金属纳米颗粒的局域表面等离子体共振性质调控及其光分析化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米颗粒因其独特的性质已广泛应用于传感、催化、成像、生物医药、光电器件、信息存储等领域。在分析化学领域,金属纳米颗粒由于具有独特的局域表面等离子体共振(LSPR)性质可作为优良的光学探针应用于生化传感和光学成像。其LSPR性质及应用效能与元素组成、形貌、尺寸及组装方式等参数密切相关。目前,基于金属纳米颗粒的LSPR在光分析化学中的应用研究方面仍存在一些局限,例如:难于根据实际需求合成高质量的金属纳米颗粒探针,纳米探针及其组装体的生物相容性和在生物介质中的稳定性较差,具有特定结构的纳米颗粒及其组装体的形成机制尚不清楚,难于通过调控纳米颗粒的结构来有效调节金属纳米颗粒的LSPR性质,基于纳米颗粒LSPR性质的分析传感方法重现性差等。本文针对金属纳米颗粒在合成、组装、以及基于纳米颗粒LSPR性质的光分析化学应用中存在的问题开展了以下两方面的研究内容:
     1.金属纳米颗粒的合成与组装
     (1)使用生物相容的壳聚糖衍生物同时作为还原剂和稳定剂,发展了一种简单、“绿色”的方法实现了金纳米颗粒的一步法合成与组装。首先,通过对壳聚糖的侧链进行改性,得到一种新颖的壳聚糖-茚三酮复合物。然后,利用这种多聚糖衍生物与Au3+的结合以及氧化还原作用,在生理温度下制备了生物相容的类球形金纳米颗粒。这种多聚糖衍生物还能作为稳定剂吸附于所形成的金纳米颗粒表面。由于其在纳米颗粒表面不均匀分布,导致金纳米颗粒部分晶面相对裸露,从而使金纳米颗粒通过偶极-偶极相互作用发生自组装形成一维的链状结构。相比单分散的金纳米颗粒,这种各向异性的金纳米链表现出截然不同的LSPR性质,其消光光谱随组装程度的增大向长波长处发生明显的红移。
     (2)进一步验证了上述一步生长与组装制备金纳米链的方法普适性,探讨了各向异性的一维组装体的LSPR性质,并对纳米颗粒同时生长与组装的机制进行了系统和深入的研究。以另一种多聚糖(右旋糖酐)作为模板分子,在强氧化剂的作用下首先制备了一种含有丰富醛基的多聚糖衍生物,即多聚醛右旋糖酐。利用这种新的多聚糖衍生物同时作为还原剂和稳定剂,也实现了金纳米颗粒的一步法合成与组装。通过对反应条件如反应物浓度、反应时间、温度等参数的系统调节,可以有效地调控各向异性的金纳米链的组装程度,从而调节其LSPR性质。机理研究进一步证明了纳米颗粒间的偶极-偶极相互作用以及纳米颗粒表面稳定剂分子间的氢键作用是金纳米颗粒进行组装的主要驱动力。
     (3)除了一步合成与组装方法,我们还利用富含胸腺嘧啶的寡核苷酸序列与汞离子之间的特异性识别作用,通过两步法实现了金纳米棒以“头碰头”方式的组装,并探讨了纳米棒之间的距离、组装方式与近场等离子体共振耦合作用之间的关系。首先,利用巯基与金纳米颗粒表面的共价键合作用将富含胸腺嘧啶的寡核苷酸序列修饰到金纳米棒的端部;由于两个胸腺嘧啶碱基可以与一个汞离子进行特异性结合而形成T-Hg2+-T结构,诱导两个金纳米棒的端部相连,从而使金纳米棒以“头碰头”方式进行组装。通过设计不同长度的寡核苷酸序列,可以实现精确控制纳米棒之间的距离,从而操控纳米棒之间的等离子体共振耦合作用。这种基于受体-配体分子特异性识别作用来组装纳米颗粒的方法可以被拓展到其它纳米组装体和纳米器件的制备中。
     2.金属纳米颗粒在光分析化学中的应用
     (1)发展了一种简单的方法在室温下合成右旋糖酐包被的金纳米颗粒,并基于这种金纳米颗粒的LSPR性质进一步将其作为光学探针用于色度法检测降血压药硫酸双肼屈嗪。利用本方法合成的金纳米颗粒具有均一的粒径和优良的生物相容性,且在较高离子强度的介质中具有较好的稳定性。双肼屈嗪分子中的两个肼可与金纳米颗粒表面的醛基发生反应形成腙,从而通过桥联作用减小金纳米颗粒之间的距离甚至使其发生团聚。基于反应前后金纳米颗粒LSPR性质的变化,可以实现对尿样中硫酸双肼屈嗪的定量检测,标准加入回收率为98.3-102.5%。
     (2)金属纳米颗粒的LSPR散射性质使其可以作为优良的光学探针用于成像研究。我们利用非共价键作用将金属纳米颗粒锚定在氧化石墨烯的表面,制备了一种金属/碳纳米材料杂化组装体,并利用金属纳米颗粒的LSPR性质在普通暗场光学显微镜下“点亮”不具有光信号的石墨烯。本方法中,首先通过巯基和金属的共价键作用将具有特定序列的寡核苷酸序列修饰到金或银纳米颗粒的表面,再通过寡核苷酸碱基与石墨烯之间的π-π堆积作用将金属纳米颗粒锚定在石墨烯表面。由于金和银纳米颗粒具有较强的LSPR散射信号,石墨烯的轮廓和位置可以在光学显微镜下被清晰地观察到。这种集合了金属纳米颗粒和石墨烯特殊性质的复合材料有望在生物成像、药物传送及癌症治疗中发挥重要作用。
     (3)金属纳米颗粒的LSPR散射性质还能用于特定化学反应的原位和实时监测。在普通的光学显微镜下,我们实时地监测了单个银纳米立方体的氧化腐蚀过程。结合暗场光学成像系统和扫描电子显微镜,银纳米颗粒在氧化腐蚀过程中的不同阶段所表现出的光学信号和形态均可以被观察到,从而清楚地阐释了金属纳米颗粒的氧化腐蚀机理。理论模拟的结果也证实了氧化腐蚀优先从银纳米立方体的顶角处开始进行,这是由于顶角处与{100}晶面相比具有较高的界面自由能。本方法及相关技术手段可以使我们更深入地了解纳米颗粒在各种化学反应和生物过程中的行为。
     总之,本论文在发展简单高效的金属纳米颗粒的合成与组装方法基础上,探讨了影响金属纳米颗粒LSPR性质的关键因素,并将金属纳米颗粒作为光学探针成功应用于分析传感和光学成像。因此,本论文解决的关键科学问题是通过研究金属纳米颗粒LSPR性质与其物性参数之间的关系,构建了基于金属纳米颗粒光分析传感和成像的新方法。本论文将为金属纳米材料的合成与组装提供充分的实验依据和崭新的思路,并将拓展金属纳米颗粒的LSPR性质在光分析化学和光学成像中的应用。
Metal nanoparticles have been widely used in sensing, catalysis, imaging, biomedicine, optical and electronic devices, and information storage due to their unique properties. Owing to the unique localized surface plasmon resonance (LSPR) properties, metal nanoparticles can act as excellent optical probes in analytical chemistry (e.g., optical sensing and imaging). The LSPR properties of metal nanoparticles as well as their performances in various areas are closely related to the element, morphology, size, assembly mode, and other parameters. However, the applications of metal nanoparticles in analytical chemistry on the basis of their LSPR are still challenging. For example, researchers are usually hard to obtain metal nanoparticles with high quality according to the requirements for applications; the biocompatibility of the nanoparticles and their stability in biological medium is usually bad; the mechanisms of the growth and assembly of metal nanoparticles with a specific structure are not very clear; it is difficult to tune the LSPR properties of the metal nanoparticles for the applications in analytical chemistry; the reproducibility of some nanoparticle-based analytical methods is not satisfied. To address these issues, we have systematically studied the synthesis and assembly of metal nanoparticles as well as their applications in photoanalytical chemistry. This thesis includes the following two parts:
     Part I Synthesis and assembly of metal nanoparticles, including the following three parts:
