabayashi J, Kasai K, Brock J. Involvement of CD2 and CD3 in galectin-1 induced signaling in human Jurkat T-cells. Glycobiology. 2000;10:131-40.
    44. Earl LA, Bi SG, Baum LG. N-and O-Glycans Modulate Galectin-1 Binding, CD45 Signaling, and T Cell Death. Journal of Biological Chemistry. 2010;285:2242-54.
    45. Jenner J, Kerst G, Handgretinger R, Muller I. Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp Hematol.2006;34:1212-8.
    46. Camby I. Galectin-1:a small protein with major functions. Glycobiology. 2006;16:137R-57R.
    47. Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA. Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Th.2008;8:45-57.
    48. Matarrese P, Tinari A, Mormone E, Bianco GA, Toscano MA, Ascione B, et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. Journal of Biological Chemistry.2005;280:6969-85.
    49. Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2-and T regulatory-mediated anti-inflammatory responses. J Immunol. 2006;176:6323-32.
    50. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1:a key effector of regulation mediated by CD4(+)CD25(+) T cells. Blood. 2007;109:2058-65.
    51. Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nature Reviews Cancer.2005;5:29-41.
    52. Potapenko 10, Haakensen VD, Luders T, Helland A, Bukholm I, Sorlie T, et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol.2010;4:98-118.
    53. Jeron A, Pfoertner S, Bruder D, Geffers R, Hammerer P, Hofmann R, et al. Frequency and Gene Expression Profile of Regulatory T Cells in Renal Cell Carcinoma. Tumor Biol.2009;30:160-70.
    54. Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, et al. Prognostic value of tumor-infiltrating FOXP3+regulatory T cells in patients with hepatocellular carcinoma. European Journal of Surgical Oncology (EJSO).2008;34:173-9.
    55. Lu X, Liu J, Li H, Li W, Wang X, Ma J, et al. Conversion of intratumoral regulatory T cells by human gastric cancer cells is dependent on transforming growth factor-betal. J Surg Oncol.2011;104:571-7.
    56. Anz D, Eiber S, Scholz C, Endres S, Kirchner T, Bourquin C, et al. In breast cancer, a high ratio of tumour-infiltrating intraepithelial CD8+ to FoxP3+ cells is characteristic for the medullary subtype. Histopathology.2011;59:965-74.
    57. Zaynagetdinov R, Stathopoulos GT, Sherrill TP, Cheng DS, McLoed AG, Ausborn JA, et al. Epithelial nuclear factor-kappaB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. Oncogene.2011.
    58. Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer.2012;75:95-101.
    59. Sorrentino C, Musiani P, Pompa P, Cipollone G, Di Carlo E. Androgen deprivation boosts prostatic infiltration of cytotoxic and regulatory T lymphocytes and has no effect on disease-free survival in prostate cancer patients. Clin Cancer Res. 2011;17:1571-81.
    60. Niu J, Jiang C, Li C, Liu L, Li K, Jian Z, et al. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol Immunother.2011;60:1109-18.
    61. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, et al. Foxp3-dependent and-independent molecules specific for CD25+CD4+natural regulatory T cells revealed by DNA microarray analysis. Int Immunol. 2006;18:1197-209.
    62. Bach JF. Regulatory T cells under scrutiny. Nat Rev Immunol.2003;3:189-98.
    63. Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, et al. Direct access to CD4+T cells specific for defined antigens according to CD 154 expression. Nat Med.2005;11:1118-24.
    64. Chattopadhyay PK, Yu J, Roederer M. A live-cell assay to detect antigen-specific CD4+T cells with diverse cytokine profiles. Nat Med.2005;11:1113-7.
    65. Workman CJ, Collison LW, Bettini M, Pillai MR, Rehg JE, Vignali DA. In vivo Treg suppression assays. Methods Mol Biol.2011;707:119-56.
    66. Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the CD45RA(+) subpopulation of CD4(+)CD25(high) T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood.2006; 108:4260-7.
