南瓜笼的合成及其与金属阳离子配合物的超分子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南瓜笼是在超分子化学研究中继冠醚、环糊精、杯芳烃之后备受瞩目的一系列新型笼状大环主体分子的统称。因为具有类似的组成结构单元,因此它们在很多方面具有相似的性质。而且由于其有着刚性的外壁结构、高度极化的羰基端口与疏水性的空腔,因此经常在选择性的有机合成中被用来作为受体分子。最近,对其疏水性的外壁结构的研究十分活跃,大量有关这方面的工作被报导出来。凭借其独特的构造,南瓜笼在新型立体超分子结构的构筑过程中存在着良好的应用前景。而且通过分子间的相互作用,还有望达到识别金属离子和有机分子的目的。鉴于其在分子识别与组装、分子催化、污水处理、酶和药物模拟试验的载体中也有着巨大的应用潜力,因此对它开展研究十分必要。
     本文参考相关文献合成出一系列具有不同尺寸的南瓜笼化合物,并利用红外光谱、核磁共振氢谱、元素分析等多种手段对所合成的物质进行了表征,讨论了其结构性质的差异。在此基础上,我们通过阴离子交换的策略,利用不同种类的碱金属离子与铜(II)-八羟基喹啉五磺酸(HQS)成功地构筑了2种杂化超分子CB6-Na(I)-Cu(II)-HQS和CB6-K(I)-Cu(II)-HQS,并用X-射线衍射法研究了配合物的超分子结构特征并具体比较了2种超分子结构的差异及其原因。
     X-射线衍射实验结果表明:配合物1为三斜晶系, Pī空间群, a=11.843(2) A, b=2.381(3) A, c=15.328(3) A,α=110.884(4)°,β=112.428(4)°,γ=91.520(3)°, V=1906.3(7) A~3, Z=1, F(000)=935, D_(calc)=1.572 g/cm~3,μ=0.459 mm~(-1), R_1[I>2σ(I)]=0.0489和wR_2 (all data)=0.1612.配合物2为三斜晶系, Pī空间群, a=11.8200(11) A, b=13.0280(11) A, c=14.713(4) A,α=114.800(3)°,β=110.530(3)°,γ=91.800(3)°, V=1883.2(6) A3, Z=1, F(000)=981, D_(calc)=1.668 g/cm~3,μ=0.570 mm~(-1), R_1[I>2σ(I)]=0.0645和wR_2 (all data)=0.1281.
     通过比较2种超分子结构上的差异,我们发现碱金属离子可作为有效的自组装控制环节来实现对不同结构的超分子进行组装。
     另一方面,由于南瓜笼系列化合物有着疏水性的内部空腔结构,因此我们试图利用这一特点,将其引入到含有金属配合物的体系中,研究其与金属配合物之间的相互作用。我们通过观察电子光谱的变化,研究了其性质。发现与其它南瓜笼相比,具有较大内部空腔结构的CB8显著地影响了[Cu(en)_2]~(2+)的可见吸收光谱,并讨论了造成这种现象的可能原因。
     本文的结果对以南瓜笼及其衍生物和过渡金属配合物为组件的新型杂化超分子的构筑研究具有重要的科学参考价值。
Cucurbit[n]urils is a kind of special pumpkin-shaped macrocyclic compounds of glycoluril, whose structure forms a rigid hollow cavitand with two highly polar carbonyl openings, and thus has primarily been used as a synthetic receptor for selectively binding linear organic substrates. However, the chemical behavior of its hydrophobic outer wall has nearly been investigated and utilized. In view of its unique pumpkin molecular shape which may be potential for inducing novel stereo-specificity in structure construction, It can recognize guests including metal ions and organic molecules via supramolecular interactions because of its unique cavity structure. These capabilities consequently make them attractive as both receptors for molecular recognition and building blocks for the construction of nano-scaled supramolecular systems. It has great application potentiality in the molecular recognition, molecular self-assembly, molecular catalysis, pollution water treatment, mimic enzyme and drug pilot carrier. So, the new kind of host is arousing more and more researchers’considerable interests.
     In this paper, according to synthesized the CBn homologous compounds and characterized them by IR, ~1H-NMR, Elemental Analysis, we discussed their differences on structures and properties. On this basis, we synthesized two novel hybrid supramolecule which are [Cu(HQS)_2][Na_2(CB_6)(H_2O)_8]·6H_2O and [Cu(HQS)2][K2(CB6)(H2O)8]·9H2O, characterized their structures by XRD and compared.
