CO厌氧发酵制氢工艺基础及反应器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源枯竭和环境污染是21世纪人类面临的两大难题,开发可再生的绿色能源,构建新的能源体系对实现人类可持续发展的目标具有战略性意义。生物制氢技术具有反应条件温和(常温常压)、节能环保和利用可再生生物废弃物资源等优点,因此备受关注。本文研究生物发酵制氢技术,以一氧化碳(CO)作为发酵底物,利用纯菌种Carboxydothermus hydrogenformans作菌源,分别在间歇进料和连续进料的培养条件下,通过厌氧发酵反应产生氢气(H2)。对菌株的发酵制氢机理、生长特性、底物消耗速率以及CO抑制浓度等因素进行深入研究,并考察在中空纤维膜反应器(HFMBR)内进行连续操作条件下,不同操作参数对产氢性能的影响。论文的主要内容如下:
     1. C.hydrogenformans菌能够以CO作为生长碳源和代谢能源,在厌氧环境中发酵制氢,通过CO脱氢酶(CODH)将底物中的H+还原为H2,同时将CO氧化为二氧化碳(CO2)。C.hydrogenformans菌发酵反应的氢气比生产速率(SHPR)和氢气得率(yield)均较高,Yield能达到96%。此外,该菌株能以丙酮酸盐作为碳源代谢发酵制氢,主要代谢产物为挥发性脂肪酸(VFA)和乙醇,但氢气Yield仅有17%;通过SEM和EDS等手段对菌群进行分析,发现其聚结培养基中的Ca和P等无机物质形成了晶体羟基磷灰石(Ca5 (PO4) 3OH)
     2.利用正交实验确定C.hydrogenformans生长培养基的最优组分配比,得出了P043,HCO3-,Ca2+和Mg2+四个离子浓度对各个实验目标的影响主次顺序以及最优化浓度,最终优化的溶液组成分别为PO43=1 mM, HCO3-=5 mM, Ca2+=0.1 mM和Mg2+=0.5 mM。最优化的营养液组成能够减少菌群中无机物质的积累,并保持菌株的最佳生物活性,得到了较高的SHPR和Yield。
     3.研究了C.hydrogenform ance发酵制氢的反应动力学,得到菌株的衰减系数和微生物比生长速率分别为0.022h-1和0.017h-1。在菌株初始浓度为5mg-VSS/L和8 mg-VSS/L时,分别得到最大Yield为97%和和最大SHPR为3.0mol/g-VSS.d。通过研究食微比(F/M)对SHPR的影响,对CO发酵制氢过程中的气液传质规律进行分析,得出了最佳的F/M为6.3mol-CO/g-VSS,即为了避免CO传质阻力对SHPR的影响,溶液上方空间的气相CO浓度应保持在176 g-CO(gas)/g-VSS以上(1atm,70℃,100 r/min)。此外,在CO的抑制动力学实验基础上,绘制了C.hydrogenformans发酵制氢的抑制动力学曲线,得出CO抑制浓度为0.55mmol/L。利用Monod扩展方程,建立CO抑制动力学模型,通过非线性拟合方法,得出最大底物消耗速率、底物抑制浓度和半饱和常数等反应动力学模型参数。
     4.本文结合了生物制氢和膜生物反应器两项内容,对膜生物反应制氢新技术进行研究,证实了HFMBR中利用CO气体连续高效发酵制氢的可行性。以提高反应器中产氢速率(HPR)和CO转化率(η)为目的,考察了操作压力(PCO)、CO进料载荷(Qg)、液相循环流量(Ql)和温度(T)对反应器制氢性能的影响。研究表明,通过气体渗透而产生的Qg是Pco的函数,在Qg为0.22mol/d和1.15mol/d时,分别得到反应器内最高η为97.6%和最大HPR为0.46mol/d。提高Ql,可以改善CO与H2O间的气液传质效果,进而提高反应器内的HPR。当Ql增大到1500ml/min时,得到最高气液传质系数为1.72h-1,但生物膜表面剪切力过大,造成了部分生物膜脱落,影响反应器制氢性能的稳定性。降低反应温度可以提高CO在液相中的溶解度,提高气液传质速率,但反应温度的降低抑制了菌株的最佳生物活性,从而限制了反应器内的生物制氢能力。HMBR系统长周期运行的稳定性较好,连续运行4个月,未发现膜污染问题;微生物挂膜能力强,纤维膜上固定的微生物细胞在反应器中的比例为84.5±1.6%,而且生物膜有机活性成分也较高,VSS/SS保持在86+5.9%。通过EDS分析得知,菌群中不再含有富含Ca和P的无机晶体,进一步验证了正交实验对培养基成分优化的有效性。膜生物反应器中的最高氢气比生产速率最高能达到0.85 mol/g-VSS.d,与传统反应器中最高的氢气比生产速率0.47 mol/g-VSS.d相比,提高了0.8倍。
     本文对厌氧嗜热菌C.hydrogenformans的发酵制氢反应进行理论研究、实验测试分析和模型计算,得出不同操作参数对HFMBR内传质和制氢效果的影响及过程强化途径,为膜反应器制氢新技术的理论研究和应用奠定了基础。
Energy exhaustion and environmental pollution are the most two important issues in 21st centrury. Developping clean fuel energy and constructing new energy system have strategic importance to realize the target of the human sustainable development. Biohydrogen production has been paid more and more attention because it could be produced at ambient temperature and pressure, as well as its environmental friendly and low energy costing due to the source of renewable biological waste.