    67. Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol.2011;41:3553-63.
    68. Ruitenberg JJ, Boyce C, Hingorani R, Putnam A, Ghanekar SA. Rapid assessment of in vitro expanded human regulatory T cell function. J Immunol Methods. 2011;372:95-106.
    69. Klages K, Mayer CT, Lahl K, Loddenkemper C, Teng MW, Ngiow SF, et al. Selective depletion of Foxp3+regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Res.2010;70:7788-99.
    70. Castro MG, Curtin JF, Candolfi M, Fakhouri TM, Liu CY, Alden A, et al. Treg Depletion Inhibits Efficacy of Cancer Immunotherapy:Implications for Clinical Trials. Plos One.2008;3.
    71. Chen HS, Zhang HH, Mei MH, Fei R, Liao WJ, Wang XY, et al. Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-lb in hepatocellular carcinoma patients, in vitro. Int J Oncol. 2010;36:841-8.
    72. Cany J, Tran L, Gauttier V, Judor JP, Vassaux G, Ferry N, et al. Immunotherapy of hepatocellular carcinoma: is there a place for regulatory T-lymphocyte depletion? Immunotherapy.2011;3:32-4.
    73. Greten TF, Ormandy LA, Fikuart A, Hochst B, Henschen S, Horning M, et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+T-cell responses in patients with advanced HCC. J Immunother. 2010;33:211-8.
    74. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+regulatory T cells. J Exp Med. 2005;202:885-91.
    75. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 Significantly Associates with Tumor Aggressiveness and Postoperative Recurrence in Human Hepatocellular Carcinoma. Clin Cancer Res.2009; 15:971-9.
    76. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet.2000;25:25-9.
    77. Bonnet A, Lagarrigue S, Liaubet L, Robert-Granie C, Sancristobal M, Tosser-Klopp G. Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares. BMC Proc.2009;3 Suppl 4:S11.
    78. Pham VC, Pitti R, Anania VG, Bakalarski CE, Bustos D, Jhunjhunwala S, et al. Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events. J Proteome Res.2012.
    79. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol.1996; 14:233-58.
    80. Noel PJ, Boise LH, Thompson CB. Regulation of T cell activation by CD28 and CTLA4. Adv Exp Med Biol.1996;406:209-17.
    81. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985-8.
    82. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity.1999; 11:141-51.
    83. Kemper C, Verbsky JW, Price JD, Atkinson JP. T-cell stimulation and regulation: with complements from CD46. Immunol Res.2005;32:31-43.
    84. Truscott SM, Abate G, Price JD, Kemper C, Atkinson JP, Hoft DF. CD46 engagement on human CD4+T cells produces T regulatory type 1-like regulation of antimycobacterial T cell responses. Infect Immun.2010;78:5295-306.
    85. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A.2007;104:19458-63.
    86. Mahnke K, Ring S, Johnson TS, Schallenberg S, Schonfeld K, Storn V, et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells:role of B7-H3 expression and antigen presentation. Eur J Immunol. 2007;37:2117-26.
    87. Metwaly HA, Al-Gayyar MM, Eletreby S, Ebrahim MA, El-Shishtawy MM. Relevance of Serum Levels of Interleukin-6 and Syndecan-1 in Patients with Hepatocellular Carcinoma. Sci Pharm.2012;80:179-88.
    88. Sakakibara S, Tosato G. Viral interleukin-6:role in Kaposi's sarcoma-associated herpesvirus:associated malignancies. J Interferon Cytokine Res.2011;31:791-801.
    89. Narita D, Seclaman E, Ursoniu S, Ilina R, Cireap N, Anghel A. Expression of CCL18 and interleukin-6 in the plasma of breast cancer patients as compared with benign tumor patients and healthy controls. Rom J Morphol Embryol. 2011;52:1261-7.
    90. Ge D, Gao AC, Zhang Q, Liu S, Xue Y, You Z. LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL-6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate.2011.
