几种铁基复合钙钛矿陶瓷的结构、介电及铁电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe基复合钙钛矿陶瓷作为一类非常重要的电子陶瓷类材料,关于其独特的介电特性的物理起源长期以来一直备受科研工作者的关注。本论文对几种Fe基复合钙钛矿陶瓷的晶体结构、磁学性能、介电性能和输运特性进行了系统研究。通过对陶瓷样品微结构的表征和分析,深入地探讨了各物理性能与其结构之间的关系,揭示了该类材料介电弛豫的物理本质,同时对Fe基复合钙钛矿固溶体从弥散铁电体向弛豫铁电体演化的规律做了深入探讨。得到如下主要结论:
     Ca(Fe1/2Ta1/2)O3陶瓷具有B位无序的正交钙钛矿结构,空间群为Pbnm(62)。晶体结构中同时存在氧八面体的同向和反向扭转,并且氧八面体中心的Ca离子在赝立方<110>方向存在位移。Ca(Fe1/2Ta1/2)O3陶瓷在150-400K的温度范围内在介电损耗随着温度的变化曲线图谱中可以观察到典型的介电弛豫现象,属于热激活过程。该介电弛豫的激活能与Ba(Fe1/2Nb1/2)O3陶瓷的激活能比较接近,其物理起源可以认为是Fe离子的混价结构形成了偶极子之间电荷的跃迁。经过氧气氛退火处理以后低温的介电弛豫没有发生明显的变化,高温介电常数有略微下降。氧气氛退火处理对样品的氧空位数目以及Fe离子混价结构没有明显的影响。
     Sr(Fe1/2Ta1/2)O3陶瓷具有B位无序的正交钙钛矿结构,空间群为Pbnm(62), Sr(Fe1/2Ta1/2)O3陶瓷在300-600K的温度范围内存在明显的介电弛豫,属于热激活过程。Sr(Fe1/2Ta1/2)O3陶瓷的介电常数虚部随着频率的升高单调递减,说明该弛豫现象为非本征行为。随着温度的升高,除了晶粒以外,晶界电导对于介电弛豫的贡献逐渐增大。常温时,低频的介电常数随着样品的电极材料以及厚度的不同有明显变化,说明低频下Sr(Fe1/2Ta1/2)O3陶瓷较高的介电常数主要来源于样品/电极耗尽层的界面极化效应。Sr(Fe1/2Ta1/2)O3陶瓷的载流子跃迁方式符合三维可变程跳跃模型。由于晶体内存在局域化学成分起伏而产生的Fe-O-Fe团簇使得该陶瓷材料在20K以下呈反铁磁性;其内部的氧空位造成的Fe2+/Fe3+混价结构使该材料在较低温度下可测得磁滞回线,存在弱铁磁性。
     二步固相反应法制得的B位无序Pb1-xBax(Fe1/2Nb1/2)O3(x=0,0.05,0.1,0.15,0.2,0.3)固溶体陶瓷具有立方结构,其空间群为Pm3m。除了x=0组分外,其余成分的固溶体陶瓷在300K左右都出现了类似Ba(Fe1/2Nb1/2)O3中的德拜弛豫现象,这一现象主要是由Fe2+/Fe3+点缺陷和氧空位引起的。固溶体陶瓷随着Ba含量的增加逐渐由弥散铁电体向弛豫铁电体转变,并且铁电性逐渐减弱。在介电性能上表现为铁电相变介电峰出现频率色散,峰强逐渐减弱,峰位向低温方向移动,峰宽逐渐增大。造成体系由弥散向弛豫铁电体转变的原因是由于Ba的加入打破了Pb离子的网络体系,使系统向无序不均的方向发展,导致铁电畴的进一步减小。
     二步固相反应法制得的B位无序Fb1-xBax(Fe1/2Nb1/2)O3(x=0,0.05,0.1,0.15,0.2,0.3)固溶体陶瓷具有立方结构,其空间群为Pm3m。随着Ba含量的增加其逐渐由弥散铁电体向弛豫铁电体转变,并且铁电性逐渐减弱。x=0,0.05的固溶体样品的铁电转变温度在室温以上,其余成分的铁电转变温度在室温以下。由于Pb1-xBax(Fe1/2Nb1/2)O3固溶体陶瓷存在局域对称性破缺,从而在室温下具有较强的拉曼响应。与Pb-O键有关的F2u。模在Pb1-xBax(Fe1/2Nb1/2)O3固溶体陶瓷样品的拉曼图谱中缺失,说明该体系固溶体陶瓷样品的铁电性主要是由B位离子的位移贡献的。
     Ba1-xBix(Fe(1+x)/2Nb(1-x)/2)O3(x=0.1,0.3,0.5,0.7,0.9)固溶体陶瓷均为单相,其中x=0.9的成分点样品为菱方扭转钙钛矿结构,空间群为R3c。其余组分固溶体陶瓷样品均为立方结构,空间群为Pm3m。Ba1-xBix(Fe(1+x)/2Nb(1-x)/2)O3(x=0.1,0.3,0.5,0.7,0.9)固溶体陶瓷的介电常数和损耗均随着x增大而减小。当x=0.1,0.3时其与Ba(Fe1/2Nb1/2)O3介电性能类似,随x的增大介电性能逐渐向类似BiFeO3的介电性能转变。由于Ba0.1Bi0.9(Fe0.95Nb0.05)O3固溶体陶瓷相比于整个固溶体陶瓷体系而言介电损耗较小,性能较优,因此对其进行等离子放电烧结并进行氧气氛退火处理。随着退火时间的增加,Ba0.1Bi0.9(Fe0.95Nb0.05)O3固溶体陶瓷的介电性能持续改善。在氧气氛下退火30小时的Ba0.1Bi0.9(Fe0.95Nb0.05)O3固溶体陶瓷在613.1K发生反铁磁-顺磁相变,并在该温度点存在明显的介电异常。在室温下,该固溶体陶瓷的磁介电系数为-0.4%。
As an important group of dielectric materials, Fe-based complex perovskites ceramics have drawn losts increasing scientific attention, while the physical nature of their dielectric behavior has always been very controversial. In the present thesis, the structure, magnetic, dielectric and transport properties of the Fe-based complex perovskite ceramics were investigated systematically. Meanwhile, the conversion between the diffuse ferroelectrics and relaxor of their solid solutions was demonstrated. The relationship between the physical properties and the structure has been discussed, and the physical origin of dielectric relaxation and the relaxor ferroelectric behavior was revealed.