     The X-ray analyses showed that complex 1 was crystallized in Triclinic, Pīspace group, a=11.843(2) A, b=12.381(3) A, c=15.328(3) A,α=110.884(4)°,β=112.428(4)°,γ=91.520(3)°, V=1906.3(7) A~3, Z=1, F(000)=935, D_(calc)=1.572 g/cm~3,μ=0.459 mm~(-1), R_1[I>2σ(I)]=0.0489 and wR_2 (all data)=0.1612; Complex 2 was crystallized in Triclinic, Pīspace group, a=11.8200(11) A, b=13.0280(11) A, c=14.713(4) A,α=114.800(3)°,β=110.530(3)°,γ=91.800(3)°, V=1883.2(6) A~3, Z=1, F(000)=981, D_(calc)=1.668g/cm~3,μ=0.570 mm~(-1), R_1[I>2σ(I)]=0.0645 and wR_2 (all data) = 0.1281.
     According to the crystal structures of complex 1 with complex 2, we found there are some differences between them. The results showed that alkali metal ions can be used as one of the effective controlling factors for this kind of self-assembly.
     On the other hand, we try to use this feature who has a hydrophobic cavity to research the mixed system. We research its properties by UV-Vis spectrum. To compare with others, we found the CB8 which has a lager cavity affectes the [Cu(en)_2]~(2+) complex cation system significantly. It is possibly caused by the interaction between the CB8 and the ligands and we supposed that [Cu(en)_2]~(2+) complex cation is in the cavity.
     The present results may be significant for the supramolecular application of the macrocyclic CBn family.
引文
[1] Lehn J. M. Supramolecular Chemistry-Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices. Angew. Chem. Int. Ed. 1988, 27, 89-112
    [2] Lehn J. M. Supramolecular Chemistry-Concepts and Perspectives. Weinheim: VCH Publishers, 1995.
    [3] V?gtle F., Supramolecular Chemistry (超分子化学).张希,林志宏,高倩译,长春:吉林大学出版社, 1995.
    [4] Jyotirmayee Mohanty, Werner M. Nau, Photochem. Photobiol. Sci. 2004, 3, 1026-1031.
    [5] Brian D. Wagner. Andrew I. MacRae, J. Phys. Chem. B 1999, 103, 10114-10119.
    [6]罗绪强,张桂玲,薛赛凤等.一类新型功能材料化合物-瓜环的合成与分离研究进展[J].贵州化工, 2003, 28 (4) : 1.
    [7] Jae Wook Lee, Soo Whan Choi, Young Ho Ko et al, Novel [2]Pseudorotaxanes Containing Cucurbituril as a Molecular Bead:Unexpected Formation of a Kinetic Product Which Spontaneously Converts into a Thermodynamic Product by Translocation of the Bead. Bull. Korean Chem. Soc. 2002, Vol. 23, No. 9.
    [8] Katrin Skopek, Mark C. Hershberger, John A. Gladysz, Gyroscopes and the Chemical Literature. Coordination. Chemistry. Reviews. 251 (2007) 1723-1733.
    [9] Young Jin Jeon, Hyejung Kim, Sangyong Jon et al, Designed Self-Assembly of Molecular Necklaces Using Host-Stabilized Charge-Transfer Interactions. J. Am. Chem. Soc. 2004, 126, 15944-15945.
    [10] Woo Sung Jeon, Albina Y. Ziganshina, Jae Wook Lee et al. A [2]Pseudorotaxane-Based Molecular Machine: Reversible Formation of a Molecular Loop Drivenby Electrochemical and Photochemical Stimuli. Angew. Chem. Int. Ed. 2003, 42, 4097-4100.
    [11]韩宝航,刘育.葫芦脲:分子识别与组装[J].有机化学, 2003, 23 (2) : 139.
    [12] Jon Sang Yong. Selvapalam. N. Arayanan, et al, Facile Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of Cucurbit[n]uril. J. Am. Chem. Soc. 2003, 125(34) , 10186-10187.
    [13] Hiroyuki Isobe, et al. Ternary Complexes Between DNA, Polyamine, and Cucurbituril:a Modular Approach to DNA-Binding Molecules. Angew. Chem. Int. Ed. 2000, 39, No. 23.
    [14] D?nüs Tuncel, Joachim G. Steinke, Catalytically Self-Threading Polyrotaxanes. Chem. Commun. 1999, 1509-1510.
    [15] William L. Mock, et al. Catalysis by Cucurbituril. The Significance of Bound-Substrate Destabilization for Induced Triazole Formation. J. Org. Chem., Vol. 54, No. 22, 1989, 5302-5308.
    [16] D?nüs Tuncel. Joachim H.. Steinke, The Synthesis of [2], [3] and [4]Rotaxanes and Semirotaxanes. Chem. Commun. 2002, 496-497.