    91. Weidle UH, Klostermann S, Eggle D, Kruger A. Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics.2010;7:287-302.
    92. Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol.2006;63:321-9.
    93. Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer:a review of the rationale and clinical evidence. Clin Cancer Res.2003;9:4653-65.
    94. Wu WY, Li J, Wu ZS, Zhang CL, Meng XL. STAT3 activation in monocytes accelerates liver cancer progression. BMC Cancer.2011;11:506.
    95. Finotto S, Eigenbrod T, Karwot R, Boross I, Doganci A, Ito H, et al. Local blockade of IL-6R signaling induces lung CD4+T cell apoptosis in a murine model of asthma via regulatory T cells. Int Immunol.2007;19:685-93.
    96. Sasaki A, Ishikawa K, Haraguchi N, Inoue H, Ishio T, Shibata K, et al. Receptor activator of nuclear factor-kappaB ligand (RANKL) expression in hepatocellular carcinoma with bone metastasis. Ann Surg Oncol.2007; 14:1191-9.
    97. Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, et al. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. Int J Cancer.2010;126:1263-74.
    98. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med.2011;17:983-8.
    99. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal.2011;4:ra12.
    100. Daniel C, Wennhold K, Kim HJ, von Boehmer H. Enhancement of antigen-specific Treg vaccination in vivo. Proc Natl Acad Sci U S A. 2010;107:16246-51.
    101. Markey MP. Regulation of MDM4. Front Biosci.2011;16:1144-56.
    102. Gislette T, Chen J. The possible role of IL-17 in obesity-associated cancer. Scientific WorldJournal.2010;10:2265-71.
    103. Dennis JW, Lau KS, Demetriou M, Nabi IR. Adaptive Regulation at the Cell Surface byN-Glycosylation. Traffic.2009; 10:1569-78.
    104. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science.2001;291:2370-6.
    105. Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, et al. CD45 modulates galectin-1-induced T cell death:Regulation by expression of core 2 O-glycans. J Immunol.2001;167:5697-707.
    106. Nishimura S. Toward automated glycan analysis. Adv Carbohydr Chem Biochem.2011;65:219-71.
    107. Vanderschaeghe D, Festjens N. Delanghe J, Callewaert N. Glycome profiling using modern glycomics technology:technical aspects and applications. Biol Chem. 2010;391:149-61.
    108. Zaia J. Mass spectrometry and the emerging field of glycomics. Chem Biol. 2008;15:881-92.
    109. Uchiyama N, Kuno A, Tateno H, Kubo Y, Mizuno M, Noguchi M, et al. Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins. Proteomics.2008;8:3042-50.
    110. Hsu KL, Mahal LK. Sweet tasting chips:microarray-based analysis of glycans. Curr Opin Chem Biol.2009; 13:427-32.
    111. Abbott KL, Pierce JM. Lectin-based glycoproteomic techniques for the enrichment and identification of potential biomarkers. Methods Enzymol. 2010;480:461-76.
    112. Chen P, Liu Y, Kang X, Sun L, Yang P, Tang Z. Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray. J Cancer Res Clin Oncol. 2008;134:851-60.
    113. Jankovic MM, Milutinovic BS. Glycoforms of CA125 antigen as a possible cancer marker. Cancer Biomark.2008;4:35-42.
    114. Zhang N, Liu L, Dumitru CD, Cummings NR, Cukan M, Jiang Y, et al. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. MAbs.2011;3:289-98.
    115. Sarrats A, Saldova R, Comet J, O'Donoghue N, de Llorens R, Rudd PM, et al. Glycan characterization of PSA 2-DE subforms from serum and seminal plasma. OMICS.2010;14:465-74.
    116. Chrostek L, Cylwik B. [The alteration of proteins glycosylation in liver diseases]. Pol Merkur Lekarski.2011;31:60-4.