     This research is aimed to study biohydrogen production technology using CO as the carbon source and pure culture of Carboxydothermus hydrogenformans as the fermentative bacteria. Anaerobic fermentation for biohydrogen production experiments are carried out in batch and continuous feeding conditions, respetively. The biohydrogen producing mechanism, biomass growing charateristics, substrate consumption and CO inhibition has been studied. Operating parameters of anerobic fermentation are determined in a hollow fiber membrane bioreactor (HFMBR) for continuous biohydrogen prodcution. The main content of the study and the results are as follows:
     1 C.hydrogenformans is known to use CO as the sole source of carbon and energy to produce biohydrogen under anaerobic fermentation, in which CO is oxidized to CO2, while H+ is reduced to H2. High specific hydrogen production rate (SHPR) is obtained, as well as the high hydrogen yield (Yield) of 96%. Also C.hydrogenformans can use pyruvate as the carbon source to grow and produce hydrogen, however, low Yield of 17% is observed, most of the fementative productions are volatile fatty acids (VFA) and ethanol. The characteristic that C.hydrogenforans can gather Ca and P from the medium to form the crystal of hydroxyapatite is found though the SEM and EDS analysis.
     2 Orthogonal experimental design are performed to optimize the medium composition, the influence order and optimal concentration of PO43, HCO3-, Ca2+ and Mg2+are observed as 1 mM,5 mM,0.1 mM and 0.5 mM, respectively. The final optimized medium culture could not only avoid the formation of inorganic crystal in the biofilm but also keep the best SHPR and Yield.
     3 The reaction kinetics of anaerobic fermentation for biohydrogen production has been assessed, the biomass decay efficiency and maximal growth rate are calculated as 0.022 h-1 and 0.017 h-1, respectively. The best Yield (97%) and SHPR (3.0 mol/g-VSS.d) are obtained at initial biomass densities (Xo) of 5 mg-VSS/L and 8 mg-VSS/L. The mass transfer is studied and the optimal feed/microorganism (F/M) is observed at 6.3 mol-CO/g-VSS, that is to say the CO substrate in the head space should be over 176 g-CO(gas)/g-VSS(1 atm,70℃,100 r/min). Also the kinectic courve is plotted by the CO conversion rate as function of different CO concentration in the medium, CO inhibited concentration 0.55 mmol/L is observed. Also a nonlinear regression has been applied to fit Monod extended equation to estimate the maximal specific rates of substrate depletion, critical concentration of the inhibitory substrate and half-saturation constant.
     4 In this thesis, biohydroen fermentation technique and membrane bioreactor are united; a new biohydrogen production method is proposed—biohydrogen production from membrane bioreactors. The feasibility of continuous anaerobic fermentation for hydrogen production using CO in a HFMBR is improved. The objective of the reactor is to improve hydrogen producing rate (HPR) and CO conversion efficient (η) by evaluating the effects of paramenters of CO partrial pressure PCO, CO loading Qg, liquid recirculation rate Q1 and temperature T on the hydrogen producing ability in the reactor. The results indicates that Qg is function of PCO; the bestηof 97.6% and HPR of 0.46 mol/d are observed at Qg=0.22 mol/L and 1.15 mol/L, respectively. While increasing Q1 can increase CO-H2O mass transfer which improves the HPR in the reactor. The highest mass transfer coefficient of 1.72 h-1 is obtained at Q1=1500 ml/min. However, the latter augmentation of liquid recirculation coincides a drop of the immobilized C. hydrogenoformans, which is probably due to a severe alteration of the biofilm. Also, T is decreased to improve the mass transfer; however the biological activity of biomass is inhibited at lower T which limited the hydrogen producing ability in the reactor. The HFMBR has a long term working stability of 4 months, no membrane fouling is observed; 84.5±1.6% of the microorganism is cultivated and fixed on the hollow fiber as the biofilm, also high organic active ingredients is observed in the biofilm with a VSS/SS of 86±5.9%. EDS analysis is conducted in the biofilm, no crystals that containing Ca and P are observed any more, which indicates the validity of the optimized medium by orthogonal experimental design. The best SHPR 0.85 mol/g-VSS.d in the HFMR is 0.8 times higher than the best SHPR traditional bioreactors for hydrogen production of 0.57.
     The theoretical research, experimental analysis and model calculation are proceeded in this study, also experiments are carried out based on improving mass transfer and increasing biohydrogen producing ability by evaluating operating parameters in the reactor, which establishs theory study and practical application for the method of biohydrogen production in the membrane bioreactors.