     A simple, one-pot, and "green" method was developed for the simultaneous synthesis and self-assembly of Au nanoparticles, using a biocompatible polysaccharide derivative, chitosan-ninhydrin (CHIT-NH) conjugate, as both a reducing agent and a stabilizer. Firstly, the side chain of chitosan was modified with ninhydrin through covalent bond, and a novel CHIT-NH conjugate could be obtained. Then, we achieved the synthesis and assembly of quasi-spherical Au nanoparticles at physiological temperature through the interaction between CHIT-NH conjugate and Au3+. This new macromolecule could also act as a stabilizer and thus adsorb on the surfaces of the formed Au nanoparticles. Due to its uneven distribution on the surfaces, some facets of the Au nanoparticles were exposed and thus induced the self-assembly of Au nanoparticles into nanochains via dipole-dipole interaction. Compared to the dispersed Au nanoparticles, the LSPR extinction spectrum of the anisotropic Au nanochains red shifts to a longer wavelength.
     Then, we further studied the universality of the above strategy for the simultaneous growth and self-assembly of Au nanoparticles, as well as systematically studied the LSPR properties of the anisotropic assemblies and explored the mechanism involved in such synthesis. Using another polysaccharide, dextran, as a template, we prepared a new polyaldehyde dextran (PAD) through a redox reaction between dextran and a strong oxidant. With PAD as both a reducing agent and a stabilizer, we also achieved the biomimetic synthesis and assembly of Au nanoparticles via a one-pot approach. The morphology of Au nanochains could be controlled through adjusting the reaction conditions such as the concentration of reagents, reaction time and temperature. Mechanism investigations further suggest that dipole-dipole interaction between nanoparticles and the intermolecular hydrogen bonding of stabilizers are the main driving forces for the assembly of Au nanoparticles.
     Except for the one-pot method, we also developed a two-step and versatile approach for the end-to-end assembly of Au nanorods by means of the specific molecular recognition between thymine (T)-rich oligonucleotides and mercury (Ⅱ). Moreover, the relationship between the near-field plasmon coupling of Au nanorods and their distances or assembly modes were also discussed. For the assembly of Au nanorods, the T-rich DNA was firstly conjugated to the ends of Au nanorods through thiol-Au covalent. Then, the T-T base pairs could strongly bind up and readily form a structure of T-Hg2+-T configuration in the presence of Hg2+ions, inducing the assembly of Au nanorods in an end-to-end mode. By designing the DNA sequence, we could precisely control the distance between the nanorods and thus manipulate their plasmon coupling. This strategy for the assembly of nano-scaled materials, which relies on the receptor-ligand molecular recognition, can be extended to the fabrication of other nanomaterial assemblies and devices.
     Part II The applications of metal nanoparticles in photoanalytical chemistry, including the following three parts:
     Firstly, we developed a simple approach to the preparation of dextran-capped Au nanoparticles at room temperature, and further used them as optical probes for the colorimetric detection of an antihypertensive drug (dihydralazine sulfate) on the basis of their unique LSPR properties. The as-obtained Au nanoparticles were uniform in size, biocompatible, and very stable even if in a medium of high ionic strength. The hydrazine groups of dihydralazine sulfate are able to react with the aldehydes on the surface of Au nanoparticles to form hydrazone, resulting in the decrease of the spacing of nanoparticles. Based on the change of LSPR properties of the Au nanoparticles, we could quantificationally determine dihydralazine sulfate in uric samples with the the recovery in the range of98.3-102.5%.
     Metal nanoparticles can also act as a signal reporter for optical imaging based on their unique LSPR light scattering. We proposed a noncovalent strategy to fabricate metal nanoparticle/graphene oxide (MNP/GO) hybrids and achieved the direct illumination of graphene in dark-field microscopic system. DNA-founctionalized Au/Ag nanoparticles could anchored on the surfaces of GO through π-π interaction between DNA bases and GO. Owing to the strong LSPR scattering of MNPs, the profiles of graphene could be clearly observed using an ordinary optical microscope. This graphene-involved composite which has collective properties can be promising candidates in a variety of applications such as bioimaging, drug delivery, and cancer therapy.