    117. Durrant LG, Noble P, Spendlove I. Immunology in the clinic review series; focus on cancer:glycolipids as targets for tumour immunotherapy. Clin Exp Immunol. 2012;167:206-15.
    118. Jamal B, Sengupta PK, Gao ZN, Nita-Lazar M, Amin B, Jalisi S, et al. Aberrant amplification of the crosstalk between canonical Wnt signaling and N-glycosylation gene DPAGT1 promotes oral cancer. Oral Oncol.2012.
    119. Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS.2010;14:419-36.
    120. Jones MB, Nasirikenari M, Feng L, Migliore MT, Choi KS, Kazim L, et al. Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J Biol Chem.2010;285:25009-17.
    121. Malagolini N, Chiricolo M, Marini M, Dall'Olio F. Exposure of alpha2,6-sialylated lactosaminic chains marks apoptotic and necrotic death in different cell types. Glycobiology.2009; 19:172-81.
    122. Petretti T, Kemmner W, Schulze B, Schlag PM. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut. 2000;46:359-66.
    123. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR. Functions of cell surface galectin-glycoprotein lattices. Current Opinion in Structural Biology.2007; 17:513-20.
    124. Rabinovich GA, Toscano MA. Turning 'sweet' on immunity:galectin-glycan interactions in immune tolerance and inflammation. Nature Reviews Immunology. 2009;9:338-52.
    125. Saussez S, Decaestecker C, Lorfevre F, Cucu DR, Mortuaire G, Chevalier D, et al. High level of galectin-1 expression is a negative prognostic predictor of recurrence in laryngeal squamous cell carcinomas. Int J Oncol.2007;30:1109-17.
    126. Cindolo L, Benvenuto G, Salvatore P, Pero R, Salvatore G, Mirone V, et al. Galectin-1 and galectin-3 expression in human bladder transitional-cell carcinomas. Int J Cancer.1999;84:39-43.
    127. Kondoh N, Hada A, Ryo A, Shuda M, Arai M, Matsubara O, et al. Activation of Galectin-1 gene in human hepatocellular carcinoma involves methylation-sensitive complex formations at the transcriptional upstream and downstream elements. Int J Oncol.2003;23:1575-83.
    128. Spano D, Russo R, Di Maso V, Rosso N, Terracciano LM, Roncalli M, et al. Galectin-1 and its involvement in hepatocellular carcinoma aggressiveness. Mol Med. 2010;16:102-15.
    129. Jung EJ, Moon HG, Cho BI, Jeong CY, Joo YT, Lee YJ, et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer.2007;120:2331-8.
    130. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, et al. The API-dependent secretion of galectin-1 by Reed Stemberg cells fosters immune privilege in classical Hodgkin lymphoma. Proceedings of the National Academy of Sciences.2007;104:13134-9.
    131. Le QT, Shi G, Cao H, Nelson DW, Yingyun W, Y CE, et al. Galectin-1:A Link Between Tumor Hypoxia and Tumor Immune Privilege. Journal of Clinical Oncology. 2005;23:8932-41.
    132. Yang XR, Xu Y, Yu B, Zhou JA, Qiu SJ, Shi GM, et al. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut.2010;59:953-62.
    133. Cai MY, Xu YF, Qiu SJ, Ju MJ, Gao Q, Li YW, et al. Human Leukocyte Antigen-G Protein Expression Is an Unfavorable Prognostic Predictor of Hepatocellular Carcinoma following Curative Resection. Clin Cancer Res. 2009;15:4686-93.
    134. Xu YF, Yi Y, Qiu SJ, Gao Q, Li YW, Dai CX, et al. PEBP1 downregulation is associated to poor prognosis in HCC related to hepatitis B infection. Journal of Hepatology.2010;53:872-9.
    135. Zhao YM, Wang L, Dai Z, Wang DD, Hei ZY, Zhang N, et al. Validity of plasma macrophage migration inhibitory factor for diagnosis and prognosis of hepatocellular carcinoma. Int J Cancer.2011.