引文
[1]Ragauskas A J, Williams C K, Davison B H, et al. The Path Forward for Biofuels and Biomaterials[J]. Science,2006,311 (5760):484-489.
    [2]任保增,唐大惠,李扬等.厌氧发酵生物制氢实验研究[J].郑州大学学报(工学版),2004,25(4):64-66.
    [3]Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies [J]. Catalysis Today,2009,139(4):244-260.
    [4]Mudhoo A, Forster-Carneiro T, Sanchez A. Biohydrogen production and bioprocess enhancement:A review[J]. Critical Reviews in Biotechnology,2011,31(3):250-263.
    [5]李燕红,林钰,杏艳等.农作物秸秆废弃物厌氧发酵生物制氢的研究[J].环境科学与技术,2006,29(11):8-9,17.
    [6]Momirlan M, Veziroglu T N. Current status of hydrogen energy[J]. Renewable and Sustainable Energy Reviews,2002,6(1-2):141-179.
    [7]闫晶晶.我国生物质能源开发利用的可持续发展评价与实证研究[D].北京:中国地质大学,2010.
    [8]蔡国田,张雷.世界能源保障基本形式探讨[J].世界地理研究,2006,15(3):10-16.
    [9]Henstra A M. CO metabolism of Carboxydothermus hydrogenoformans and Archaeoglobus fulgidus[D]. Netherlands:Wageningen University,2006.
    [10]王永忠.固定化光合细菌光生物制氢反应器传输与产氢特性[D].重庆:重庆大学,2008.
    [11]费维扬,赵兴雷,周文戟.全球气候变暖人类面临的世纪挑战[J].生态经济,2009,4:24-29.
    [12]Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J]. Renewable and Sustainable Energy Reviews,2008,12(3):593-661.
    [13]Jebaraj S, Iniyan S. A review of energy models [J]. Renewable and Sustainable Energy Reviews,2006, 10(4):281-311.
    [14]Hallenbeck P C, Ghosh D. Advances in fermentative biohydrogen production:the way forward[J]? Trends in Biotechnology,2009,27(5):287-297.
    [15]Balat H, Kirtay E. Hydrogen from biomass-Present scenario and future prospects[J]. International Journal of Hydrogen Energy,2010,35(14):7416-7426.
    [16]Levin DB and Chahine R. Challenges for renewable hydrogen production from biomass[J]. International Journal of Hydrogen Energy,2010,35(10):4962-4969.
    [17]姜海勇.中国能源现状及未来发展战略.深圳特区科技,2006,4:42-44.
    [18]胡徐腾,王正元,李振宇.我国能源化工面临的挑战及对策思考[J].化工进展,2006,3:239-243.
    [19]江泽民.对中国能源问题的思考[J].上海交通大学学报,200842(3):345-359.
    [20]曾凡刚.化石燃料产生的有机污染物对北京大气的影响[J].地学前缘,2000,7(S2):256-257.
    [21]Iwasaki W. A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy,2003,28(9):939-944.
    [22]曾凡刚,王纬,吴燕红等.化石燃料燃烧产物对大气环境质量的影响及研究现状[J].中央民族大学学报,2001,10(2):113-120.
    [23]李力,于波,许平.化石燃料生物脱有机氮研究展望[J].中国生物工程杂志,2004,24(6):64-67.
    [24]Toshihiko N. Energy-economic models and the environment [J]. Progress in Energy and Combustion Science,2004,30(4):417-475.
    [25]Dunn S. Hydrogen futures:toward a sustainable energy system[J]. International Journal of Hydrogen Energy,2002,27(3):235-264.
    [26]Adamson K A, Pearson P. Hydrogen and methanol:a comparison of safety, economics, efficiencies and emissions[J]. Journal of Power Sources,2000,86(1-2):548-555.
    [27]聂荣涛,纯菌种Ethanologen bacterium sp.nov R3厌氧发酵生物制氢的实验研究[D].沈阳:东北 林业大学,2009.
    [28]Bauer C G, Forest T W. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I:effect on S.I. engine performance[J]. International Journal of Hydrogen Energy,2001,26(1): 55-70.
    [29]任保增,唐大惠,李扬.厌氧发酵生物制氢实验研究[J].郑州大学学报(工学版),2004,25(4):64-66.
    [30]贺德华,马兰,刘金尧.烃类/醇类重整制氢的研究进展[J].石油化工,2008,37(4):315-322.
    [31]任南琪,郭婉茜,刘冰峰.有机废水发酵法生物制氢技术[M].黑龙江:黑龙江科学技术出版社,1994.
    [32]王志涛,王宝辉,冯进来等.氢能制备技术发展概况[J].油气田地面工程,2004,23(7): 33-33.
    [33]Stephenson M, Stickland L H. Hydrogenase:The reduction of sulphate to sulphide by molecular hydrogen[J]. Biochemical Journal,1931,25(1):215-220.