     Finally, we used the LSPR scattering properties of metal nanoparticles for real-time and in situ monitoring of the chemical reactions. With the aid of an ordinary optical microscope, we achieved the real-time observation of the oxidative etching of an individual Ag nanocube. The optical information and morphology of the Ag nanoparticles at different stages of the etching process could both be obtained, which clearly elucidated the mechanism of the oxidative etching on metal nanoparticles. In addition, the results from theoretical simulation also confirmed the mechanism that the oxidative etching of an Ag nanocube tends to start from its corners due to the relatively high energy at these sites relative to{100} facet. This strategy will enable us better understand the behaviors of nanoparticles in a variety of chemical reactions and biological processes.
     In conclusion, we have developed simple and efficient methods for the synthesis and assembly of metal nanoparticles. Meanwhile, the key parameters affecting the LSPR propertise of metal nanoparticles have also been systematically investigated. Then, the well-defined metal nanoparticles were used as probes for optical sensing and imaging. Therefore, the main contribution of the thesis is that it has developed new strategies for the optical sensing and imaging based on the LSPR properties of metal nanoparticles. This thesis will provide sufficient experimental evidences and new insights for the synthesis and assembly of metal nanomaterials. Moreover, it expands the applications of metal nanoparticles in analytical chemistry and optical imaging.
引文
[1]Moriarty, P. Nanostructured Materials. Rep. Prog. Phys.2001,64,297-381.
    [2]Kuchibhatla, S. V. N. T.; Karakoti, A. S.; Bera, D.; Seal, S. One Dimensional Nanostructured Materials. Prog. Mater. Sci.2007,52,699-913.
    [3]Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 1996,272,1924-1926.
    [4]Li, Y.; Boone, E.; El-Sayed, M. A. Size Effects of PVP-Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution. Langmuir 2002,18,4921-4925.
    [5]Yguerabide, J.; Yguerabide, E. E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal. Biochem.1998,262,137-156.
    [6]Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther. A. R.; Yang, P. Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals. Nano Lett.2008,8,4033-4038.
    [7]Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A Molecular Ruler Based 'on Plasmon Coupling of Single Gold and Silver Nanoparticles. Nat. Biotechnol.2005,23, 741-745.
    [8]Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res.2008,41,1578-1586.
    [9]Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev.2008,108,462-493.
    [10]Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev.2011,111,3669-3712.
    [11]Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K; Plasmon-Controlled Fluorescence:A New Paradigm in Fluorescence Spectroscopy. Analyst 2008,133,1308-1346.
    [12]Fu, Y; Zhang, J.; Lakowicz, J. R. Plasmon-Enhanced Fluorescence from Single Fluorophores End-Linked to Gold Nanorods. J. Am. Chem. Soc.2010,132,5540-5541.
    [13]Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J. Am. Chem. Soc.2007,129,1524-1525.
    [14]Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS:Materials, Applications, and the Future. Mater. Today 2012,15,16-25.
    [15]Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-Enhanced Raman Scattering:From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B 2002,106,9463-9483.
    [16]Skrabalak, S. E.; Au, L.; Lu, X.; Li, X.; Xia, Y. Gold Nanocages for Cancer Detection and Treatment. Nanomedicine 2007,2,657-668.
    [17]Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold Nanocages: Synthesis, Properties, and Applications. Ace. Chem. Res.2008,41,1587-1595.
    [18]Chen, J.; Yang, M.; Zhang, Q.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. V.; Welch, M. J.; Xia, Y. Gold Nanocages:A Novel Class of Multifunctional Nanomaterials for Theranostic Applications. Adv. Funct. Mater.2010,20,3684-3694.
    [19]Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem.2007,58,267-297.
    [20]Lee, K. S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B 2006,110,19220-19225.
    [21]Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Freestanding Palladium Nanosheets with Plasmonic and Catalytic Properties. Nat. Nanotech.2011,6,28-32.
    [22]Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y. Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angew. Chem. Int. Ed.2011,50,10560-10564.
    [23]Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett.2007,7, 1947-1952.
    [24]Chan, G. H.; Zhao, J.; Schatz, G.C.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. J. Phys. Chem. C 2008, 112,13958-13963.
    [25]Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile Synthesis of Ag Nanocubes and Au Nanocages. Nat. Protoc.2007,2,2182-2190.
    [26]Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 2006,110,15666-15675.
    [27]Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties. J. Am. Chem. Soc.2010,132,11372-11378.
    [28]Zhang, Q.; Li, W.; Wen, L.-P.; Chen, J.; Xia, Y. Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor. Chem. Eur. J.2010,16, 10234-10239.
    [29]Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z.-Y.; Ginger, D.; Xia, Y. Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Lett.2007,7,1032-1036.
    [30]Brioude, A.; Jiang, X. C.; Pileni, M. P. Optical Properties of Gold Nanorods:DDA Simulations Supported by Experiments. J. Phys. Chem.B 2005,109,13138-13142.
    [31]McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett.2003,3,1057-1062.
    [32]-Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett.2003,3, 1087-1090.
    [33]Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Lett.2009,9,1651-1658.
    [34]Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed.2009, 48,60-103.
    [35]Lamer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc.1950,72,4847-4854.
    [36]Wulff, G.On the Question of Speed of Growth and Dissolution of Crystal Surfaces. Z. Kristallogr. Mineral.1901,34,449-530.
    [37]Herring, C. Some Theorems on the Free Energies of Crystal Surfaces. Phys. Rev.1951,82, 87-93.
    [38]Harris, P. J. F. Sulfur-Induced Faceting of Platinum Catalyst Particles. Nature 1986,323, 792-794.
    [39]Shi, A.-C.;Fung, K. K.; Welch, J. F.; Wortis, M.; Masel, R. I. Perspective on the Use of Gas Adsorption for Particle-Shape Control in Supported Metal Catalysis. Mat. Res. Soc. Symp. Proc.1988,111,59-64.
    [40]Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y; Zhang, Q.; Zhu, Y.;Xia, Y Controlling the Shapes of Silver Nanocrystals with Different Capping Agents. J. Am. Chem. Soc.2010,132,8552-8553.
    [41]Zeng, J.; Xia, X.; Rycenga, M.; Henneghan, P.; Li, Q.; Xia, Y Successive Deposition of Silver on Silver Nanoplates:Lateral versus Vertical Growth. Angew. Chem. Int. Ed.2011, 50,244-249.
    [42]Peng, H.-C. Xie, S.; Park, J.; Xia, X.; Xia, Y. Quantitative Analysis of the Coverage Density of Br- Ions on Pd{100} Facets and Its Role in Controlling the Shape of Pd Nanocrystals. J. Am. Chem. Soc.2013,135,3780-3783.
