城市污水磁种絮凝—高梯度磁分离净化工艺及其理论机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,城市污水处理及其资源化再生利用已成为当前我国迫切需要解决的重要问题之一。但是以活性污泥法为代表的生化传统工艺以去除COD、BOD_5与SS为主,存在以下缺点:(1)工艺流程长,污水停留时间长,单位面积处理能力小,占地面积较大。(2)氮磷等无机离子去除效率低,水质不能回用。以磷为例,即使生物除磷系统效率达到最高,处理后出水中的总磷浓度也难以达到国家一级排放标准。如要达到总磷浓度<0.5mg/L,仍必须采用进一步化学强化处理。
     本文在系统分析城市污水处理技术发展现状基础上,针对目前我国城市污水处理中存在的问题,在国内首次提出了磁种絮凝—高梯度磁分离对城市污水进行处理的新工艺。为此,作者进行了磁种对化学沉淀絮凝除磷的强化机理研究,确定了磁种对化学沉淀絮凝除磷的强化作用。研究发现:磁种在磁种絮凝—高梯度磁分离净化污水中主要起两方面的作用:一是作为磷酸铝沉淀及有机污染物絮凝的载体,强化其絮凝沉降行为;二是赋予沉淀絮凝物强磁性,提高磁分离效率。在此基础上,进一步试验确定了磁种絮凝—高梯度磁分离净化处理典型城市污水的最佳工艺条件,并进行了连续扩大试验。扩大实验结果表明,该工艺对污水中磷、重金属等污染物去除有特效,并能显著降低污水中的COD_(Cr)、BOD_5与SS含量,同时具有很强的杀菌作用。
     在最佳工艺条件下:磁种用量0.3g/L、磁场强度0.2特斯拉,混凝剂硫酸铝用量200mg/L,助凝剂PAM用量2mg/L,水流速60—100m/h情况下,城市污水经磁种絮凝—高梯度磁分离处理,可去除其中36~90%COD_(Cr)与几乎全部(>95%)磷。当进水水质为SS 64.4mg/L、COD_(Cr)
    
    武汉”1j}卜学油
    卜学}洲台之
    154.6mg/L·BODS 46.41109/L、p 0.581119/LI’l勺护,,水经处工,}!)!亏,55降介、
    25 .2109几、C00Cr降个582mg几、BO05降个163mg几、P降介、OO3mg几
    以下,其’}’CODC:、BOD、、P都达到国家一级引}放标准(CODcl.:60 mg几、
    BOD。:20 nlg/L、p:Osnlg/L),55于支近l,·I家一级于11放4、、准(55:Zom留L),
    其它污染物指标也得到不同程度的降低。而、,勺进水水质为cODcr 80mg/L、
    P2.05mg几时,出水CODcf降至45mg几、P降至o.03mg/L,去除率分别
    一司一达43%与98%。
     磁种絮凝一高梯度磁分离卜艺将化学除磷的彻底性与高梯度磁分离
    的快速性、高效性巧妙地结合起来、该L艺川于城市污水处理具有处理速
    度快、占地面积少,设各简单,易f实现净化一体化、自动化,适用范围
    广等优点,尤其对污水,士,的磷且有1}常好的去除效果。因此,这一工艺非
    常适宜于我国城市小区、小城镇污水处理厂,以及城市大中型污水处理厂
    的增能扩容及其出水回川强化处理}_一艺,在我国有厂一阔的应用推广一前景)
Nowadays, municipal sewage treatment and its outflow recycling have become one of the most urgent unsettled problems But the two-stage biology process which is mainly used in municipal sewage treatment in our country, has some shortcomings as follow: (1) long flow small flux and too much room occupation (2) its outflow can't attain to the first degree discharge standard of pollutants for municipal waste water treatment plant of the national(GB 18918-2002). If the phosphorus in the outflow should <0.5mg/L, further chemical disposal must be needed.
    On the base of the analysis of current technology used in municipal sewage treatment, the tentative idea of treating municipal sewage using magnetic flocculation and high gradient magnetic separation was first proposed. In this paper, firstly, the mechanism of magnet in magnetic chemical flocculation of phosphorus removal has studied in laboratory. The result showed that the magnet has two effects in magnetic chemical flocculation, one is as a medium to combine the A1PO4 and strengthen the precipitation of the sediment, the other one is heighten the separation efficiency by enduing the deposit with magnetism. Then the scale-up experiment was carried out to find out the best parameters on industrial HGMS. The result shows: the process has special effort on heavy metal removal, and the bacteria were mainly be killed. It can greatly reduce the BOD COD and SS in the municipal sewage
    36-90%CODCr and >95% phosphorus can be removed in the best parameter ( Fe3O4 0.3g/L, magnetic field 0.2T, A12(SO4)3 200mg/L, PAM 2mg/L, velocity of flow 60-100m/h). And the outflow can attain to the first degree discharge standard of pollutants for municipal waste water treatment plant of the national(GB 18978-2002). (The inflow: CODCr 154.6mg/L BOD5 46.4mg/L SS64.4mg/L P 0.58mg/L, The outflow: CODCr 58.2mg/L. BOD5
    