    [17] Theodora C. Krasia, Joachim H., Formation of Oligotriazoles Catalysed by Cucurbituril. Chem. Commun. 2002, 22-23.
    [18] Lehn J.M. Toward Complex Matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. U.S.A. 2002, Vol. 99. 4763-4768.
    [19] Yamauchi O., Odani A., Takani M. Metal-Amino Acid Chemistry. J. Chem. Soc. Dolton Trans. 2002, 3411-3421
    [20] Sauvage J. P. Transition Metals as Assembling and Templating Species: Synthesis of Catenanes and Molecular Knots, Comprehensive Supramolecular Chemistry, Eds: J. P. Sauvage, M. W. Hosseini, Pergamon. Oxford. 1996, Vol. 9, 43-83.
    [21]王乐勇,何光裕,姜艳,超分子化合物的模板合成.大学化学, 1997, 12, 36-41.
    [22] Zhang F., Supramolecular Structures Templated by Metal Complexes and Cucurbituril, Post Doctoral Report of Pohang Univ. Sci. Tech. Prof. K. Kim, Pohang, 2002.
    [23] Jeffrey G. A., Saenger, W. Hydrogen Bonding Biological Structures. Springer-Verlag Berlin Heidelberg, New York. 1991.
    [24] Pimentel G. C., McClellan, A. L., The Hydrogen Bond (Freeman, San Francisco, 1960).
    [25] Yamauchi O., In Handbook of Metal-Ligand Interactions in Biology Fluids, Vol. 1, Ed.: G. Berthon, Marcel Dekker, New York. 1995, 445-460.
    [26] Whang D., Heeo J., Kim K., J.Chem. Soc. Chem. Comm. 1997, 2361-2362.
    [27] Zhang F., Yajima T., Masuda H. Weak Interactions in Ternary Copper(II) Complexes with Iodotyrosinates Biological Significance of the Iodine in Thyroid Hormones, Inorg. Chem. 1997, Vol. 36, 5777-5784.
    [28] Selvapalam N., Fujita N., Shinkai S., Ternary Complexes in Solution the Stability Enhancement of Nucleotide-Containing Charge-Transfer Adducts Through the Formation of a Metal Ion. J. Am. Chem. Soc. 1974,2750-2756.
    [29] Filippini G., Gavezotti, A., Acta Crystallogr. Sect. B, 1993, 49, 868.
    [30] Guilera G., Steed. J. W., Chem. Commun. 1999, 1563.
    [31] Naumann C. F., Sigel H., Ternary Complexes in Solution the Stability Enhancement of Nucleotide-Containing Charge-Transfer Adducts Through the Formation of a Metal Ion. J. Am. Chem. Soc., 1974, 2750-2756.
    [32] Zhang F., Odani A., Masuda H., Structures and Stabilities of Ternary Copper(II) Complexes with 3,5-Diiodo-L-Tyrosinate. Weak Interactions involving Iodo Groups. Inorg. Chem. 1996, Vol. 35, 7148-7155.
    [33] Zhang F., Yajima T., Odani A. et al. Electrostatic Ligand-Ligand Interactions in Ternary Copper(II) Complexes with 3,5-Diiodo-L-Tyrosine and Polar Amino Acids. Inorg. Chim Acta. 1998, Vol. 278, 136-142.
    [34] Behrend R., Meyer E., Rusche F., Justus Liebigs Ann. Chem. 1905, 339, 1-37.
    [35] Freeman W. A., Mock W. L., Shih N. Y., Cucurbituril. J. Am. Chem. Soc. 1981, Vol. 103, 7367.
    [36] Rekharsky M. V., Inoue Y.,Chem. Rev. 1998, 98, 1875.
    [37] Inoue Y., Hakushi T., Liu Y., Tong L. H., Jin D. S., J. Am. Chem. Soc. 1993, 115, 475.
    [38] Inoue Y., Liu Y., Tong L. H., Shen B. J., Jin D. S., J. Am. Chem. Soc. 1993, 115, 10637.
    [39] Cintas P., J. Inc. Phenom. 1994, 17, 205.
    [40] Kim K., Kim H. J., In Encyclopedia of Supramolecular Chemistry. Atwood. S. Ed. Marcel Dekker Inc.: New York. 2004; p 390.
    [41] Kim K., Selvapalam N. J. Inc. Phenom. 2004, 50, 31.
    [42] Jeon Y. M., Kim, J., Whang, D., Kim K., J. Am. Chem. Soc. 1996, 118, 9790.
    [43] Whang D., Heo J., Park J. H., Kim K., Angew. Chem. Int. Ed. Engl. 1998, 37, 78.