    [43]Xia, X.; Choi, S.-1.;Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H.-C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. Facile Synthesis of Palladium Right Bipyramids and Their Use as Seeds for Overgrowth and as Catalysts for Formic Acid Oxidation. J. Am. Chem. Soc. 2013,135,15706-15709.
    [44]Zhang, Q.; Moran, C. H.; Xia, X.; Rycenga, M.; Li, N.; Xia, Y Synthesis of Ag Nanobars in the Presence of Single-Crystal Seeds and a Bromide Compound, and Their Surface-Enhanced Raman Scattering (SERS) Properties. Langmuir 2012,28,9047-9054.
    [45]Huang, X.; Zhang, H.; Guo, C; Zhou, Z.; Zheng, N. Simplifying the Creation of Hollow Metallic Nanostructures:One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes. Angew. Chem. Int. Ed.2009,48,4808-4812.
    [46]Xia, Y.; Xia, X.; Wang, Y.; Xie, S. Shape-Controlled Synthesis of Metal Nanocrystals. MRS Bull.2013,38,335-344.
    [47]Xia, X.; Xia, Y. Symmetry Breaking During Seeded Growth of Nanocrystals. Nano Lett. 2012,12,6038-6042.
    [48]Zeng, J.; Zhu, C.; Tao, J.; Jin, M.; Zhang, H.; Li, Z.-Y.; Zhu, Y.; Xia, Y. Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics. Angew. Chem. Int. Ed.2012,51,2354-2358.
    [49]Zhu, C.; Zeng, J.; Tao, J.; Johnson, M. C.; Schmidt-Krey, I.; Blubaugh, L.; Zhu, Y.; Gu, Z.; Xia, Y. Kinetically Controlled Overgrowth of Ag or Au on Pd Nanocrystal Seeds:From Hybrid Dimers to Nonconcentric and Concentric Bimetallic Nanocrystals. J. Am. Chem. Soc.2012,134,15822-15831.
    [50]Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D.; Xia, Y Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Lett.2011,11,898-903.
    [51]Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis of Pd-Rh Core-Frame Concave Nanocubes and Their Conversion to Rh Cubic Nanoframes by Selective Etching of the Pd Cores. Angew. Chem. Int. Ed.2012,57,10266-10270.
    [52]Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. J. Am. Chem. Soc.2010,132:268-274.
    [53]Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol Synthesis of Silver Nanoparticles:Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Lett.2004,4,1733-1739.
    [54]Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Aloni, S.; Yin, Y Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. J. Am. Chem. Soc.2005,127,7332-7333.
    [55]Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Self-Assembly of Gold Nanorods. J. Phys. Chem. B2000,104,8635-8640.
    [56]Henzie, J.; Grunwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Self-Assembly of Uniform Polyhedral Silver Nanocrystals into Densest Packings and Exotic Superlattices. Nat. Mater.2012,11,131-137.
    [57]Khanal, B. P.; Zubarev, E. R. Rings of Nanorods. Angew. Chem. Int. Ed.2007,46, 2195-2198.
    [58]Nie, Z.; Fava, D.; Rubinstein, M.; Kumacheva, E. "Supramolecular" Assembly of Gold Nanorods End-Terminated with Polymer "Pom-Poms":Effect of Pom-Pom Structure on the Association Modes. J. Am. Chem. Soc.2008,130,3683-3689.
    [59]Fava, D.; Nie, Z.; Winnik, M. A.; Kumacheva, E. Evolution of Self-Assembled Structures of Polymer-Terminated Gold Nanorods in Selective Solvents. Adv. Mater.2008,20, 4318-4322.
    [60]Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. PH-Triggered Assembly of Gold Nanorods. Langmuir 2005,21,2022-2026.
    [61]Hu, X.; Cheng, W.; Wang, T.; Wang, E.; Dong, S. Well-Ordered End-to-End Linkage of Gold Nanorods. Nanotechnology 2005,16,2164-2169.
    [62]Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective Detection of Cysteine and Glutathione Using Gold Nanorods. J. Am. Chem. Soc.2005,127,6516-6517.
    [63]Zhang, S.; Kou, X.; Yang, Z.; Shi, Q.; Stucky, G. D.; Sun, L.; Wang, J.; Yan, C. Nanonecklaces Assembled from Gold Rods, Spheres, and Bipyramids. Chem. Commun. 2007,1816-1818.
    [64]Sun, Z.; Ni, W.; Yang, Z.; Kou, X.; Li, L.; Wang, J. PH-Controlled Reversible Assembly and Disassembly of Gold Nanorods. Small 2008,4,1287-1292.
    [65]Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. One-, Two-, and Three-Dimensional Superstructures of Gold Nanorods Induced by Dimercaptosuccinic Acid. Langmuir 2008, 24,4589-4599.
    [66]Dujardin, E.; Hsin, L. B.; Wang, C. R. C.; Mann, S. DNA-Driven Self-Assembly of Gold Nanorods. Chem. Commun.2001,1264-1265.
    [67]Dai, Q.; Worden, J. G.; Trullinger, J.; Huo, Q. A "Nanonecklace" Synthesized from Monofunctionalized Gold Nanoparticles.J. Am. Chem. Soc.2005,127,8008-8009.
    [68]Sardar, R.; Shumaker-Parry, J. S. Asymmetrically Functionalized Gold Nanoparticles Organized in One-Dimensional Chains. Nano Lett.2008,8,731-736.
    [69]Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors. J. Am. Chem. Soc.2003, 125,13914-13915.
    [70]Gole, A.; Murphy, C. J. Biotin-Streptavidin-Induced Aggregation of Gold Nanorods: Tuning Rod-Rod Orientation. Langmuir 2005,21,10756-10762. [71] Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C.; Tan, W. Oriented Assembly of Au Nanorods
    Using Biorecognition System. Chem. Commun.2005,1092-1094. [72] Pan, B.; Ao, L.; Gao, F.; Tian, H.; He, R.; Cui, D. End-to-End Self-Assembly and
    Colorimetric Characterization of Gold Nanorods and Nanospheres via Oligonucleotide Hybridization. Nanotechnology 2005,16,1776-1780. [73] Zhen, S. J.; Huang, C. Z.; Wang, J.; Li, Y. F. End-to-End Assembly of Gold Nanorods on
    the Basis of Aptamer-Protein Recognition.J. Phys. Chem. C2009,113,21543-21547. [74] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective
    Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997,277,1078-1081. [75] Liu, J.; Lu, Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General
    Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem. Int. Ed.2005,45, 90-94. [76] Ai, K.; Liu, Y.; Lu, L. Hydrogen-Bonding Recognition-Induced Color Change of Gold
    Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. J. Am. Chem. Soc.2009,131,9496-9497.