    
    
    16.3mg/L SS 25.2mg/L, P<0.03mg/L; The first degree of GB18978-2002: CODcr, 60 mg/L, BOD5 20 mg/L SS 20 mg/L. P 0 5mg/L) When the inflow CODcr, 80mg/L, P 2.05mg/L, the outflow CODcr can attain to 45mg/L, P can
    attain to 0.03mg/L, the decontamination efficiency can reach 43% and 98%.
    Combining the high efficiency of the chemical removal of phosphorus and large inflow of HGMS, the magnetic flocculation and high gradient magnetic separation process have some special advantages in treating municipal sewage: large flux small room occupation simple facility easy to realize incorporation and automation, especially in phosphorus removal. The process which can be widely used in many fields, especially in following three aspects: community or minor city sewage treatment, enlargement of major city sewage treatment plant and the deep treatment of outflow from sewage treatment plant will have a promising prospect in sewage treatment
引文
1.国家环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准(GB19918-2002)
    2.中国环境质量状况公报.1998—2002.from http://www.zhb.gov.cn/649368268829622272/index.shtml
    3.城市污水处理及污染防治技术政策,建城[2000]124号
    4.国家环境保护十五计划from http://www.zhb.gov.cn/649364983179640832/index. shtml
    5.杨展里.我国城市污水处理技术剖析及对策研究.from:http://www.h2o-china.com/paper/wvewpaper.asp?id=925
    6.十五重点水污染治理工程污水处理厂投资建设及运行情况.中国环境报,2003.7.3第四版
    7.张悦.郑兴灿.城市污水再生利用是缓解缺水危机的重要途径.21世纪国际城市污水处理及资源化发展战略研讨会论文集frorm:http://www.h2o-china.com/paper/viewpaper.asp?id=1524
    8.叶雯,刘美南.我国城市污水再生利用的现状与对策.中国给排水,2002(12):31-33
    9.郑兴灿,张悦.城市污水处理工艺的主要类型.中国建设报/中国水业.2002(10).from: http://www.h2o-china.com/paper/viewpaper.asp?id=2423
    10.郑兴灿,张悦.我国城市污水处理及再生利用的技术决策要素探讨21世纪国际城市污水处理及资源化发展战略研讨会论文.from:http://211.147.14.17/liamneng/21century/article/2001/zxc.htm
    11.杭世珺.污水处理工程设计的基本条件和工艺选择.中国建设报/中国水业2002(13)from://http:http://www.h2o-china.com/paper/viewpaper.asp?id-2844
    12.杨向平.谈城市污水处理的技术特点和工程建设体验.from http://www.chinesewage.com/expertasy/expertsay.9.htm
    13.郑兴灿,张悦.城市污水处理的技术决策与工艺方案选择研究.土木工程水工业分会排水委员会第四届第一次年会.
    