     XRD data suggested that Ca(Fe1/2Ta1/2)O3ceramic had orthorhombic structure with B-site disorder. There was only one dielectric relaxation observed in the low temperature ranges, respectively. Compared with Ba(Fe1/2Ta1/2)O3, Sr(Fe1/2Ta1/2)O3and Ba(Fe1/2Nb1/2)O3, the much lower dielectric constant and lower dielectric loss were determined in Ca(Fe1/2Ta1/2)O3because of the obviously weaker Fe2+/Fe3+mixed-valent structure. The oxygen annealing had little influence on oxygen vacancies and Fe2+/Fe3+mixed-valent structure.
     The X-ray powder diffraction analysis confirmed that Sr(Fe1/2Ta1/2)O3has a B-site disordered orthorhombic structure in space group Pbnm(62). Only one broadened dielectric peak with strong frequency dispersion was observed in present ceramic, which was significantly different from that for the analogue Ba(Fe1/2Nb1/2)O3and Ba(Fe1/2Ta1/2)O3. The strong dependence of sample thickness and electrode material indicated that the dielectric relaxation behavior at lower frequency was due to the interface effects. The present ceramic was spin glass state with slight ferromagnetic behavior below the Neel temperature (20K). The co-presence of Fe2+and Fe3+was comfirmed by the μff value.
     XRD analysis confirmed that the structures of Pb1-xBax(Fe1/2Nb1/2)O3solid solutions were cubic, and the dielectric nature changed from diffuse ferroelectric to relaxor ferroelectric with increasing x, while the phase transition temperature Tc (or Tm) decreased monotonously. The diffuse ferroelectric phase transition was observed in the ceramics with0≤x≤0.05. For Pb1-xBax(Fe1/2Nb1/2)O3with0.1≤x≤0.2, relaxor ferroelectric behavior was determined, and Vogel-Fulcher equation and new glass model could be used to describe the relaxor behavior.
     The crystal structures of all Pb1-xBax(Fe1/2Nb1/2)O3compositions were cubic and the cell volume indicated a sudden change at x=0.075. Pb1-xBax(Fe1/2Nb1/2)O3ceramics with x>0.075were paraelectric, while those for x<0.075were ferroelectric at room temperature. The phonon modes revealed that the differences of local structures of the ceramics might mostly caused by the disappearing of off-center BO6octahedron. The ferroelectric related distortion still could be discovered in paraelectric solid solutions with x>0.075. The modes related to Fe-O-Fe were stable with increasing Ba-content, while the phonon mode corresponded to Nb-O-Nb changed intensively. Meanwhile, the other three Nb-O related modes:the B-O asymmetric stretching mode near700cm-1, the Alg mode of the rigid B'-O-B"(Fe-O...Nb) bonds near780cm-1, the B-O bond related mode near850cm-1also presented the V-types inflection near x=0.075. These behaviors revealed that the ferroelectricity in the present system was due to the displacement of Nb cation. Moreover, the Nb-rich areas should exhibit the stronger ferroelectricity than other areas.
     According to XRD analysis, the structure of Ba1-xBix(Fe(1+x)/2Nb(1-x)/2)O3(x=0.1,0.3,0.5,0.7,0.9) solid solution ceramics varied from original cubic symmetry to rhombohedral distorted perovskite. With increasing x, the two dielectric abnormities caused by Fe2+/Fe3+mixed-valent structure tapered off, the dielectric loss decreased evidently. Oxygen annealed Ba0.1Bi0.9(Fe.9sNb0.05)O3ceramics prepared by SPS showed dielectric abnormity at613.1K. This temperature was the antiferromagnetic transition temperature confirmed by DSC. The phenomenon indicated the strong magnetodielectric effect at Neel temperature. Even at room temperature the magnetodielectric coefficient was as high as-0.4%.
引文
[1]S. Saha, and T. P. Sinha. Structural and Dielectric Studies of BaFe0.5Nb0.5O3. J. Phys.:Condens. Matter,2002,14(249):249-258.
    [2]S. Saha, and T. P. Sinha. Low-Temperature Scaling Behavior of BaFe0.5Nb0.5O3. Phy. Rev. B, 2002,65(13):134103.
    [3]I. P. Raevski, S. A. Prosandeev, A. S. Boatin, M. A. Malitskaya, and L. Jastrabik. High Dielectric Permittivity in AFe1/2B1/2O3 Nonferroelectric Perovskite Ceramics (A= Ba, Sr, Ca; B= Nb, Ta, Sb). J. Appl. Phys.,2003,93(7):4130-4136.
    [4]C.-Y. Chung, Y. H. Chang, and G. J. Chen. Effects of Lanthanum Doping on the Dielectric Properties of Ba(Fe0.5Nb0.5)03 Ceramics. J. Appl. Phys.,2004,96(11):6624.
    [5]Z. Wang, X. M. Chen, L. Ni, and X. Q. Liu. Dielectric Abnormities of Complex Perovskite Ba(Fe1/2Nb1/2)O3 Ceramics over Broad Temperature and Frequency Range. Appl. Phys. Lett., 2007,90(2):022904.
    [6]Z. Wang, X. M. Chen, L. Ni, Y. Y. Liu, and X. Q. Liu. Dielectric Relaxations in Ba(Fe1/2Ta1/2)O3 Giant Dielectric Constant Ceramics. Appl. Phys. Lett.,2007,90(10): 102905.