    [34]Stephenson M, Stickland L H. Hydrogenase:The reduction of sulphate to sulphide by molecular hydrogen I[J]. The properties of the enzyme Biochemical Journal,1931,25(1):205-214.
    [35]任南琪,林明,马汐平等.厌氧高效产氢细菌的筛选及其耐酸性研究[J].太阳能学报,2003,23(1):80-84.
    [36]任南琪,李永峰,郑国香等.生物制氢:Ⅰ.理论研究进展[J].地球科学进展,2004,19:537-741.
    [37]Gest H, Kamen M D. Photoproduction of Molecular Hydrogen by Rhodospirillum rubrum[J]. Science, 1949,109(2840):558-559.
    [38]Gest H, Kamen M D. STUDIES ON THE METABOLISM OF PHOTO SYNTHETIC BACTERIA IV: Photochemical Production of Molecular Hydrogen by Growing Cultures of Photosynthetic Bacteria[J], Journal of bacteriology,1949,58(2):239-245.
    [39]任南琪,李建政.生物制氢技术[J].太阳能学报,2003,2:4-6.
    [40]刘江华,方新湘,周华.我国氢能源开发与生物制氢研究现状[J].新疆农业科学,2004,41:85-87.
    [41]北京科学技术协会.第十二届中国科学技术协会年会论文集[C].北京:[出版社不详],2010.
    [42]韩志国,李爱芬,龙敏南等.微藻光合作用制氢--能源危机的最终出路[J].生态科学,2003,22(2):104-108.
    [43]Hawkes F R, Dinsdale R, Hawkes D L, et al. Sustainable fermentative hydrogen production: challenges for process optimisation[J]. International Journal of Hydrogen Energy,2002.27(11-12): 1339-1347.
    [44]Nath Kaushik, Das D, Improvement of fermentative hydrogen production:various approaches[J]. Applied Microbiology and Biotechnology,2004,65(5):520-529.
    [45]崔有贵,李永峰,任南琪等.甜菜废蜜生物制氢细菌的诱变育种[J].中国甜菜糖业,2004,3:1-2.
    [46]谭天伟,王芳,邓利.能源生物技术[J].生物加工过程,2003,5:32-36.
    [47]邢新会,张羽中.发酵生物制氢研究进展[J].生物加工过程,2005,3(1):1-8.
    [48]夏华.生物制氢工业技术进展[J].生物技术世界,2009,4:31-32,36.
    [49]任南琪,宫曼丽,邢德峰.连续流生物制氢反应器乙醇型发酵的运行特性[J].环境科学,2004,6:113-116.
    [50]Wang J, Wan W. Factors influencing fermentative hydrogen production:A review[J]. International Journal of Hydrogen Energy,2009,34(2):799-811.
    [51]Ren N Q, Chua H, Chan S Y, et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J]. Bioresource Technology,2007,98(9):1774-1780.
    [52]Ni M, Leung D Y C, Leung K. H. A review on reforming bio-ethanol for hydrogen production [J]. International Journal of Hydrogen Energy,2007,32(15):3238-3247.
    [53]张续春,黄兵,曹东福.微生物厌氧发酵制氢技术现状和展望[J].云南化工,2007,34(2):66-70.
    [54]刘克鑫,徐洁泉,廖多群等.沼气池中产氢菌的研究[J].微生物学报,1980,20(4):385-389.
    [55]任南琪,王宝贞,马放.厌氧活性污泥工艺生物发酵产氢能力研究[J].中国环境科学,1995,15(6):401-406.
    [56]李冬敏,陈洪掌,李佐虎.生物制氢技术的研究进展[J].生物技术通报,2003,4:1-5.
    [57]Kumar D, Kumar H D. Hydrogen production by several cyanobacteria[J]. International Journal of Hydrogen Energy,1992,17(11):847-852.
    [58]Ueno Y, Kawai T, Sato S, et al. Biological production of hydrogen from cellulose by natural anaerobic microflora[J]. Journal of Fermentation and Bioengineering,1995,79(4):395-397.
    [59]Ueno Y, Haruta S, Ishii M, et al. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora[J]. Journal of Bioscience and Bioengineering,2001,92(4): 397-400.
    [60]Oh Y K, Park M S, Seol E H, et al. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor[J]. Biotechnology and Bioprocess Engineering,2003, 8(1):54-57.
    [61]Ren N, Li J, Li B, et al. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J]. International Journal of Hydrogen Energy,2006,31(15):2147-2157.
    [62]广西科学院,关西大学.第三届全国化学工程与生物化工年会论文集[C],南宁:[广西大学],2006.
    [63]户元,张翀,邢新会Clostridium paraputrificum M-21发酵制氢培养条件研究[J].生物加工过程,2004,2:41-45.
    [64]Bonam D, Lehman L, Roberts G P, et al. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum:effects of CO and oxygen on synthesis and activity[J]. Journal of Bacteriology,1989,171(6):3102-3107.
    [65]H, Najafpour G, Ku I K S, et al. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium:Rhodopirillum rubrum[J]. Bioresource Technology,2008,99(7):2612-2619.