    from://http://www.h2o-china.com/paper/viewpaper.asp?id=864
    14.王英,陈泽军.生物脱氮除磷工艺的研究进展.环境污染与防治 2002,24(3):180—182
    15.邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水2002,18(9):23-25
    16 杨燕华.城市污水处理化学除磷的必要性及其工艺.北京市政工程设计研究总院建院四十五周年论文集from: http://www.h2o-china.com/paper/viewpaper.asp?id=2751
    17.栾兆坤.张锦华,孔凡铭,韩德来.适于城镇污水处理的强化絮凝工艺.中国给水排水 2002,18(1):30-33
    18 邱慎初.化学强化一级处理(CEPT)技术.中国给水排水 2000,10(1):26-29
    19.肖锦.城市污水处理及回用技术.北京化学工业出版社,2002.
    20. Oder R R. High Gradient Magnetic Separation Theory and Application. IEEE Trans Magn. 1976, 12:428-436
    21. Kolm H H, Magneic device. US patent 3567026,1971.
    22. Iannicelli J. New Development in Magnetic Separation. IEEE Trans Magn, 1976,12: 436-443
    23. Rada Stratulat, Ghiorghe Calugaru, Vasilc Badescu. Magnetic Carriers Particles for Selective Separation in Environmental and Industrial process. Analele. Stiintifice ALE Universitatll "AL. 1. CUZA"IASI Tomul XLV-XLVJ, s.Fizica starii condenstate, 1999-2000, P45-50
    24. Broomleng J, Gelinas S, Finch J A and Xu Z. Review of Magnetic Carrier Technologies for Metal Ion Removal. Magnetic and Electrical Separation, 1997, 9: 169-188
    25. Tershima Y, OZAKI H and Sekine M. Removal of Dissolve Heavy Metals by Chemical Coagulation Magnetic Seeding and High Gradient Magnetic Filtration. Water Res, 1986, 20(5): 537-545
    26. Annin DEbncr, James A Rittcr and Hary J Ploehn. et al. New Magnetic Field-Enhanced Process for the Treatment of Aqueous Wastes. Separation Science
    
    and Technology, 1999, 54:1277-1300.
    27. Gregory B Cotton, James D Navratil. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste. WM'99 conference, 1999 February 28-March 4
    28. Michael D Johnson. Development of Organic Assisted Magnetite Formation for the Remediation of Metal Contaminants. (Technical completion Report) 1997
    29. Allen W Apblett, Sulaiman M, Al-Fadul, Tarek Trad. Removal of Petrochemicals from Water Using Magnetic Filtration from: http://www.utulsa.edu/ipec/apblett,lol.pdf
    30. Schake A.R., Avens L R, Hill D D, et al. Magnetic Separation for Environmental Remediation. American Chemical Society.
    31. Ying T Y, Yiacoumi S, Tsouris C. High-gradient Magnetically Seeded Filtration. Chemical Engineering Science, 2000, 55:1101-1113
    32. Ying T Y, Chin C J, Lu S C and Yiacoumi S, et al. Magnetite-Seeding Filtration. Separation Science and Technology, 1999, 34(6-7): 1371-1392.
    33. Tsouris C, Yiacoumi S. Particle Flocculation and Filtration by High Gradient Magnetic Fields. Separation Science and Technology, 1997, 32(1-4): 599-616.
    34. The Sirfloc Process for Water Treatment. from: http:// www.kvanerner.com/eande/energy/expere/sirofloc.pdf
    35. Brian A Bolto. Water Treatment Technology in Australia. In Surface and Colloid Chemistry in Natural Waters and Water Treatment. Edited by Beckett R. Plenum Press, New York 1990: 87-101.
    36.宋金璞,杨镇国,郑学玉等.大梯度磁滤器对饮用水中有害物质的去除.现代化学 1999 (J):22-24
    37.宋金璞,王大志.郑学玉等 高梯度磁滤法除菌的研究.给水排水,1997,23(1):16-18
    38.颜幼平,康新宇,周为吉.高梯度磁分离技术在给排水处理中的研究应用.北方环境 1999,(3)
    39.马荣骏.工业废水的治理.长沙:中南大学出版社.1991
    