    [7]Y. Y. Liu, X. M. Chen, X. Q. Liu, and L. Li. Giant Dielectric Response and Relaxor Behaviors Induced by Charge and Defect Ordering in Sr(Fe1/2Nb1/2)O3 Ceramics. Appl. Phys. Lett., 2007,90(19):102905.
    [8]Y. Y. Liu, X. M. Chen, X. Q. Liu, and L. Li. Dielectric Relaxations in Ca(Fe1/2Nb1/2)O3 Complex Perovskite Ceramics. Appl. Phys. Lett.,2007,90(26):262904.
    [9]X. Lv, Z. Wang, and X. M. Chen. Structure and Dielectric Characteristics of Ca(Fe1/2Ta1/2)O3 Complex Perovskite Ceramics. Ceram. Inter.,2001,37(3):1033-1037.
    [10]R. Rodriguez, A. Fernandez, A. Isalgue, J. Rodriguez, A. Labarta, J. Tejada, and X. Obradors. Spin Glass Behaviour in an Antiferromagnetic Non-Frustrated Lattice:Sr2FeNbO6 Perovskite. J. Phys. C:Solid State Phys.,1985,18(14):L401-L405.
    [11]A. A. Bokov, L. A. Shpak, and I. P. Raevsky. Diffuse Phase Transition in Pb(Feo.5Nbo.5)03-Based Solid Solutions. J. Phys. Chem. Solids,1993,54(4):495-498.
    [12]X. S. Gao, X. Y. Chen, J. Yin, J. Wu, and Z. G. Liu. Ferroelectric and Dielectric Properties of Ferroelectromagnet Pb(Fe1/2Nb1/2)O3 Ceramics and Thin Films. J. Mater. Sci.,2000,35(21): 5421-5425.
    [13]张良莹,姚熹.电介质物理.西安:西安交通大学出版社,2008:177.
    [14]R. C. Buchanan. Ceramic Materials for Electronics:Processing, Properties, and Applications. New York:Marcel Dekker, Inc.,1991:38.
    [15]K. S. Cole, and R. H. Cole. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys.,1941,9:341-351.
    [16]A. R. von Hippel. Dielectrics and Waves. London:Artech House,1954:228-230.
    [17]C.-F. Yang. An Equivalent Cicuit for CuO Modified Surface Barrier Layer Capacitors. Jpn. J. Appl. Phys.,1997,36:188-193.
    [18]J. Wu, C. W. Nan, Y. Lin, and Y. Deng. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett.,2002,89(21):217601.
    [19]Y. J. Li, X. M. Chen, R. Z. Hou, and Y. H. Tang. Maxwell-Wagner Characterization of Dielectric Relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 Composite. Solid State Commun., 2006,137(3):120-125.
    [20]Y. Q. Lin, and X. M. Chen. Dielectric Relaxations in Sr0.5Ba0.5Nb2O6/CoFe2O4 High-ε Magnetoelectric Composite Ceramics. Mater. Chem. Phys.,2009,117(1):125-130.
    [21]D. O'Neill, R. M. Bowman, and J. M. Gregg. Dielectric Enhancement and Maxwell-Wagner Effects in Ferroelectric Superlattice Structures. Appl. Phys. Lett.,2000,77(10):1520-1522.
    [22]Y. Q. Lin, and X. M. Chen. Temperature-Stable High Dielectric Constant and Dielectric Relaxation in (1-x)Sr0.5Ba0.5Nb2O6/xNi0.8Cu0.2Fe2O4 Composite Ceramics. Ferroelectrics, 2009,388(1):153-160.
    [23]A. J. Moulson, and J. M. Herbert. Electroceramics:Materials Properties Applications. London: Chapman & Hall,1990:260-262.
    [24]I. Burn, and S. Neirman. Dielectric Properties of Donor-Doped Polycrystalline SrTiO3. J. Mater. Sci.,1982,17:3510-3524.
    [25]A. S. Bhalla, R. Guo, and R. Roy. The Perovskite Structure-A Review of Its Role in Ceramic Science and Technology. Mat. Res. Innovat.,2000,4(1):3-26.
    [26]B. Raveau. The Perovskite History:More Than 60 Years of Research from the Discovery of Ferroelectricity to Colossal Magnetoresistance via High Tc Superconductivity. Prog. Solid State Chem.,2007,35(2-4):171-173.
    [27]田中郎哲.压电陶瓷材料.陈俊彦,王余君,译北京:科学出版社,1982:105-106.
    [28]V. M. Goldschmidt. Die Gesetze Der Krystallochemie. Naturewissenschaften,1926,14(21): 477-485.
    [29]R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A,1976,32(5):751-767.
    [30]A. M. Glazer. The Classification of Tilted Octahedra in Perovskite. Acta Cryst. B,1972, 28(11):3384-3392.
    [31]A. M. Glazer. Simple Ways of Determining Perovskite Structure. Acta Cryst. A,1975,31(6): 756-762.
    [32]S. A. T. Redfern. High-Temprature Structure Phase Transitions in Perovskite (CaTiO3). J. Phys.:Condens. Matter,1996,8(43):8267-8275.
    [33]E. L. Colla, I. M. Reaney, and N. Setter. Effect of Structural Changes in Complex Perovskites on the Temperature Coefficient of the Relative Permittivity. J. Appl. Phys.,1993,74(5): 3414-3425.
    [34]G. Blasse. Ferromagnetic Interactions in Non-Metallic Perovskites. J. Phys. Chem. Solids, 1965,26(12):1969-1971.
    [35]X. M. Chen, D. Liu, R. Z. Hou, X. Hu, and X. Q. Liu. Microstructures and Micorwave Dielectric Characteristics of Ca(Zn1/3Nb2/3)O3 Complex Perovskite Ceramics. J. Am. Ceram. Soc.,2004,87(12):2208-2212.