    [66]Najafpour G, Younesi H, Mohamed A R. Continuous hydrogen production via fermentation of synthesis gas[J]. Petroleum and Coal,2003,45(3-4):54-158.
    [67]Singer S W, Hirst M B, Ludden P W. CO-dependent H2 evolution by Rhodospirillum rubrum:Role of CODH:CooF complex[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2006,1757(12): 1582-1591.
    [68]Oh Y K, Kim H J, Park S, et al. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19[J]. International Journal of Hydrogen Energy,2008,33(5):1471-1482.
    [69]Nuri A, Dokgoz C, Tuba F. The effect of dilution and 1-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor [J]. International Journal of Hydrogen Energy,2010,35(10):5028-5033.
    [70]Maness P C, Huang J, Smolinski S, et al. Energy Generation from the CO Oxidation-Hydrogen Production Pathway in Rubrivivax gelatinosus[J]. Applied Environmental Microbiology,2005, 71(6):2870-2874.
    [71]Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08[J]. Process Biochemistry,2000,35(6):589-593.
    [72]Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT08 using lignocellulosic materials as solid matrices[J]. Enzyme and Microbial Technology,2001, 29(4-5):280-287.
    [73]户元,张种,邢新会Clostridium paraputrificum M-21发酵制氢培养条件研究[J].生物加工过程,2004,2:42-45.
    [74]Ewyernie D, Yamazaki S, Morimoto K, et al. Identification and Characterization of Clostridium paraputrificum M-21, a Chitinolytic, Mesophilic and Hydrogen-Producing Bacterium[J]. Journal of Bioscience and Bioengineering,2000,89(6):596-601.
    [75]Chen W M, Tseng Z J, Lee K S, et al. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge[J]. International Journal of Hydrogen Energy,2004, 30(10):1063-1070.
    [76]Karube I, Matsunaga T, Tsuni S, et al. Continuous hydrogen production by immobilized whole cells of Clostridium bytyricum[J]. Biochem. Biophys. Acta,1976,444:338-345.
    [77]Ewyernie D, Morimoto K, Karita S, et al. Conversion of chitinous wastes to hydrogen gas by clostridium paraputrificum M-21[J]. Journal of Bioscience and Bioengineering,2001,91(4): 339-343.
    [78]Brosseau J D, Zajic J E. Hydrogen-gas production with Citrobacter intermedim and Clostridium pasteurianum[J]. Journal of Chemical Technology and Biotechnology,1982,32(3):496-502.
    [79]Lo Y C, Chen W M, Hung C H, et al. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria:Feasibility and kinetic studies[J]. Water Research,2008,42(4-5): 827-842.
    [80]龙敏南,龙传南,邬小兵等.高产氢耐热菌株的分离鉴定及其放氢特性[J].厦门大学学报(自然科学版),2003,42(6):687-690.
    [81]Ntaikou I, Gavala H N, Lyberatos G. Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus:Definition of metabolism and kinetics during growth on glucose[J]. International Journal of Hydrogen Energy,2009,34(9):3697-3709.
    [82]I. Ntaikou, Gavala H N, Lyberatos G. Application of a modified Anaerobic Digestion Model 1 version for fermentative hydrogen production from sweet sorghum extract by Ruminococcus albus [J]. International Journal of Hydrogen Energy,2010,35(8):3423-3432
    [83]Levin D B, Islam R, Cicek N. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates [J]. International Journal of Hydrogen Energy,2006,31(11):1496-1503.
    [84]Wu M, Ren Q, Durkin A S, et al. Life in Hot Carbon Monoxide:The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 [J]. PLoS Genet,2005,1(5):563-574.
    [85]Henstra A M, Sipma J, Rinzema A, et al. Microbiology of synthesis gas fermentation for biofuel production[J]. Current Opinion in Biotechnology,2007,18(3):200-206.
    [86]Henstra A M, Stams A J M. Novel Physiological Features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens[J].Applied Environmental Microbiology,2004,70(12): 7236-7240
    [87]Parshina S N, Kijlstra S, Henstra A M, et al. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans [J]. Applied Microbiology and Biotechnology,2005,68(3):390-396.
    [88]Soboh B, Linder D, Hedderich R. Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans [J]. European Journal of Biochemistry, 2002,269(22):5712-5721.
    [89]Svetlichny V A, Sokolova T G, Gerhardt M, et al. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island[J]. Systematic and Applied Microbiology,1991,14(3):254-260.
    [90]Svetlichny V A, Sokolova T G, Gerhardt M, et al.Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands [J]. Microbial Ecology,1991,21(1):1-10.
    [91]Svetlitchnyi V, Peschel C, Acker G, et al. Two Membrane-Associated NiFeS-Carbon Monoxide Dehydrogenases from the Anaerobic Carbon-Monoxide-Utilizing Eubacterium Carboxydothermus hydrogenoformans[J]. Journal of Bacteriology,2001,183(17):5134-5144.