    136. Camp RL, Dolled-Filhart M, Rimm DL. X-tile:a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10:7252-9.
    137. Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer.2003;98:119-27.
    138. Nouso K, Kobayashi Y, Nakamura S, Kobayashi S, Takayama H, Toshimori J, et al. Prognostic importance of fucosylated alpha-fetoprotein in hepatocellular carcinoma patients with low alpha-fetoprotein. J Gastroenterol Hepatol.2011.
    139. Chun JM, Kwon HJ, Sohn J, Kim SG, Park JY, Bae HI, et al. Prognostic factors after early recurrence in patients who underwent curative resection for hepatocellular carcinoma. J Surg Oncol.2011; 103:148-51.
    140. Choi GH, Kim DH, Kang CM, Kim KS, Choi JS, Lee WJ, et al. Prognostic factors and optimal treatment strategy for intrahepatic nodular recurrence after curative resection of hepatocellular carcinoma. Annals of Surgical Oncology. 2008;15:618-29.
    141. Troncoso MF, Espelt MV, Croci DO, Bacigalupo ML, Carabias P, Manzi M, et al. Novel Roles of Galectin-1 in Hepatocellular Carcinoma Cell Adhesion, Polarization, and In Vivo Tumor Growth. Hepatology.2011;53:2097-106.
    142. Van der Leij J, Van den Berg A, Blokzijl T, Harms G, van Goor H, Zwiers P, et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes:an important tool in the regulation of the immune response. J Pathol.2004;204:511-8.
    143. Van der Leij J, van den Berg A, Harms G, Eschbach H, Vos H, Zwiers P, et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Molecular Immunology.2007;44:506-13.
    144. Cedeno-Laurent F, Barthel SR, Opperman MJ, Lee DM, Clark RA, Dimitroff CJ. Development of a Nascent Galectin-1 Chimeric Molecule for Studying the Role of Leukocyte Galectin-1 Ligands and Immune Disease Modulation. The Journal of Immunology.2010; 185:4659-72.
    145. Rabinovich GA. Galectin-1 as a potential cancer target. British Journal of Cancer.2005;92:1188-92.
    146. Chiang WF, Liu SY, Fang LY, Lin CN, Wu MH, Chen YC, et al. Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol.2008;44:325-34.
    147. Sanjuan X, Fernandez PL, Castells A, Castronovo V, van den Brule F, Liu FT, et al. Differential expression of galectin 3 and galectin 1 in colorectal cancer progression. Gastroenterology.1997; 113:1906-15.
    148. Van den Brule FA, Waltregny D, Castronovo V. Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. J Pathol.2001;193:80-7.
    149. Rorive S, Belot N, Decaestecker C, Lefranc F, Gordower L, Micik S, et al. Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia.2001;33:241-55.
    150. 1Van den Brule FA, Buicu C, Berchuck A, Bast RC, Deprez M, Liu FT, et al. Expression of the 67-kD laminin receptor, galectin-1, and galectin-3 in advanced human uterine adenocarcinoma. Hum Pathol.1996;27:1185-91.
    [1]Lebrilla C B, An H J. The prospects of glycan biomarkers for the diagnosis of diseases.[J]. Mol Biosyst,2009,5(1):17-20.
    [2]Rabinovich G A, Toscano M A. Turning 'sweet' on immunity:galectin-glycan interactions in immune tolerance and inflammation[J]. NATURE REVIEWS IMMUNOLOGY,2009,9(5):338-352.
    [3]Lowe J B. Glycosylation, immunity, and autoimmunity[J]. CELL,2001, 104(6):809-812.
    [4]van Kooyk Y, Rabinovich G A. Protein-glycan interactions in the control of innate and adaptive immune responses[J]. NATURE IMMUNOLOGY,2008,9(6):593-601.