    [36]C. A. Randall, and A. S. Bhalla. Nanostructural-Property Relations in Complex Lead Perovskites. Jpn. J. Appl. Phys.,1990,29:327-333.
    [37]R. Liu, Y. Xuan, and Y. Q. Jia. A Simple Method for Judging Order or Disorder in A(B'B")O3 Perovskite Compounds. J. Solid State Chem.,1997,134(2):420-422.
    [38]F. Galasso, L. Katz, and R. Ward. Substitution in the Octahedrally Coordinated Cation Positions in Compounds of the Perovskite Type. J. Am. Chem. Soc.,1959,81:820-823.
    [39]D. Harari, and P. Poix. Preparation and Study of the Properties of the Mixed Oxide with Perovskite Structure Sr3Cr2WO9. Comptes Rendus S'eances C,1973,276:265-268.
    [40]M. C. Viola, M. S. Augsburger, R. M. Pinacca, J. C. Pedregosa, R. E. Carbonio, and R. C. Mercader. Order Disorder at FE Sites in SrFeM5"1/3O3 (5"= Mo, W, Te, U) Tetragonal Double Perovskites. J. Solid State Chem.,2003,175(2):252-257.
    [41]I. Levin, L. A. Bendersky, J. P. Cline, R. S. Roth, and T. A. Vanderah. Octahedral Tilting and Cation Ordering in Perovskite-like Ca4Nb2O9= 3-Ca(Ca1/3Nb2/3)O3 Polymorphs. J. Solid State Chem.,2000,150(1):43-61.
    [42]A. J. Jacobson, B. M. Collins, and B. E. F. Fender. A Powder Neutron and X-Ray Diffraction Determination of the Structure of Ba3Ta2ZnO9:an Investigation of Perovskite Phases in the System Ba-Ta-Zn-O and the Preparation of Ba2TaCdO5.5 and Ba2CeInO5.5. Acta Crystallogr. B,1976,32(4):1083-1087.
    [43]R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A,1976,32(5):751-767.
    [44]K. Yoshii, N. Ikeda, and M. Mizumaki. Magnetic and Dielectric Properties of the Ruthenium Double Perovskites La2MRuO6 (M= Mg, Co, Ni, and Zn). Phys. Stat. Sol. (a),2006,203(11): 2812-2817.
    [45]Y. Q. Lin, X. M. Chen, and X. Q. Liu. Relaxor-Like Dielectric Behavior in La2NiMnO6 Double Perovskite Ceramics. Solid State Commun.,2009,149(19-20):784-787.
    [46]W. Z. Yang, M. M. Mao, X. Q. Liu, and X. M. Chen. Structure and Dielectric Relaxation of Double-Perovskite La2CuTiO6 Ceramics. J. Appl. Phys.,2010,107(12):124120-124124.
    [47]W. Z. Yang, M. S. Fu, X. Q. Liu, H. Y. Zhu, and X. M. Chen. Giant Dielectric Response and Mixed-Valent Structure in the Layered-Ordered Double-Perovskite Ceramics. Ceram. Int., 2011,37(7):2747-2753.
    [48]I. P. Raevski, S. A. Prosandeev, S. A. Bogatina, M. A. Malitskaya, and L. Jastrabik. High-k Ceramics Materials Based on Nonferroelectric AFe1/2Nb1/2O3 (A-Ba, Sr, Ca; B-Nb, Ta, Sb) Perovskites. Integr. Ferr.,2003,55(1):757-768.
    [49]I. P. Raevski, S. A. Kuropatkina, S. P. Kubrin, S. I. Raevskaya, V. V. Titov, D. A. Sarychev, M. A. Malitskaya, A. S. Bogatin, and I. N. Zakharchenko. Dielectric and Mossbauer Studies of High-Permittiveity BaFe1/2Nb1/2O3 Ceramics with Cubic and Monoclinic Perovskite Structures. Ferroelectrics,2009,379(1):48-54
    [50]钟维烈.铁电体物理学.北京:科学出版社,2000:1-7.
    [51]R. Comes, M. Lambert, and A. Guinier. The Chain Structure of BaTiO3 and KNbO3. Solid State Commun.,1968,6(10):715-719.
    [52]K. H. Ehses, H. Bock, and K. Fischer. The Temperature-Dependence of the Debye-Wall-Factor in Barium-Titanate. Ferroelectrics,1981,37(1):507-510.
    [53]K. Itoh, L. Z. Zeng, E. Nakamura, and N. Michima. Crystal-Structure of BaTiO3 in the Cubic Phase. Ferroelectrics,1985,63(1):29-37.
    [54]R. J. Nelmes, R. O. Piltz, W. F. Kuhs, Z. Tun, and R. Restori. Order-Disorder Behavior in the Transition of PbTiO3. Ferroelectrics,1990,108(1):165-170.
    [55]N. Sicron, B. Ravel, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr. Nature of the Ferroelectric Phase Transition in PbTiO3. Phys. Rev. B,1994,50(18):13168-13180.
    [56]M. D. Fontana, H. Idrissi, G. E. Kugel, and K. Wojcik. Raman Spectrum in PbTiO3 Re-Examined:Dynamics of the Soft Phonon and the Central Peak. J. Phys.:Condens. Matter, 1991,3(4):8695-8705.
    [57]D. Damjanovic. Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics. Rep. Prog. Phys.,1998,6(9):1267-1324.
    [58]A. A. Bokov, and Z.-G. Ye. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure. J. Mater. Sci.,2006,41(1):31-52.
    [59]G. A. Samara. The Relaxational Properties of Compositionally Disordered ABO3 Perovskites. J. Phys.:Condens. Matter,2003,15(9):R367-R411.
    [60]N. Ichinose. Aging Properties of Pb(Mg1/3Nb2/3)O3 Based Relaxor Ferroelectrics. Ferroelectrics,1997,203(1):187-199.