    [92]Lay C H, Wu J H, Hsiao C L, et al. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation [J]. International Journal of Hydrogen Energy,2010, 35(24):13445-13451.
    [93]陈洪章,邱卫华.秸秆发酵燃料乙醇关键问题及其进展[J].化学进展,2007,19(7/8):1116-1121.
    [94]刘敏,任南琪,丁杰等.糖蜜、淀粉与乳品废水厌氧发酵法生物制氢.环境科学,2004,25(5):65-69.
    [95]张蕊,李永峰,包红旭等.甜菜废蜜生物制氢的微生物学基础[J].中国甜菜糖业,2004,3:8-11.
    [96]杨素萍,曲音波.光合细菌生物制氢[J].现代化工,2003,23(9):17-22.
    [97]Zhang M L, Lan Y T, Xing Y, et al. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures[J]. Biomass and Bioenergy,2007,31(4): 250-254.
    [98]Zhang Z P, Tay J H, Show K Y, et al. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J]. International Journal of Hydrogen Energy,2007,32(2):185-191.
    [99]包红旭,王爱杰,任南琪.预处理方法对细菌降解玉米秸秆产氢能力的影响[J].大连海事大学学报,2008,34(2):41-44.
    [100]包红旭,任南琪,王爱杰.复合菌群降解玉米秸秆协同产氢特性[J].哈尔滨工业大学学报,2009,8:69-73.
    [101]张高生,李红卫,樊耀亭.脱油芝麻饼厌氧发酵生物制氢[J].化学研究,2004,3:1-4.
    [102]汪群慧,马鸿志,王旭明.厨余垃圾的资源化技术[J].现代化工,2004,24(7):56-59.
    [103]Ginkel S V, Sung S, Lay J J. Biohydrogen Production as a Function of pH and Substrate Concentration[J]. Environmental Science & Technology,2001,35(24):4726-4730.
    [104]Lin, C.-Y. and C.-H. Cheng, Fermentative hydrogen production from xylose using anaerobic mixed microflora[J]. International Journal of Hydrogen Energy,2006,31(7):832-840.
    [105]Wang J. and Wan W. The effect of substrate concentration on biohydrogen production by using kinetic models[J]. Science in China Series B:Chemistry,2008,51(11):1110-1117.
    [106]Fang H H P, and Liu H. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technology,2002,82(1):87-93.
    [107]O-Thong S, Prasertsan P, Karakashev D. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2[J]. International Journal of Hydrogen Energy,2008,33(4):1204-1214.
    [108]Lin C Y, Chang C C, Hung C H. Fermentative hydrogen production from starch using natural mixed cultures[J]. International Journal of Hydrogen Energy,2008,33(10):2445-2453.
    [109]Hussy I, Hawkes F R, Dinsdale R, et al. Continuous fermentative hydrogen production from sucrose and sugarbeet[J]. International Journal of Hydrogen Energy,2005,30(5):471-483.
    [110]Lee K S, Hsu Y F, Lo Y C,et al. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora[J]. International Journal of Hydrogen Energy,2008,33(5):1565-1572.
    [111]Wolfrum E, Watt A. Bioreactor design studies for a hydrogen-producing bacterium[J]. Applied Biochemistry and Biotechnology,2002,98-100(1):611-625.
    [112]Do Y S, Smeenk J, Broer K M, et al. Growth of Rhodospirillum rubrum on synthesis gas:Conversion of CO to H2 and poly-β-hydroxyalkanoate[J]. Biotechnology and Bioengineering,2007,97(2): 279-286.
    [113]Zhao Y, Cimpoia R, Liu Z, et al. Kinetics of CO conversion into H2 by Carboxydothermus hydrogenoformans[J]. Applied Microbiology and Biotechnology,2011,91(6):1677-1684.
    [114]Zhao Y, Cimpoia R, Liu Z, et al. Orthogonal optimization of Carboxydothermus hydrogenoformans culture medium for hydrogen production from carbon monoxide by biological water-gas shift reaction[J]. International Journal of Hydrogen Energy,2011,36(17):10655-10665.
    [115]Amos W A. Biological water-gas shift conversion of carbon monoxide to hydrogen[C]. New York: Department of Energy HFCIT,2003.
    [116]Fang H H P, Li C, Zhang T. Acidophilic biohydrogen production from rice slurry [J]. International Journal of Hydrogen Energy,2006,31(6):683-692.
    [117]Chen W H, Chen S Y, Kumar K S, et al. Kinetic study of biological hydrogen production by anaerobic fermentation[J]. International Journal of Hydrogen Energy,2006,31(15):2170-2178.
    [118]Shin H S, Youn J H, Kim S H. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis[J]. International Journal of Hydrogen Energy,2004,29(13):1355-1363.
    [119]Fan Y T, Zhang Y H, Zhang S F, et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost[J]. Bioresource Technology,2006,97(3):500-505.