    [44] Buschmann H. J., Cleve E., Schollmeyer E., Inorg. Chim. Acta 1992, 193, 93.
    [45] Zhang X. X., Krakowiak K. E., Xue G., Bradshaw J. S., Izatt R. M. Ind. Eng. Chem. Res. 2000, 39, 3516.
    [46] Heo J., Kim J., Whang D., Kim K., Inorg. Chim. Acta 2000, 279, 307.
    [47] Sokolov M. N., Virovets A. V., Dybtsev D. N., Gerasko O. A., Fedin V. P., Hernandez Molina R., Clegg W., Sykes A. G., Angew. Chem. Int. Ed. 2000, 39, 1659.
    [48] Kim K., Selvapalam N., Ko Y. H., Park K. M., Kim D. Kim., J. Chem. Soc. Rev. 2007, 36, 267-279.
    [49] Jeon Y. M., Whang D., Kim J., A Simple Construction of a Rotaxane and Pseudorotaxane: Syntheses and X-ray Crystal Structures of Cucurbituril Threaded on Substituted Spermine. Chem. Lett. 1996, 503-504.
    [50] Whang D., Park K. M., Heeo J. J. Am. Chem. Soc, 1998, 120, 4899.
    [51] Kim K., Mechanically Interlocked Molecules Incorporating Cucurbituril and Their Supramolecular Assemblies. Chem. Soc. Rev. 2002, 31, 96.
    [52] Park Kim, Whang D., Lee E., et al. Chem. Eur. J. 2002, 8 : 498-508.
    [53] Lee E., Heo J., Kim K. Angew. Chem. Int. Ed. 2000, 39 : 2699-2701.
    [54] Lee J., W. Yamaguchi, Kim K., Angew. Chem. Int. Ed. 2001, 40 (4), 746.
    [55] Zhao J., Kim H. J., Oh. J., et al. Angew. Chem. Int. Ed. 2001, 40 : 4233-4235.
    [56] Jansen K., Buschmann H. J., Wego A., et al. J. Incl. Phenom Macrocyclic Chem. 2001, 39: 357-363.
    [57] Jeon Y. J., Kim S. Y., Ko Y. H., et al. Org. Bio. Chem. 2005, 3 (11) : 2122-2125.
    [58] Choi S., Park S. H., Ziganshina A. Y., et al. Chem. Commun. 2003, 2176-2177.
    [59] Blanck R. J., Sleeman A. J., White T. J., Arnold A. P., Day A. I., Nano. Lett. 2002, 2 (2), 147.
    [60] Jon S. Y., Kim J., Kim M., et al. Angew. Chem. Int. Ed. 2001, 40 :2116.
    [61] Jon S. Y., Ko Y. H., Park S. H., et al. Chem Commun., 2001, 1938-1939.
    [62] Day A. I., Blanck R. J., Arnold A. P., Lorenzo S., Lewis G. R., Dance I., Angew. Chem. Int. Ed. 2002, 41 (2), 275.
    [63] Wheate N. J., Anil Kumar, P. G., Torres A. M., Aldrich Wright, J. R. Price, W. S. J. Phys. Chem. B 2008, 112, 2311-2314.
    [64] Grant M. P., Wheate N. J., Aldrich Wright, J. R. J. Chem. Eng. Data. 2009, 54, 323-326.
    [65] Hwang I., Jeon W. S., Kim H. J., Kim D., Kim H., Selvapalam N., Fujita N., Shinkai S., KimK., Angew. Chem. Int. Ed. 2007, 46, 210-213.
    [66] Lim S., Kim H., Selvapalam N., Kim K.-J., Cho S. J., Seo G., Kim K., Angew. Chem. Int. Ed. 2008, 47, 3352-3355.
    [67] Mezzina E., Cruciani F., Pedulli J. F., Lucarini M., Chem. Eur. J. 2007, 13, 7223-7233.
    [68] David Bardelang, Karol Banaszak, Hakim Karoui. et al, Probing Cucurbituril Assemblies in Water with TEMPO-like Nitroxides: A Trinitroxide Supraradical with Spin-Spin Interactions. J. Am. Chem. Soc. 2009, Apr, 22, 31(15):5402-4.
    [69] Mock W. L., In Comprehensive Supramolecular Chemistry. Vol. 2, Eds.: Atwood. L. Davies, Oxford. 1996, P447.
    [70]张锋,桑石云,张阳阳.芳香碘基辅助的配位超分子自组装.化学学报, 2004, Vol. 62, 2055-2061.
    [71]张锋.南瓜笼-过渡金属配合物形状匹配杂化超分子.南京大学博士后工作报告,导师:陈慧兰教授,南京, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700