    [61]V. A. Isupov. Ferroelectric and Antiferroelectric Perovskites Pb(B'0.5B"0.5)O3. Ferroelectrics, 2003,289(1):131-195.
    [62]C. W. Tai, and K. Z. Baba-Kishi. Relationship Between Dielectric Properties and Structure Long-Range Order in (x)Pb(In1/2Nb1/2)O3:(1-x)Pb(Mg1/3Nb2/3)O3 Relaxor Ceramics. Aata Mater.,2006,54(20):5631-5640.
    [63]C. A. Randall, D. J. Barber, P. Groves, and R. W. Whatmore. TEM Study of the Disordor-Order Perovskite Pb(In/2Nb1/2)O3. J. Mater. Sci.,1988,23(10):3678-3682.
    [64]A. A. Bokov, M. A. Leshchenko, M. A. Malitskaya, and I. P. Raevski. Dielectric Spectra and Vogel-Fulcher Scaling in Pb(In1/2Nb1/2)O3 Relaxor Ferroelectrics. J. Phys.:Condens. Matter, 1999,11(25):4899-4911.
    [65]A. A. Bokov, and Z.-G. Ye. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure. J. Mater. Sci.,2006,41(1):31-52.
    [66]G. Burns, and F. H. Dacol. Glassy Polarization Behavior in Ferroelectric Compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun.,1983,48(10):853-856.
    [67]K. Uchino, and S. Nomura. Critical Exponents of the Dielectric Constants in Diffused-Phase-Transition Crystals. Ferr. Lett. Sec.,1982,44(3):55-61.
    [68]S. M. Pilgrim, A. E. Sutherland, and S. R. Winzer. Diffuseness as a Useful Parameter for Relaxor Ceramics. J. Am. Ceram. Soc.,1990,73(10):3122-3125.
    [69]朱晓丽.充满型乌青铜铌酸盐陶瓷的结构、介电性能与铁电相变[博士学位论文].杭州:浙江大学材料系,2010:11-14.
    [70]H. Vogel. The Temperature Dependence Law of the Viscosity of Fluids. Phys. Z,1921,22: 645-646.
    [71]G. S. Fulcher. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc.,1925,8(12):339-355.
    [72]G. S. Fulcher. Analysis of Recent Measurements of the Viscosity of Glasses II. J. Am. Ceram. Soc.,1925,8(12):789-794.
    [73]D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig. Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors. J. Appl. Phys.,1990,68(6):2916-2921.
    [74]G. A. Smolenskii, and A. I. Agranovskaya. Dielectric Polarization of a Number of Complex Compounds. Sov. Phys. Solid State,1960,1(10):1429-1437.
    [75]G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and S. N. Popov. Ferroelectrics with Diffuse Phase Transitions. Sov. Phys. Solid State,1961,2(11):2584-2594.
    [76]V. A. Isupov. Some Problems of Diffuse Ferroelectric Phase-Transitions. Ferroelectrics,1989, 90(1):113-118.
    [77]V. A. Isupov. Ferroelectric with Diffuse Phase-Transitions and Dipole Glasses.Bull. Acad. Sci. USSR. Phys. Ser.1990,54(6):1131-1134.
    [78]G. Burns, and F. H. Dacol. Crystalline Ferroelectrics with Glassy Polarization Behavior. Phys. Rev. B,1983,28(5):2527-2530.
    [79]L. E. Cross. Relaxor Ferroelectrics. Ferroelectrics,1987,76(1):241-267.
    [80]M. D. Glinchuk, and R Farhi. A Random Filed Theory Based Model for Ferroelectric Relaxors. J. Phys.:Condens. Matter,1996,8(37):6985-6996.
    [81]M. D. Glinchuk. Relaxor Ferroelectrics:from Cross Superparaelectric Model to Random Field Theory. British Ceramic Trans.,2004,103(2):76-82.
    [82]V. Westphal, W. Kleemann, and M. D. Glinchuk. Diffuse Phase Transitions and Random-Field-Induced Domain States of the "Relaxor" Ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett.,1992,68(6):847-850.
    [83]W. Kleemann. Random-Field Induced Antiferromagnetic, Ferroelectric and Structural Domain States. Int. J. Mod. Phys. B,1993,7(13):2469-2507.
    [84]D. Viehlan, J. F. Li, S. J. Jang, L. E. Cross, and M. Wutting. Dipolar-Glass Model for Lead Magnesium Niobate. Phys. Rev. B,1991,43(10):8316.
    [85]K. Kakegawa, J. Mohri, T. Takahashi, H. Yamamura, and S. Shirasaki. A Compositional Fluctuation and Properties of Pb(Zr, Ti)O3. Solid State Commun.,1977,24(11):769-772.
    [86]T. A. Vanderah. Talking Ceramics. Science,2002,298:1182-1184.
    [87]S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi. Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies. J. Am. Ceram. Soc.,1983,66(6):421-423.
    [88]X. C. Fan, X. M. Chen, and X. Q. Liu. Complex Permittivity Measurement on High Q Materials via Combined Numeriacal Approches. IEEE Trans. Microwave Theory Tech.,2005, 53(10):3130-3134.
    [89]L. Farber, M. Valant, M. A. Akbas, and P. K. Davies. Cation Ordering in Pb(Mg1/3Nb2/3)O3-Pb(Sc1/2Nb1/2)O3 (PMN-PSN) Solid Solutions. J. Am. Ceram. Soc.,2002, 85(9):2319-2324.
    [90]I. M. Reaney, E. L Collar, and N.Setter. Dielectric and Structural Characteristics of Ba-and Sr-Based Complex Perovskites as a Function of Tolerance Factor. Jpn. J. Appl. Phys.,1994, 33(7A):3984.
    [91]F. Izumi, and R. A. Dilanian. Recent Reserch Development in Physics, vol.3, Part Ⅱ.Trivandrum:Transworld Reserch Network.2002:699.