    [120]Fan Y T, Zhang G S, Guo X Y, et al. Biohydrogen-production from beer lees biomass by cow dung compost[J]. Biomass and Bioenergy,2006,30(5):493-496.
    [121]张薇,左剑恶,崔龙涛等.中温和高温厌氧生物产氢反应器连续运行的研究[J].环境科学,2006,27(1):63-68.
    [122]Lin C Y, Lin C H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora[J]. International Journal of Hydrogen Energy,2004,29(1):41-45.
    [123]Chang F Y, Lin C Y. Biohydrogen production using an up-flow anaerobic sludge blanket reactor[J]. International Journal of Hydrogen Energy,2004,29(1):33-39.
    [124]Alzate-Gaviria L M, Sebastian P J, Perez-Hernandez A, et al. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater[J]. International Journal of Hydrogen Energy,2007,32(15):3141-3146.
    [125]Wu S Y, Hung C H, Lin C N, et al. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone immobilized and self-flocculated sludge[J]. Biotechnology and Bioengineering,2006,93(5):934-946.
    [126]Palazzi E, Fabiano B, Perego P. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor [J]. Bioprocess and Biosystems Engineering, 2000,22(3):205-213.
    [127]Chang J S, Lee K S, Lin P J. Biohydrogen production with fixed-bed bioreactors[J]. International Journal of Hydrogen Energy,2003,27(11-12):1167-1174.
    [128]Wu SY, Lin C N, Chang J S. Hydrogen Production with Immobilized Sewage Sludge in Three-Phase Fluidized-Bed Bioreactors[J]. Biotechnology Progress,2003,19(3):828-832.
    [129]Oh Y K, Kim S H K, Mi-Sun P S. Thermophilic biohydrogen production from glucose with trickling biofilter[J]. Biotechnology and Bioengineering,2004,88(6):690-698.
    [130]Wu K J, Chang J S. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix[J]. Process Biochemistry,2007,42(2):279-284.
    [131]郭婉茜.附着性和颗粒型膨胀床生物制氢反应器的运行调控[D].黑龙江:哈尔滨工业大学,2008.
    [132]Blatt W F, Robinson S M, Bixler H J. Membrane ultrafiltration:The diafiltration technique and its application to microsolute exchange and binding phenomena[J]. Analytical Biochemistry,1968, 26(1):151-173.
    [133]Smith C W, Smith C W, Di G D, et al. Proceedings of the 24th Annual Purdue Industrial Waste Conference[C]. Indian:Purdue University,1969
    [134]昊自强,刘志宏,曹刚.膜生物反应器处理废水技术研究的进展[J].工业水处理,2001,21(6):1-3.
    [135]顾国维,何义亮.膜生物反应器—在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [136]Belhocine D, Mokrane H, Grib H, et al. Optimization of enzymatic hydrolysis of haemoglobin in a continuous membrane bioreactor[J]. Chemical Engineering Journal,2000,76(3):189-196.
    [137]朱宏吉,胡金榜,赵忠祥.动态膜分离式连续化酶解装置生产果糖的研究[J].化学工业与工程,1995,12(4):1-7.
    [138]邢传宏,钱易,孟耀斌.超滤膜生物反应器处理生活污水及其数力学研究[J].环境科学,1997,18(5):19-22.
    [139]Munasinghe P C, Khanal S K. Biomass-derived syngas fermentation into biofuels:Opportunities and challenges[J]. Bioresource Technology,2010,101(13):5013-5022.
    [140]陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(12):1276-1284.
    [141]Kondo T, Arakawa M, Wakayama T, et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics[J]. International Journal of Hydrogen Energy, 2002,27(11-12):1303-1308.
    [142]Yetis M, Gunduz U, Eroglu I, et al. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001 [J]. International Journal of Hydrogen Energy,2000,25(11): 1035-1041.
    [143]Lay J J. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose[J]. Biotechnology and Bioengineering,2001,74(4):280-287.
    [144]Cai M, Liu J, Wei Y. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment[J]. Environmental Science & Technology,2004,38(11):3195-3202.
    [145]Stams A J M, van D J B, Dkjkema C, et al. Growth of Syntrophic Propionate-Oxidizing Bacteria with Fumarate in the Absence of Methanogenic Bacteria [J]. Applied Environmental Microbiology,1993, 59(4):1114-1119.
    [146]Heijnen J J. Bioenergetics of Microbial Growth-Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation[M]. New York:John Wiley & Sons,1999.
    [147]Clesceri LS, Greenberg A E. Standard methods for the examination of water and wastewater[M], Washington D C:American Public Health Association,2005.
    [148]Henstra A M. CO metabolism of Carboxydothermus hydrogenoformans and Archaeoglobus fulgidus[D]. The Netherlands:Wageningen University,2006.
    [149]Vali H, McKee M D, Ciftcioglu N, et al. Nanoforms:a new type of protein-associated mineralization [J]. Geochimica et Cosmochimica Acta,2001,65(1):63-74.