    [77]Zhou, Y.; Wang, S.; Zhang, K.; Jiang, X. Visual Detection of Copper(Ⅱ) by Azide-and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angew. Chem. Int. Ed. 2008,47,7454-7456.
    [78]Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed. 2007,46,4093-4096.
    [79]Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Vallee-Belisle, A.; Gong, X.; Yuen, J. D.; Hsu, B. B. Y.; Heeger, A. J.; Plaxco, K. W. Colorimetric Detection of DNA, Small Molecules, Proteins, and Ions Using Unmodified Gold Nanoparticles and Conjugated Polyelectrolytes. Proc. Natl. Acad. Sci. USA 2010,707,10837-10841.
    [80]Jiang, Y.; Zhao, H.; Lin, Y.; Zhu, N.; Ma, Y; Mao, L. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angew. Chem. Int. Ed.2010,49,4800-4804.
    [81]Zhang, J.; Xu, X.; Yang, C.; Yang, F.; Yang, X. Colorimetric Iodide Recognition and Sensing by Citrate-Stabilized Core/Shell Cu@Au Nanoparticles. Anal. Chem.2011,83, 3911-3917.
    [82]Wei, H.; Chen, C.; Han, B.; Wang, E. Enzyme Colorimetric Assay Using Unmodified Silver Nanoparticles. Anal. Chem.2008,80,7051-7055.
    [83]Liu, J.; Lu, Y. Preparation of Aptamer-Linked Gold Nanoparticle Purple Aggregates for Colorimetric Sensing of Analytes. Nat. Protoc.2006,1,246-252.
    [84]Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C. Use of Gold Nanoparticles in a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay:Selective Detection of Arsenic in Groundwater. Angew. Chem. Int. Ed.2009,48, 9668-9671.
    [85]Du, B. A.; Li, Z. P.; Liu, C. H. One-Step Homogeneous Detection of DNA Hybridization with Gold Nanoparticle Probes by Using a Linear Light-Scattering Technique. Angew. Chem. Int. Ed.2006,45,8022-8025.
    [86]He, W.; Li, Y. F.; Huang, C. Z.; Xie, J. P.; Yang, R. G.; Zhou, P. F.; Wang, J. A One-Step Label-Free Optical Genosensing System for Sequence-Specific DNA Related to the Human Immunodeficiency Virus Based on the Measurements of Light Scattering Signals of Gold Nanorods.Anal. Chem.2008,80,8424-8430.
    [87]Qi, W. J.; Wu, D.; Ling, J.; Huang, C. Z. Visual and Light Scattering Spectrometric Detections of Melamine with Polythymine-Stabilized Gold Nanoparticles through Specific Triple Hydrogen-Bonding Recognition. Chem. Commun.2010,46,4893-4895.
    [88]Liu, Z. D.; Li, Y F.; Ling, J.; Huang, C. Z. A Localized Surface Plasmon Resonance Light-Scattering Assay of Mercury (Ⅱ) on the Basis of Hg2+-DNA Complex Induced Aggregation of Gold Nanoparticles. Environ. Sci. Technol.2009,43,5022-5027.
    [89]Wang, J.; Zhang, P.; Li, J. Y.; Chen, L. Q.; Huang, C. Z.; Li, Y. F. Adenosine-Aptamer Recognition-Induced Assembly of Gold Nanorods and a Highly Sensitive Plasmon Resonance Coupling Assay of Adenosine in the Brain of Model SD Rat. Analyst 2010, 135,2826-2831.
    [90]Sang, Y.; Zhang, L.; Li, Y. F.:Chen, L. Q.; Xu, J. L.; Huang, C. Z. A Visual Detection of Hydrogen Peroxide on the Basis of Fenton Reaction with Gold Nanoparticles. Anal. Chim. Acta 2010,659,224-228.
    [91]Ling, J.; Li, Y. F.; Huang, C. Z. Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles. Anal. Chem.2009,81, 1707-1714.
    [92]Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G.F. Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. J. Am. Chem. Soc.2005,127,3115-3119.
    [93]Chen, Y.; O'Donoghue, M. B.; Huang, Y. F.; Kang, H.; Phillips, J. A.; Chen, X.; Estevez, M. C.; Yang, C. J.; Tan, W. A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces.J. Am. Chem. Soc.2010,132,16559-16570.
    [94]Darbha, G.K.; Ray, A.; Ray, P. C. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish. ACS Nano 2007,1,208-214.
    [95]Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Robinson, B.; Yu, E.; Ray, P. C. Size-and Distance-Dependent Nanoparticle Surface-Energy Transfer (NSET) Method for Selective Sensing of Hepatitis C Virus RNA. Chem. Eur. J.2009,15, 342-351.
    [96]Raschke, G.; Kowarik, S.; Franzl, T.; Snnichsen, C.; Klar, T. A.; Nichtl, J. F.; Krzinger, K. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Lett. 2003,3,935-938.
    [97]Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt, J. Use of Plasmon Coupling to Reveal the Dynamics of DNA Bending and Cleavage by Single EcoRV Restriction Enzymes. Proc. Natl. Acad. Sci. USA 2007,104 2667-2672.
    [98]Jun, Y.-w.; Sheikholeslami, S.; Hostetter, D. R.; Tajon, C.; Craik, C. S.; Alivisatos, A. P. Continuous Imaging of Plasmon Rulers in Live Cells Reveals Early-Stage Caspase-3 Activation at the Single-Molecule Level. Proc. Natl. Acad. Sci. USA 2009,106, 17735-17740.
    [99]Xiao, L.; Wei, L.; He, Y.; Yeung, E. S. Single Molecule Biosensing Using Color Coded Plasmon Resonant Metal Nanoparticles. Anal. Chem.2010,82,6308-6314.