    [5]Meany D L, Zhang Z, Sokoll L J, et al. Glycoproteomics for prostate cancer detection:changes in serum PSA glycosylation patterns.[J]. J Proteome Res, 2009,8 (2):613-619.
    [6]Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease. [J]. Cell,2006,126(5):855-867.
    [7]Sperandio M, Gleissner C A, Ley K. Glycosylation in immune cell trafficking. [J]. Immunol Rev,2009,230(1):97-113.
    [8]Arnold J N, Saldova R, Hamid U M, et al. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation.[J]. Proteomics, 2008,8(16):3284-3293.
    [9]Kamei N, Fukui R, Suzuki Y, et al. Definitive evidence that a single N-glycan among three glycans on inducible costimulator is required for proper protein trafficking and ligand binding.[J]. Biochem Biophys Res Commun,2010,391(1):557-563.
    [10]Fulcher J A, Chang M H, Wang S, et al. Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling.[J]. J Biol Chem,2009,284(39):26860-26870.
    [11]Salatino M, Croci D O, Bianco G A, et al. Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer.[J]. Expert Opin Biol Ther,2008,8(1):45-57.
    [12]Garin M I, Chu C C, Golshayan D, et al. Galectin-1:a key effector of regulation mediated by CD4(+)CD25(+) T cells[J]. BLOOD,2007,109(5):2058-2065.
    [13]Grigorian A, Torossian S, Demetriou M. T-cell growth, cell surface organization, and the galcctin-glycoprotein lattice[J]. IMMUNOLOGICAL REVIEWS,2009, 230:232-246.
    [14]Helenius A, Aebi M. Intracellular functions of N-linked glycans. [J]. Science, 2001,291(5512):2364-2369.
    [15]Perone M J, Bertera S, Tawadrous Z S, et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice.[J]. J Immunol, 2006,177 (8):5278-5289.
    [16]Rabinovich G A, Ilarregui J M. Conveying glycan information into T-cell homeostatic programs:a challenging role for galectin-1 in inflammatory and tumor microenvironments [J]. IMMUNOLOGICAL REVIEWS,2009, 230:144-159.
    [17]Morgan R, Gao G Y, Pawling J, et al. N-acetylglucosaminyltransferase V (Mgat5)-Mediated N-glycosylation negatively regulates Thl cytokine production by T cells[J]. JOURNAL OF IMMUNOLOGY,2004,173(12):7200-7208.
    [18]Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system[J]. Science,2001,291(5512):2370-2376.
    [19]Rudd P M, Wormald M R, Stanfield R L, et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition [J]. JOURNAL OF MOLECULAR BIOLOGY,1999,293(2):351-366.
    [20]Van Dyken S J, Green R S, Marth J D. Structural and mechanistic features of protein O glycosylation linked to CD8+T-cell apoptosis.[J]. Mol Cell Biol,2007, 27(3):1096-1111.
    [21]Schauer R. Sialic acids:fascinating sugars in higher animals and man[J]. Zoology,2004,107(1):49-64.
    [22]Gillespie W, Paulson J C, Kelm S, et al. Regulation of alpha-2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+to PNA-phenotype in developing thymocytes [J]. Journal of Biological Chemistry,1993, 268(6):3801-3804.
    [23]Baum L G, Derbin K, Perillo N L, et al. Characterization of terminal sialic acid linkages on human thymocytes-Correlation between lectin-binding phenotype and sialyltransferase expression[J]. Journal of Biological chemistry,1996,271 (18):10793-10799.
    [24]Priatel J J, Chui D, Hiraoka N, et al. The ST3Gal-I sialyltransferase controls CD8 (+) T lymphocyte homeostasis by modulating O-glycan biosynthesis[J]. IMMUNITY,2000,12(3):273-283.
    [25]Daniels M A, Levine L, Miller J D, et al. CD8 binding to MHC class I molecules is influenced by maturation and T cell glycosylation[J]. IMMUNITY,2001, 15(6):1051-1061.