    [150]华中生,唐昊,王强等.正交实验设计方法在汽车制动系统实验设计中的应用[J].运筹与管理,2002,2002(12):60-65.
    [151]戚以政,汪叔雄.生物反应动力学与反应器[M].北京:化学工业出版社,2007.
    [152]陈诵英,陈平,李永旺等.催化反应动力学[M].北京:化学工业出版社,2007.
    [153]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001.
    [154]van Kasteren J M N. Co-gasification of wood and polyethylene with the aim of CO and H2 production [J]. Journal of Material Cycles and Waste Management,2006,8(2):95-98.
    [155]Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass:Chemistry, Catalysts, and Engineering[J]. Chemical Reviews,2006,106(9):4044-4098.
    [156]Y Fan, C Li, JJ Lay, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J]. Bioresource Technology,2004,91(2): 189-193.
    [157]Wolfrum E J, Vanzin G, Huang J, et al. FY 2003 progress Report, Hydrogen, Fuel Cells, and Infrastructure Technologies [C]. Toronto:University of Toronto Press,2003.
    [158]Oelgeschlager E, Rother M. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea[J]. Archives of Microbiology,2008,190(3):257-269.
    [159]Rother M, Oelgeschlager E, Metcalf W W. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans[J]. Archives of Microbiology,2007,188(5):463-472.
    [160]Oelgeschlager E, Rother M. Infuence of carbon monoxide on metabolite formation in Methanosarcina acetivorans[J]. FEMS Microbiology Letters,2009,292(2):254-260.
    [161]Hurst K M, Lewis R S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation [J]. Biochemical Engineering Journal,2010,48(2):159-165.
    [162]Maynard E L, Sewell C, Lindahl P A. Kinetic Mechanism of Acetyl-CoA Synthase:Steady-State Synthesis at Variable CO/CO2 Pressures[J]. Journal of the American Chemical Society,2001, 123(20):4697-4703.
    [163]Puree L, Krasna A I, Rittenberg D. The Inhibition of Hydrogenase by Carbon Monoxide and the Reversal of this Inhibition by Light[J]. Biochemistry,1962,1(2):270-275.
    [164]潘文扬,孙石磊,张徐祥等.合成制药废水生物降解动力学模型研究[J].工业用水与废水,2007,6:1-4.
    [165]崔启武,Lawson G.一个新的种群增长数学模型——对经典的logistic方程和指数方程的扩充[J].生态学报,1982,4:403-415.
    [166]魏明.霍山石解类原球茎悬浮培养细胞生长和多糖合成的动力学研究[D].安徽:合肥工业大学,2007.
    [167]Kuang Y Y. Basic Properties of Mathematical Population Models[J]. Journal of Bacteriology,2002, 17(2):139-142.
    [168]Ferenci T. Growth of bacterial cultures 50 years on:towards an uncertainty principle instead of constants in bacterial growth kinetics[J]. Research in Microbiology,1999,150(7):431-438.
    [169]王素兰.光合产氢菌群生长动力学与系统温度场特性研究[D].河南:河南农业大学,2007.
    [170]Reij M W, Keurentjes J T F, Hartmans S. Membrane bioreactors for waste gas treatment[J]. Journal of Biotechnology,1998,59(3):155-167.
    [171]Guiot S R, Podruzny MF, McLean D D. Assessment of macroenergetic parameters for an anaerobic upflow biomass bed and filter (UBF) reactor[J]. Biotechnology and Bioengineering,1989,34(10): 1277-1288.
    [172]Phillips J, Klasson K, Clausen E, et al. Biological production of ethanol from coal synthesis gas[J]. Applied Biochemistry and Biotechnology,1993,39-40(1):559-571.
    [173]Han K, Levenspiel O. Extended monod kinetics for substrate, product, and cell inhibition[J]. Biotechnology and Bioengineering,1988,32(4):430-447.
    [174]白亮,赵玉龙,张碧江.高压搅拌釜中H2,CO在不同液体介质中的溶解度和体积传值系数的研究[J].化学反应工程与工艺,1996,12(2):189-195.
    [175]Riggs S S, Heindel T J. Measuring Carbon Monoxide Gas—Liquid Mass Transfer in a Stirred Tank Reactor for Syngas Fermentation[J]. Biotechnology Progress,2006,22(3):903-906.
    [176]Kapic A, Jones S T, Heindel T J. Carbon Monoxide Mass Transfer in a Syngas Mixture[J]. Industrial & Engineering Chemistry Research,2006,45(26):9150-9155.
    [177]Wang J, Wan W. Effect of temperature on fermentative hydrogen production by mixed cultures[J]. International Journal of Hydrogen Energy,2008,33(20):5392-5397.
    [178]Kundiyana D K, Wilkins M R, Maddipati P, et al. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei[J]. Bioresource Technology,2011, 102(10):5794-5799.
    [179]秦智,任南琪,李建政.发酵生物制氢反应器的产氢菌生物强化作用研究[J].环境科学,2007,28(12):2843-2844.
    [180]Flemming H C. Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9): 623-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700