    [100]Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Plasmon Resonance Scattering Spectroscopy at the Single-Nanoparticle Level:Real-Time Monitoring of a Click Reaction. Angew. Chem. Int. Ed.2013,52,6011-6014.
    [101]Liu, G. L.; Long, Y.-T; Choi, Y.; Kang, T.; Lee, L. P. Quantized Plasmon Quenching Dips Nanospectroscopy via Plasmon Resonance Energy Transfer. Nat. Method 2007,4, 1015-1017.
    [102]Choi, Y.; Kang, T.; Lee, L. P. Plasmon Resonance Energy Transfer (PRET)-Based Molecular Imaging of Cytochrome C in Living Cells. Nano Lett.2009,9,85-90.
    [103]Choi, Y.; Park, Y.; Kang, T.; Lee, L. P. Selective and Sensitive Detection of Metal Ions by Plasmonic Resonance Energy Transfer-Based Nanospectroscopy. Nat. Nanotechnol.2009, 4,742-746.
    [104]Qu, W.-G.; Deng, B.; Zhong, S.-L.; Shi, H.-Y.; Wang, S.-S.; Xu, A.-W. Plasmonic Resonance Energy Transfer-Based Nanospectroscopy for Sensitive and Selective Detection of 2,4,6-Trinitrotoluene (TNT). Chem. Commun.2011,47,1237-1239.
    [105]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc.2006,128,2115-2120.
    [106]Chen, L. Q.; Xiao, S. J.; Peng, L.; Wu, T; Ling, J.; Li, Y. F.; Huang, C. Z. Aptamer-Based Silver Nanoparticles Used for Intracellular Protein Imaging and Single Nanoparticle Spectral Analysis. J. Phys. Chem.B2010,114,3655-3659.
    [107]Zhang, L.; Zhen, S. J.; Sang, Y; Li, J. Y.; Wang, Y.; Zhan, L.; Peng, L.; Wang, J.; Li, Y. F.; Huang, C. Z. Controllable Preparation of Metal Nanoparticle/Carbon Nanotube Hybrids as Efficient Dark Field Light Scattering Agents for Cell Imaging. Chem. Commun.2010, 46,4303-4305.
    [108]Horvath, I. T.; Anastas, P. T. Introduction:Green Chemistry. Chem. Rev.2007,107, 2167-2168.
    [109]Raveendran, P.; Fu, J.; Wallen, S. L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc.2003,125,13940-13941.
    [110]Qi, Z.-m.; Zhou, H.-s.; Matsuda, N.; Honma, L.; Shimada, K.; Takatsu, A.; Kato, K. Characterization of Gold Nanoparticles Synthesized Using Sucrose by Seeding Formation in the Solid Phase and Seeding Growth in Aqueous Solution. J. Phys. Chem. B 2004,108, 7006-7011.
    [111]Lu, L.; Ai, K.; Ozaki, Y Environmentally Friendly Synthesis of Highly Monodisperse Biocompatible Gold Nanoparticles with Urchin-Like Shape. Langmuir 2008,24, 1058-1063.
    [112]Rosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev.2005,105, 1547-1562.
    [113]Tang, Z.; Ozturk, B.; Wang, Y.; Kotov, N. A. Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. J. Phys. Chem. B 2004, 108,6927-6931.
    [114]Erb, R. M.; Son, H. S.; Samanta, B.; Rotello, V. M.; Yellen, B. B. Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry. Nature 2009,457,999-1002.
    [115]Kiely, C. J.; Fink, J.; Zheng, J. G.; Brust, M.; Bethell, D.; Schiffrin, D. J. Ordered Colloidal Nanoalloys. Adv. Mater.2000,12,640-643.
    [116]Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T. Formation of Low-Symmetric 2D Superlattices of Gold Nanoparticles through Surface Modification by Acid-Base Interaction. J. Am. Chem. Soc.2003,125,8708-8709.
    [117]Pileni, M. P. Nanocrystal Self-Assemblies:Fabrication and Collective Properties. J. Phys. Chem.B2001,105,3358-3371.
    [118]Taleb, A.; Petit, C.; Pileni, M. P. Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles. J. Phys. Chem. B 1998,102,2214-2220.
    [119]Tang, Z.; Kotov, N. A. One-Dimensional Assemblies of Nanoparticles:Preparation, Properties, and Promise. Adv. Mater.2005,17,951-962.
    [120]Mertig, M.; Ciacchi, L. C.; Seidel, R.; Pompe, W. DNA as a Selective Metallization Template. Nano Lett.2002,2,841-844.
    [121]Fischler, M.; Sologubenko, A.; Mayer, J.; Clever, G.; Burley, G.; Gierlich, J.; Carell, T.; Simon, U. Chain-Like Assembly of Gold Nanoparticles on Artificial DNA Templates via 'Click Chemistry'. Chem. Commun.2008,169-171.
    [122]Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M. Mineralization of Single Flexible Polyelectrolyte Molecules. J. Am. Chem. Soc.2002,124,10192-10197.
    [123]Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater. 2005,17,2553-2559.
    [124]Zhang, Y. X.; Zeng, H. C. Template-Free Parallel One-Dimensional Assembly of Gold Nanoparticles Chains.J. Phys. Chem. B2006,110,16812-16815.
    [125]Keren, K.; Krueger, M.; Gilad, R.; Ben-Yoseph, G.; Sivan, U.; Braun, E. Sequence-Specific Molecular Lithography on Single DNA Molecules. Science 2002,297, 72-75.
    [126]Behrens, S.; Rahn, K.; Habicht, W.; Bohm, K. J.; Rosner, H.; Dinjus, E.; Unger, E. Nanoscale Particle Arrays Induced by Highly Ordered Protein Assemblies. Adv. Mater. 2002,14,1621-1625.
    [127]Walsh, D.; Arcelli, L.; Ikoma, T.; Tanaka, J.; Mann, S. Dextran Templating for the Synthesis of Metallic and Metal Oxide Sponges. Nat. Mater.2003,2,386-390.
    [128]Huang, H.; Yang, X. Synthesis of Chitosan-Stabilized Gold Nanoparticles in the Absence/Presence of Tripolyphosphate. Biomacromolecules 2004,5,2340-2346.
    [129]Liu, Y.; Tang, J.; Chen, X.; Xin, J. H. Decoration of Carbon Nanotubes with Chitosan. Carbon 2005,43,3178-3180.