    [92]G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik. New Ferroelectrics of Complex Composition. Sov. Phys.-Solid State (Engl.Transl.),1961,2(11):2651-2654.
    [93]M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano. Designed Ferromagnetic, Ferroelectric Bi2NiMn06. J. Am. Chem. Soc.,2005,127(24):8889-8892.
    [94]D. J. Payne, R. G. Egdell, A. Walsh, G. W. Watson, J. Guo, P.-A. Glans, T. Learmonth, and K. E. Smith. Electronic Origins of Structural Distortions in Post-Transition Metal Oxides: Experimental and Theoretical Evidence for a Revision of the Lone Pair Model. Phys. Rev. Lett.,2006,96(15):157403.
    [95]M. W. Lufaso. Crystal Structures, Modeling, and Dielectric Property Relationships of 2:1 Ordered Ba3MM'2O9 (M= Mg, Ni, Zn; M'= Nb, Ta) Perovskites. Chem. Mater.,2004,16(11): 2148-2156.
    [96]W. Zhang, L. Li, and X. M. Chen. Effects of Oxygen Vacancy on Ferroelectricity in Ba(Fe1/2Nb1/2>03 Thin Film Grown by Pulsed Laser Deposition. J. Appl. Phys.,2009,106(10): 104108.
    [97]W. Zhang, Z. Wang, and X. M. Chen. Crystal Structure Evolution and Local Symmetry of Perovskite Solid Solution Ba[(Fe12Nb1/2)1-xTix]O3 Investigated by Raman Spectra. J. Appl. Phys.,2011,110(6):064113.
    [98]K. Tezuka, K. Henmi, and Y. Hinatsu. Magnetic Susceptibilities and Mossbauer Spectra of Perovskites A2FeNbO6 (A= Sr, Ba). J. solid State Chem.,2000,154(2):591-597.
    [99]Z. Wang, and X. M. Chen. Ferromagnetic and Antiferromagnetic Behavior in Ba(Fe05a05)03 Ceramics. J. Phys. D:Appl. Phys.,2009,42(17):175005.
    [100]H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward. Investigations of the Electronic Structure of d0 Transition Metal Oxides Belonging to the Perovskite Family. Solid State Chem.,2003,175(1):94-109.
    [101]E. Iguchi, H. Nakatsugawa, and K. Futakuchi. Polaronic Conduction in La2-xSrxCoO4 (0.25< x≤1.10) below Room Temperature. J. Solid State Chem.,1998,139(1):176-184.
    [102]K. R. S. Preethi Meher, and K. B. R. Varma. Colossal Dielectric Behavior of Semiconducting Sr2TiMnO6Ceramics. J. Appl. Phys.,2009,105(3):034113.
    [103]P. Lunkenheimer, R. Fitchtl, S. G. Ebbinghaus, and A. Loidl. Nonintrinsic Origin of the Colossal Dielectric Constants in CaCu3Ti4O12. Phys. Rev. B,2004,70(17):172102.
    [104]C. C. Wang, and L. W. Zhang. Polaron Relaxation Related to Localized Charge Carriers in CaCu3Ti4O12. Appl. Phys. Lett.,2007,90(14):142905.
    [105]V. V. Laguta, J. Rosa, L. Jastrabik, R. Blinc, P. Cevc, B. Zalar, M. Remskar, S. I. Raevskaya, and I. P. Raevski.93Nb NMR and Fe3+ EPR Study of Local Magnetic Properties of Magnetoelectric Pb(Fe1/2Nb1/2)O3. Mater. Res. Bull.,2010,45(11):1720-1727.
    [106]G. A. Samara. The Relaxational Properties of Compositionally Disordered ABO3 Perovskites. J. Phys.:Condens. Matter,2003,15(9):R367.
    [107]N. Setter, and L. E. Cross. The Contribution of Structural Disorder to Diffuse Phase Transitions in Ferroelectrics. J. Mater. Sci.,1980,15(10):2478-2482.
    [108]S. Chattopadhyay, P. Ayyub, V. R. Palkar, and M. Multani. Size-Induced Diffuse Phase Transition in the Nanocrystalline Ferroelectric PbTiO3. Phys. Rev. B,1995,52(18):13177.
    [109]V. S. Puli, R. Martinez, V. A. Kumar, J. F. Scott, and R. S. Katiyar. A Quaternary Lead Based Perovskite Structured Materials with Diffuse Phase Transition Behavior. Mater. Res. Bull.,2011,46(12):2527.
    [110]S. Singh. Diffuse Ferroelectric Phase Transition in BaTiO3 Nanoparticles Derived by Sol-Gel. Adv. Sci. Lett.,2012,11(1):39-42.
    [111]M. S. Al-Assiri, and M. M. El-Desoky. Synthesis, Structural and Ferroelectric Properties of Barium Titanate Based Glass-Ceramic Nano-Composites. J. Non-Cryst. Solids,2012, 358(12-13):1605-1610.
    [112]C. G. F. Stenger, and A. J. Burggraaf. Order-Disorder Reactions in the Ferroelectric Perovskites Pb(Sc1/2Nb1/2)O3 and Pb(Sc1/2Ta1/2)O3.I. Kinetics of the Ordering Process. Phys. Status Solidi A,1980,61(1):275-285.
    [113]F. Chu, N. Setter, and A. K. Tagantsev. The Spontaneous Relaxor-Ferroelectric Transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys.,1993,74(8):5129-5134.
    [114]T. Maiti, R. Guo, and A. S. Bhalla. Evaluation of Experimental Resume of BaZrxTi1-xO3 with Perspective to Ferroelectric Relaxor Family:An Overview. Ferroelectrics,2011,425(1): 4-26.
    [115]T. Maiti, R. Guo, and A. S. Bhalla. Structure-Property Phase Diagram of BaZrTi1-xO3 System. J. Am. Ceram. Soc.,2008,91(6):1769-1780.