    [26]Moody A M, North S J, Reinhold B, et al. Sialic acid capping of CD8 beta core 1-O-glycans controls thymocyte major histocompatibility complex class I interaction[J]. Journal of Biological Chemistry,2003,278(9):7240-7246.
    [27]Kao C, Sandau M A, Daniels M A, et al. The sialyltransferase ST3Gal-I is not required for regulation of CD8-class I MHC binding during T cell development [J]. Journal of Immunology,2006,176(12):7421-7430.
    [28]Venken K, Hellings N, Broekmans T, et al. Natural naive CD4(+)CD25(+)CD127(low) regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients:Recovery of memory treg homeostasis during disease progression[J]. Journal of Immunology,2008, 180(9):6411-6420.
    [29]Gao Q, Qiu S J, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection.[J]. J Clin Oncol,2007,25(18):2586-2593.
    [30]Finney O C, Riley E M, Walther M. Phenotypic analysis of human peripheral blood regulatory T cells (CD4(+)FOXP3(+)CD127(lo/-)) ex vivo and after in vitro restimulation with malaria antigens [J]. European Journal of Immunology, 2010,40(1):47-60.
    [31]Finney O C, Riley E M, Walther M. Phenotypic analysis of human peripheral blood regulatory T cells (CD4(+)FOXP3(+)CD127(lo/-)) ex vivo and after in vitro restimulation with malaria antigens[J]. European Journal of Immunology, 2010,40(1):47-60.
    [32]Hartigan-O'Connor D J, Poon C, Sinclair E, et al. Human CD4+regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD 127), allowing consistent identification and sorting of live cells[J]. Journal of Immunological Methods,2007,319(1-2):41-52.
    [33]Shen L S, Wang J, Shen D F, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression[J]. Clinical Immunology,2009,131 (1):109-118.
    [34]Jenner J, Kerst G, Handgretinger R, et al. Increased alpha 2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells[J]. Experimental Hematology,2006,34(9):1212-1218.
    [35]Fang X, Zhang W W. Affinity separation and enrichment methods in proteomic analysis.[J]. J Proteomics,2008,71(3):284-303.
    [36]Amon S, Zamfir A D, Rizzi A. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies.[J]. Electrophoresis,2008,29(12):2485-2507.
    [37]Evans-Nguyen K M, Tao S C, Zhu H, et al. Protein arrays on patterned porous gold substrates interrogated with mass spectrometry:detection of peptides in plasma.[J]. Anal Chem,2008,80(5):1448-1458.
    [38]Gauthier D J, Lazure C. Complementary methods to assist subcellular fractionation in organellar proteomics.[J]. Expert Rev Proteomics,2008, 5(4):603-617.
    [39]Nagaraj V J, Eaton S, Thirstrup D, et al. Piezoelectric printing and probing of Lectin NanoProbeArrays for glycosylation analysis.[J]. Biochem Biophys Res Commun,2008,375(4):526-530.
    [40]Tateno H, Uchiyama N, Kuno A, et al. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. [J]. Glycobiology,2007, 17(10):1138-1146.
    [41]Hirabayashi J. Concept, strategy and realization of lectin-based glycan profiling.[J]. J Biochem,2008,144(2):139-147.
    [42]Kullolli M, Hancock W S, Hincapie M. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins.[J]. J Sep Sci,2008,31(14):2733-2739.
    [43]Uchiyama N, Kuno A, Koseki-Kuno S, et al. Development of a lectin microarray based on an evanescent-field fluorescence principle.[J]. Methods Enzymol,2006, 415:341-351.
    [44]Lee C H, Kim J K, Kim H Y, et al. Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo.[J]. Int Immunopharmacol,2009, 9(13-14):1555-1561.
    [45]Chen P, Liu Y, Kang X, et al. Identification of N-glycan of alpha-fetoprotein by lectin affinity microarray.[J]. J Cancer Res Clin Oncol,2008,134(8):851-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700