    [130]Wu, L.; Shi, C.; Tian, L.; Zhu, J. A One-Pot Method to Prepare Gold Nanoparticle Chains with Chitosan. J. Phys. Chem. C 2008,112,319-323.
    [131]Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and Characterization of Au Colloid Monolayers. Anal. Chem.1995,67,735-743.
    [132]Friedman, M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. J. Agric. Food Chem. 2004,52,385-406.
    [133]Gentry, S. T.; Kendra, S. F.; Bezpalko, M. W. Ostwald Ripening in Metallic Nanoparticles: Stochastic Kinetics.J. Phys. Chem. C2011,115,12736-12741.
    [134]Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G S.; Schatz, G C.; Mirkin, C. A. Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation. Nature 2003,425, 487-490.
    [135]Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002,295, 2418-2421.
    [136]Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling Materials with DNA as the Guide. Science 2008,321,1795-1799.
    [137]Dai, Q.; Worden, J. G.; Trullinger, J.; Huo, Q. A "Nanonecklace" Synthesized from Monofunctionalized Gold Nanoparticles. J. Am. Chem. Soc.2005,127,8008-8009.
    [138]Si, S.; Kotal, A.; Mandal, T. K. One-Dimensional Assembly of Peptide-Functionalized Gold Nanoparticles:An Approach toward Mercury Ion Sensing. J. Phys. Chem. C 2007, 111,1248-1255.
    [139]Zhang, Z.; Gao, D.; Zhao, H.; Xie, C.; Guan, G.; Wang, D.; Yu, S.-H. Biomimetic Assembly of Polypeptide-Stabilized CaCO3 Nanoparticles. J. Phys. Chem. B 2006,110, 8613-8618.
    [140]Xie, J.; Lee, J. Y.; Wang, D. I. C. Synthesis of Single-Crystalline Gold Nanoplates in Aqueous Solutions through Biomineralization by Serum Albumin Protein. J. Phys. Chem. C 2007,111,10226-10232.
    [141]Nail, R. R.; Stringer, S. J.; Agarwal, G; Jones, S. E.; Stone, M. O. Biomimetic Synthesis and Patterning of Silver Nanoparticles. Nat. Mater.2002,1,169-172.
    [142]Aldaye, F. A.; Sleiman, H. F. Dynamic DNA Templates for Discrete Gold Nanoparticle Assemblies:Control of Geometry, Modularity, Write/Erase and Structural Switching. J. Am. Chem. Soc.2007,729,4130-4131.
    [143]Azzam, T.; Eliyahu, H.; Shapira, L.; Linial, M.; Barenholz, Y.; Domb, A. J. Polysaccharide-Oligoamine Based Conjugates for Gene Delivery. J. Med. Chem.2002,45, 1817-1824.
    [144]Zhao, H.; Heindel, N. D. Determination of Degree of Substitution of Formyl Groups in Polyaldehyde Dextran by the Hydroxylamine Hydrochloride Method. Pharm. Res.1991, 8,400-402.
    [145]Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging. Ace. Chem. Res.2008,41,1721-1730.
    [146]Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V. Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. J. Phys. Chem. B 2004, 108,13066-13068.
    [147]Jiang, X. C.; Brioude, A.; Pileni, M. P. Gold Nanorods:Limitations on Their Synthesis and Optical Properties. Colloids and Surfaces A 2006,277,201-206.
    [148]Gai, P. L.; Harmer, M. A. Surface Atomic Defect Structures and Growth of Gold Nanorods. Nano Lett.2002,2,771-774.
    [149]Wang, Z. L.; Mohamed, M. B.; Link, S.; El-Sayed, M. A. Crystallographic Facets and Shapes of Gold Nanorods of Different Aspect Ratios. Surf. Sci 1999,440, L809-L814.
    [150]Ono, A.; Togashi, H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angew. Chem. Int. Ed.2004,43,4300-4302.
    [151]Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C.; Lin, Z.-H.; Chang, H.-T. Detection of Mercury(II) Based on Hg2+-DNA Complexes Inducing the Aggregation of Gold Nanoparticles. Chem. Commun.2008,2242-2244.
    [152]Gluodenis, M.; Foss, C. A. The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod-Rod and Rod-Sphere Pairs. J. Phys. Chem. B 2002,106,9484-9489.
    [153]Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W. Gold Nanoparticles:Past, Present, and Future. Langmuir 2009,25,13840-13851.
    [154]Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications. Chem. Rev.2007,707,4797-4862.
    [155]Li, H.; Rothberg, L. Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold Nanoparticles. Proc. Natl. Acad. Sci. USA 2004,101, 14036-14039.
    [156]Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.;Fan, C. A Gold Nanoparticle-Based Aptamer Target Binding Readout for ATP Assay. AMv. Mater.2007,19, 3943-3946.
    [.157]Slocik, J. M.; Zabinski, J. S. J.; Phillips, D. M.; Naik, R. R. Colorimetric Response of Peptide-Functionalized Gold Nanoparticles to Metal Ions. Small 2008,4,548-551.
    [158]Miralles, G. P.; Garcia-Domenech, R.; Vinuesa, J. M.; Buigues, J. M. Spectrophotometric Determination of Dihydralazine in Pharmaceuticals after Derivatization with 2-Hydroxy-l-Naphthaldehyde. J. Pharm. Biomed. Anal.1993,11,647-650.
    [159]Georgiou, C. A.; Koupparis, M. A.; Hadjiioannou, T. P. Flow-Injection Stopped-Flow Kinetic Spectrophotometric Determination of Drugs Based on Micellar-Catalysed Reaction with 1-Fluoro-2,4-Dinitrobenzene. Talanta 1991,38,689-696.
    [160]Yang, X.-F. Chemiluminescence Investigation of Carbon Dioxide-Enhanced Oxidation of Dihydralazine Sulfate by Peroxynitrite and Its Application to Pharmaceutical Analysis. Anal. Chim. Acta200S,616,190-195.
    [161]Yang, X.-F.; Li, H. Flow-Injection Chemiluminescence Determination of Dihydralazine Sulfate Based on Hexacyanoferrate(III) Oxidation Sensitized by Eosin Y. Talanta 2004, 64,478-483.
    [162]Laugel, C.; Chaminade, P.; Baillet, A.; Ferrier, D. Ion-Pair Reversed-Phase Liquid Chromatographic Determination of Dihydralazine. J. Chromatogr. A 1994,686,344-349.