    
    40.颜幼平,吴昭倩,周为吉.高梯度磁分离技术在“三废”治理中的应用,环境保护 1999,(3):14-16
    41. Oberteuffer J A, Wechgler L, Marston P G. et al. High Gradient Magnetic Filtration of Still Mill Process and Waste Waters. IEEE Trans Magn. 1975, 11: 1591-1593
    42. Harland J R, Nilsson L, Wallin M .Pilot-scale high Gradient Magnetic Filtration of Steel Mill Waster. IEEE Trans Magn. 1976, 4:904-907
    43. Waste Water Treatment with Magnetic Separatiun. from: http://www.energeties.com/meetings/supercon/pdfs/presentations/f3_summ.pdf
    44.郑必胜,郭祀远,李琳等,磁分离技术处理食品发酵工业废水,食品与发酵工业 1999(1)
    45.郑必胜,郭祀远,李琳等,应用高梯度磁分离技术处理糖蜜酒精废水.环境科学学报.1999,19(3)
    46. Booker N A, Brooks R B. Scale-up of the Rapid Sewage Treatment Sirofloc Process.Process Safety and Environmental Protection (Transactions of The Institution of chemical engineering part B), 1994, 72B: 109-112
    47. Wastewater Treatment Accelerated by Magnetic Force. New Scientist 1998, 4.
    48. Luis O Kolarik, Particles of Magnetite in New Water Treatment Processes. from:http://www.eidn.com.au/aus-gennprojectsprojectb.htm.
    49. C de Latour. Magnetic Separation in Water Pollution Control. IEEE Trans Magn, 1973(3): 314-316.
    50. Bitton G, Mitchell R, C de Lator and E Maxwell .Phosphate. Removal by Magnetic Filtration. War Res, 1974, 8: 107-109.
    51. Krumm E. Abwasserreinigung mit Maguetseparation. Galvanotechnik, 1992, 83:213-317.
    52. Hoya k, Tanaka Y and Ishida K. Fundamental Study on Application of High Gradient Magnetic Separation on Municipal Wastewater.
    53. Matthias Franzreb, Percy Kampeis, Klaus-Peter Juengst, et al. New Type of High Gradient Magnetic Separation for Use in Waste Water Treatment. In proc MT-15, vol 1 L Liangzhen Ed, Beijing, Science process, 1998:751
    
    
    54. Matthias Franzreb. Walfgang H Holl. Phophate Removal by High-gradient Magnetic Filtration Using Permanent Magnets. IEEE Transaction on Applied superconductivity, 2000. 10(1): 923-926
    55. Yasuzo Sakai,Fujio Takahashi. The Removal of Filamentous Bacteria from the Activated Sludge using the Magnetic Separation Methods. 水环境学会志, 1999, 22 (4): 323-326 (in Japanese)
    56 Shaikh A M H, Dixit S G. Removal of Phosphate from Wastes by Precipitation and High Gradient Magnetic Separation .Water Res. 1992, 26(6): 845-852
    57 Rokita M. Handke M, Mozgawa W. The AlPO_4 Polymorphs Structure in The Light of Raman and IR Spectroscopy Studies. Jourual of Molecular Structure, 2000, 555: 351-356
    58 Rokita M, Handke M, Mozgawa W. Spectroscopy Studies of Polymorphs of AlPO_4 and SiO_2. Journal of Molecular Structure, 1998, 450:213-217
    59. Oberteuffer J A. Magnetic separateion: A review of principles, devicex and applications. IEEE Trans on Magn, 974, MAG-10(2): 223-238.
    60.戴树桂,环境化学,高等教育出版社,1997年3月第一版,126-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700