    [116]Z. Wang, and X. M. Chen. Evolution from Relaxor-Like Dielectric to Ferroelectric in Ba[(Fe0.5Nb0.5)1-xTix]O3 Solid Solutions. Solid State Commun.,2011,151(9):708-711.
    [117]D. Varshney, R. N. P. Choudhary, C. Rinaldi, and R. S. Katiyar. Dielectric Dispersion and Magnetic Properties of Ba-Modified Pb(Fe1/2Nb1/2)O3. Appl. Phys. A,2007,89(3):793-798.
    [118]I. P. Raevski, S. P. Kubrin, S. I. Raevskaya, V. V. Titov, D. A. Sarychev, M. A. Malitskaya, I. N. Zakharchenko, and S. A. Prosandeev. Experimental Evidence of the Crucial Role of Nonmagnetic Pb Cations in the Enhancement of the Neel Temperature in Perovskite Pb1-xBaxFe1/2Nb1/2O3. Phys. Rev. B,2009,80(2):024108.
    [119]S. L. Swartz, and T. R. Shrout. Fabrication of Perovskite Lead Magnesium Niobate. Mater. Res. Bull.,1982,17(10):1245-1250.
    [120]S. Ananta, and N. W. Thomas. A Modified Two-Stage Mixed Oxide Synthetic Route to Lead Magnesium Niobate and Lead Iron Niobate. J. Eur. Ceram. Soc.,1999,19(2):155-163.
    [121]V. Bovtun, S. Kamba, S. Veljko, D. Nuzhnyy, K. Knizek, M. Savinov, and J. Petzelt. Relaxor-Like Behavior of Lead-Free Sr2LaTi2Nb3O15 Ceramics with Tetragonal Tungsten Bronze Structure. J. Appl. Phys.,2007,101(5):054115.
    [122]M. Wolters, and A. J. Burggraff. Relaxational Polarization and Diffuse Phase Transitions of La-Substituted Pb(Zr, Ti)O3-Ceramics. Mater. Res. Bull.,1975,10(5):417-423.
    [123]I.-K. Jeong, J. S. Ahn, B. G. Kim, S. Yoon, S. P. Singh, and D. Pandey. Short-and Medium-Range Structure of Multiferroic Pb(Fe1/2Nb1/2)O3 Studied Using Neutron Total Scattering Analysis. Phys. Rev. B,2011,83(6):064108.
    [124]M. Kuwabara, K. Goda, and K. Oshima. Coexistence of Normal and Diffuse Ferroelectric-Paraelectric Phase Transitions in (Pb, La)TiO3 Ceramics. Phys. Rev. B,1990, 42(16):10012.
    [125]J. F. Scott. Applications of Modern Ferroelectrics. Science,2007,135(5814):954-959.
    [126]W. M. Saslow. Scenario for the Vogel-Fulcher "law". Phys. Rev. B,1988,37(1):676-678.
    [127]Z. Y. Cheng, L. Y. Zhang, and X. Yao. Investigation of Glassy Behavior of Lead Magnesium Niobate Relaxors. J. Appl. Phys.,1996,79(11):8615-8619.
    [128]Z. Y. Cheng, R. S. Katiyar, X. Yao, and A. Guo. Dielectric Behavior of Lead Magnesium Niobate Relaxors. Phys. Rev. B,1997,55(13):8165-8174.
    [129]S. V. Ivanov, R. Tellgren, H. Rundlof, N. W. Thomas, and S. Ananta. Investigation of the Structure of the Relaxor Ferroelectric Pb(Fe1/2Nb1/2)O3 by Neutron Powder Diffraction. J. Phys.:Condens. Matter,2000,12(11):2393.
    [130]S. P. Singh, D. Pandey, S. Yoon, S. Baik, and N. Shin. Resolving the Characteristics of Morphotropic Phase Boundary in the (1-x)Pb(Fe1/2Nb1/2)O3-xPbTiO3 System:A Combined Dielectric and Synchrotron X-Ray Diffraction Study. Appl. Phys. Lett.,2007,90(18): 242915.
    [131]X. Hu, X. M. Chen, and S. Y. Wu. Preparation, Properties and Characterization of CaTiO3-Modified Pb(Fe1/2Nb1/2)O3 Dielectrics. J. Eur. Ceram. Soc.,2003,23(11):1919-1924.
    [132]A. F. Garcia-Flores, D. A. Tenne, Y. J. Choi, W. J. Ren, X. X. Xi, and S. W. Cheong. Temperature-Dependent Raman Scattering of Multiferroic Pb(Fe1/2Nb1/2)O3. J. Phys.: Condens. Matter,2011,23(1):015401.
    [133]O. Svitelskiy, and J. Toulouse. Polarized Raman Study of the Phonon Dynamics in Pb(Mg1/3Nb2/3)O3 Crystal. Phys. Rev. B,2003,68(10):104107.
    [134]B. J. Maier, A. M. Welsch, R. J. Angel, B. Mihailova, J. Zhao, J. M. Engel, L. A. Schmitt, C. Paulmann, M. Gospodinov, A. Friedrich, and U. Bismayer.A-Site Doping-Induced Renormalization of Structural Transformations in the PbSc0.5Nb0.5O3 Relaxor Ferroelectric under High Pressure. Phys. Rev. B,2010,81(17):174116.
    [135]B. Guttler, B. Mihailova, R. Stosch, U. Bismayer, and M. Gospodinov. Local Phenonmena in Relaxor-Ferroelectric PbSc0.5iT0.5O3 (B"= Nb, Ta) Studied by Raman Spectroscopy. J. Mol. Struct.,2003,661-662:469-479.
    [136]J. Zhao, A. E. Glazounov, and Q. M. Zhang. Neutron Diffractin Study of Electrostrictive Coefficient of Prototype Cubic Phase of Relaxor Ferroelectric Pb(Mg1/3Nb2/3)O3. Appl. Phys. Lett.,1998,72(9):1048-1050.