    [163]Mascher, D. G; Tscherwenka, W.; Mascher, H. J. Method Development for Dihydralazine with HPLC-MS/MS—an Old but Tricky Substance in Human Plasma.J. Pharm. Biomed. Anal.2007,43,631-645.
    [164]Khlebtsov, N. G. Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra. Anal. Chem.2008,80,6620-6625.
    [165]Hill, H. D.; Mirkin, C. A. The Bio-Barcode Assay for the Detection of Protein and Nucleic Acid Targets Using DTT-Induced Ligand Exchange. Nat. Protoc.2006,1, 324-336.
    [166]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004,306,666-669.
    [167]Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon:A Review of Graphene. Chem. Rev 2010,110,132-145.
    [168]Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; I.Katsnelson, M.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater.2007,6,652-655.
    [169]Song, Y; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide:Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv. Mater.2010,22, 2206-2210.
    [170]Pyun, J. Graphene Oxide as Catalyst:Application of Carbon Materials Beyond Nanotechnology. Angew. Chem. Int. Ed.2011,50,46-48.
    [171]Cheng, H.; Sha, X.; Chen, L.; Cooper, A. C.; Foo, M.-L.; Lau, G. C.; Bailey, W. H.; Pez, G. P. An Enhanced Hydrogen Adsorption Enthalpy for Fluoride Intercalated Graphite Compounds. J. Am. Chem. Soc.2009,131,17732-17733.
    [172]Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li. D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010,4,4317-4323.
    [173]Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide:Membrane and Oxidative Stress. ACS Nano 2011,5,6971-6980.
    [174]Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res.2008,/, 203-212.
    [175]Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small 2010,6,537-544.
    [176]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y; Chen, Y High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 2008,112,17554-17558.
    [177]Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A Graphene Platform for Sensing Biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [178]Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem.2010,82,2341-2346.
    [179]He, S.; Song, B.; Li, D.; Zhu, C; Qi, W; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater.2009,20,453-459.
    [180]Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. Aptamer/Graphene Oxide Nanocomplex for in situ Molecular Probing in Living Cells. J. Am. Chem. Soc.2010,132, 9274-9276.
    [181]Guo, S.; Dong, S. Graphene Nanosheet:Synthesis, Molecular Engineering, Thin Film, Hybrids, and Energy and Analytical Applications. Chem. Soc. Rev.2011,40,2644-2672.
    [182]Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q. Intracellular Imaging with a Graphene-Based Fluorescent Probe. Small 2010,6,1686-1692.
    [183]Hummers, W. S.; Offeman, R. E. Greparation Praphitic Oxide. J. Am. Chem. Soc.1958, 80,1339.
    [184]Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites Using DNA. Adv. Mater.2009,21, 3159-3164.
    [185]Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. N. R. Binding of DNA Nucleobases and Nucleosides with Graphene. ChemPhysChem 2009, 10,206-210.
    [186]Xu, C.; Wang, X. Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates. small 2009,5,2212-2217.
    [187]Lu, C.-H.; Zhu, C.-L.; Li, J.; Liu, J.-J.; Chen, X.; Yang, H.-H. Using Graphene to Protect DNA from Cleavage During Cellular Delivery. Chem. Commun.2010,46,3116-3118.
    [188]Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev.2005,105,1025-1102.
    [189]Xia, X.; Xie, S.; Liu, M.; Peng, H.-C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. Proc. Natl. Acad. Sci. USA 2013,110,6669-6673.
    [190]Xie, S.; Peng, H.-C.; Lu, N.; Wang, J.; Kim, M. J.; Xie, Z.; Xia, Y. Confining the Nucleation and Overgrowth of Rh to the{111} Facets of Pd Nanocrystal Seeds:The Roles of Capping Agent and Surface Diffusion. J. Am. Chem. Soc.2013,755, 16658-16667.
    [191]Zhu, C.; Peng, H.-C.; Zeng, J.; Liu, J.; Gu, Z.; Xia, Y. Facile Synthesis of Gold Wavy Nanowires and Investigation of Their Growth Mechanism. J. Am. Chem. Soc.2012,134, 20234-20237.
    [192]Renaud, G.; Lazzari, R.; Revenant, C.; Barbier, A.; Noblet, M.; Ulrich, O.; Leroy, F.; Jupille, J.; Borensztein, Y; Henry, C. R.; Deville, J. P.; Scheurer, F.; Mane-Mane, J.; Fruchart, O. Real-Time Monitoring of Growing Nanoparticles. Science 2003,300, 1416-1419.
    [193]Abecassis, B.; Testard, F.; Spalla, O.; Barboux, P. Probing in situ the Nucleation and Growth of Gold Nanoparticles by Small-Angle X-Ray Scattering. Nano Lett.2007,7, 1723-1727.
    [194]Wei, Z.; Zamborini, F. P. Directly Monitoring the Growth of Gold Nanoparticle Seeds into Gold Nanorods. Langmuir 2004,20,11301-11304.
    [195]Ramesh, G V.; Sreedhar, B.; Radhakrishnan, T. P. Real Time Monitoring of the in situ Growth of Silver Nanoparticles in a Polymer Film under Ambient Conditions. Phys.Chem. Chem. Phys.2009,11,10059-10063.
    [196]Wei, Z.; Qi, H.; Li, M.; Tang, B.; Zhang, Z.; Han, R.; Wang, J.; Zhao, Y. Watching Single Gold Nanorods Grow. Small 2012,8,1331-1335.
    [197]Zheng, H.; Smith,-R. K.; Jun, Y.-w.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324,1309-1312.
    [198]Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science 2012,336,61-64.
    [199]Liao, H.-G.; Cui, L. K.; Whitelam, S.; Zheng, H. Real-Time Imaging of Pt3Fe Nanorod Growth in Solution. Science 2012,336,1011-1014.
    [200]Liu, Y.; Huang, C. Z. Real-Time Dark-Field Scattering Microscopic Monitoring of the in situ Growth of Single Ag@Hg Nanoalloys. ACS Nano 2013,7,11026-11034.
    [201]Liu, Y.; Ling, J.; Huang, C. Z. Individually Color-Coded Plasmonic Nanoparticles for RGB Analysis. Chem. Commun.2011,47,8121-8123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700