    [137]L. E. Cross. Relaxor Ferroelectrics. Ferroelectrics,1987,76(1):241-267.
    [138]D. L. Rousseau, R. P. Bauman, and S. P. S. Porto. Normal Mode Determination in Crystals. J. Raman Spectrosc.,1981,10(1):253-290.
    [139]D. M. Egales. Polar Modes of Lattice Vibration and Polaron Coupling Constants in Rutile(TiO2). J. Phys. Chem. Solids,1964,25(11):1212-1243.
    [140]张光寅,蓝国祥,王玉芳.晶格振动光谱学.北京:高等教育出版社,2001:65-87.
    [141]E. Granado, N. O. Moreno, A. Garcia, J. A. Sanjurjo, C. Rettori, I. Torriani, S. B. Oseroff, J. J. Neumeier, K. J. McClellan, S. W. Cheong, and Y. Tokura. Phonon Raman Scattering in R1-xAxMnO3+δ (R= La, Pr; A= Ca, Sr). Phys. Rev. B,1998,58(17):11435-11440.
    [142]P. M. Woodward. Octahedral Tilting in Perovskites. I. Geometrical Considerations. Acta Cryst. B,1997,53(1):32-43.
    [143]I. G. Siny, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla. Raman Spectroscopy of Mg-Ta Order-Disorder in BaMg1/3Ta2/3O3. J. Phys. Chem. Solids,1998,59(2):181-195.
    [144]J. B. Wu, C. W. Nan, Y. H. Lin, and Y. Deng. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett.,2002,89(21):217601-217604.
    [145]B. Mihailova, M. Gospodinov, B. Guttler, D. Petrova, R Stosch, and U. Bismayer. Ferroic nanoclusters in Relaxors:The Effect of Oxygen Vacancies. J. Phys.:Condens. Matter,2007, 19(24):246220.
    [146]B. Mihailova, U. Bismayer, B. Guttler, M. Gospodinov, and L. Konstantinov. Local Structure and Dynamics in Relaxor-Ferroelectric PbSc1/2Nb1/2O3 Single Crystals. J. phys.: Condens. Matter,2002,14(5):1091-1105.
    [147]N. Calos, J. Forrester, and T. J. White. Structure and Raman Analyses of the (A1-xPbx)TiO3 (A= Ca, Sr, Ba) Perovskites. J. Mater. Sci.,1995,30(19):4930-4935.
    [148]T. Zhang, W. R. Branford, H. J. Trodahl, A. Sharma, J. Rager, J. L. MaManus-Driscoll, and L. F. Cohen. Raman Spectroscopy of Highly Aligned Thin Films of Sr2FeMoO6. J. Raman Spectrosc.,2004,35(12):1081-1085.
    [149]R. Blinc, V. V. Laguta, B. Zalar, B. Zupancic, and M. Itoh. 17O and 93Nb NMR Investigation of Magnetoelectric Effect in Pb(Fe1/2Nb1/2)O3. J. Appl. Phys.,2008,104(8):084105.
    [150]O. Bidault, E. Husson, and A. Morell. Effects of Lead Vacancies on the Spontaneous Relaxor to Ferroelectric Phase Transition in Pb[(Mg1/3Nb2/3)0.9Ti0.1]O3. J. Appl. Phys.,1997, 82(11):5674.
    [151]A. M. Welsch, B. J. Maier, J. M. Engel, B. Mihailova, R. J. Angel, C. Paulmann, M. Gospodinov, A. Friedrich, R. Stosch, B. Guttler, D. Petrova, and U. Bismayer. Effect of Ba Incorporation on Pressure-Induced Structureal Changes in the Relaxor Ferroelectric PbSc0.5Ta0.5O3. Phys. Rev. B,2009,80(10):104118.
    [152]M. W. Lufaso, P. W. Barnes, and P. M. Woodward. Structure Prediction of Ordered and Disordered Multiple Octahedral Cation Perovskites Using SPuDS. Acta Cryst. B,2006,62(3): 397-410.
    [153]P. S. Halasyamani. Asymmetric Cation Coordination in Oxide Materials:Influence of Lone-Pair Cations on the Intra-Octahedral Distortion in d0 Transition Metals. Chem. Mater., 2004,16(19):3586-3592.
    [154]Docin. com. [2008-05-20]. http://www.docin.com/p-174324.html.
    [155]马妍.BiFeO3、YFeO3与YMnO3基陶瓷的介电弛豫与多铁性[博士学位论文].杭州:浙江大学材料系,2009:42-46.
    [156]W. Eerenstein, N. D. Mathurl, and J. F. Scott. Multiferroic and Magnetoelectric Materials. Nature,2006,442:759-765.
    [157]G. L. Yuan, K. Z. Baba-Kishi, J.-M. Liu, and Siu Wing Or. Multiferroic Properties of Single-Phase Bi0.85La0.15FeO3 Lead-Free Ceramics. J. Am. Ceram. Soc.,2006,89(10): 3136-3139.
    [158]M. Fiebig. Revival of the Magnetoelectric Effect. J. Phys. D:Appl. Phys.,2005,38(8): R123-152.
    [159]M. Fiebig, C. Degenhardt, and R. V. Pisarev. Interaction of Frustrated Magnetic Sublattices in ErMnO3. Phys. Rev. Lett.,2001,88(2):027203.
    [160]C. Y. Shi, Y. M. Hao, and Z. B. Hu. Local Valence and Physical Properties of Double Perovskite Nd2NiMnO6. J. Phys. D:Appl. Phys.,2011,44(24):245405-2454056.
    [161]G. H. Jonker. Magnetic and Semiconducting Properties of Perovskites Containing Manganese and Cobalt. J. Appl. Phys.,1966,37(3):1424-1430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700