芳香基官能化硅烷的制备及荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先设计制备了二苯基荧蒽和三种以硅为核的四面体荧蒽官能化硅烷,并对其进行了全面系统的性质结构研究。结果表明,在引入以硅为核的四面体结构后,与二苯基荧蒽相比,荧蒽官能化硅烷表现出更高的热稳定性以及更高的玻璃化转变温度,这些优异的热性质使得该官能化硅烷在应用于器件时将具有更好的稳定性和更长的器件寿命。通过对二苯基荧蒽和三种官能化硅烷在稀溶液中的紫外吸收光谱、荧光发射光谱和循环伏安曲线进行测试后,发现以硅为核的四面体结构的引入并不会明显改变荧蒽基团的共轭度,较好的保持了荧蒽自身的性质。不同的是,所有的荧蒽官能化硅烷相比二苯基荧蒽来说,都表现出更弱的聚集态荧光红移现象,这可归结于以硅为核四面体结构的引入可有效减弱聚集态中π-π相互作用以及分子间相互作用。此外,硅原子上其它的取代基对于整个分子的结构以及聚集态荧光性质也有着重要的影响,与二甲基和二苯基官能化硅烷相比,一甲基一苯基官能化硅烷表现出更加优异的聚集态荧光性能,并且在固态的荧光光谱与在稀溶液中荧光光谱相比几乎没有变化,是一种特别适合应用于光电器件的发光材料。该研究工作将对应用于光电领域的以硅为核的化合物的设计和合成提供指导作用。
     基于以上所合成的一系列荧蒽官能化硅烷均具有强烈的蓝光发射,在完成对其自身荧光性质的研究后,进一步展开了其在共混体系中荧光行为的研究。选用合成的具有优异固态发光性质的蓝光发射单元官能化硅烷双(7,10-二苯基-荧蒽基)甲基苯基硅烷(BFMPS),作为共混体系中的给体单元。此外选择具有较好柔顺性的聚硅氧烷链对苝酰亚胺进行修饰,合成了苝酰亚胺封端的聚硅氧烷(简称PECP)。该硅氧烷表现出强烈的橙光发射,以及优异的溶解性和成膜能力。PECP的紫外吸收光谱与BFMPS的荧光发射光谱在450-500nm波长范围内具有较好的重叠,从而提供两者发生能量转移的可能性。研究了不同共混比例的PECP/BFMPS共混体系在二氯甲烷稀溶液中的荧光性质,制备了一系列不同共混比例PECP/BFMPS体系的固态薄膜。该共混体系在稀溶液和固态薄膜中都表现出基于能量转移的可调多色荧光发射,并且在比例合适时均可以发射白光。此外,进一步研究了该共混体系在稀溶液和薄膜中的光物理性质,发现在稀溶液和薄膜中,该共混体系存在两种不同的能量传递机制:在稀溶液中,该共混体系能量转移机理为辐射能量转移机制,而在固态薄膜中为Foster能量转移机制。
     基于上述关于荧蒽官能化硅烷与花酰亚胺能量转移的研究,进一步将其应用于制备新型功能材料。合成了以环己基修饰的花酰亚胺(CH-PTCDI)作为掺杂剂分子,并选用双(7,10-二苯基-荧蒽基)甲基苯基硅烷(BFMPS)作为分散剂分子,通过再沉淀法制备了一系列CH-PTCDI含量不同的BFMPS/CH-PTCDI有机复合纳米颗粒,这是第一次将官能化硅烷引入有机复合纳米发光颗粒的制备中。在该纳米颗粒中,观测到了从BFMPS向CH-PTCDI的高效能量转移,而且所得到的一系列有机复合纳米颗粒均表现出强荧光发射以及荧光可调控性能,在该复合纳米颗粒中,微小的CH-PTCDI含量变化就能明显地改变复合纳米颗粒的荧光性能。通过调节CH-PTCDI含量,我们实现了该有机复合纳米颗粒从蓝光到红光的调控。当CH-PTCDI含量适当时,得到了具有重要应用价值的白光复合纳米颗粒。
     聚集诱导发光研究是目前发光材料研究中的热点,它有可能从根本上解决荧光分子在聚集态荧光减弱和猝灭的问题。设计开发了合成简便、结构简单的新型聚集诱导发光体系,即树枝状多苯基体系。合成了四苯基苯和五苯基苯,对其自身的光学性质进行了研究,发现其在低浓度时具有聚集诱导发光增强性质(AIEE),而在高浓度时,展现出独特的与其它AIE分子不同的特性,这归结于其独特的分子结构及堆积方式。此外,进一步设计合成了以硅为核的四苯基苯化合物,研究发现,该化合物同样呈现出与上述两种分子相似的聚集诱导发光性质,且以硅为核结构的引入有效地增强了四苯基苯分子的荧光强度和调节其发光行为,我们将这种增强和调节现象称之为“硅核效应”。
In this paper, diphenylfluoranthene and three novel silicon-cored diphenylfluoranthene derivatives were synthesized by convenient ways. The systematic properties and structures of four compounds were investigated and discussed. In contrast to diphenylfluoranthene, these silicone-cored diphenylfluoranthene derivatives show higher thermal stabilities and glass transition temperatures. These silicon-cored compounds with excellent thermal properties will be suitable to apply in organic opticelectric devices. The absorption spectra, fluorescence emission spectra and cyclic voltammetry (CV) spectra of four compounds in dilute solution were tested and it was found that they exhibited similar spectra in dilute solution, indicating that the silicon-cored structures did not change the conjugation length of diphenylfluoranthene and well retained the nature properties of diphenylfluoranthene. However, the silicon-cored derivatives exhibited better fluorescent emission properties in solid state than diphenylfluoranthene because these silicone-cored derivates exhibited weaker π-π interactions among molecules. Furthermore, it was found that the substituent groups on Si atom have great influence on the fluorescent emission properties in solid state. The silicon-cored methylphenyl diphenylfluoranthene derivative exhibited better fluorescence emission than dimethyl and diphenyl silicon-cored derivatives. And it showed similar fluorescence emission spectra in both solution and solid state which may be the most appreciate candidate for efficient solid-state emitter.
     A silicon-cored fluoranthene derivative named bis (7,10-diphenyl-fluoranthene) methylphenylsilane (BFMPS) was designed and synthesized as the donor. A perylene end-capped polydimethylsiloxane (PECP) with high orange emission, good solubility and film forming ability was synthesized and used as the acceptor for preparing the blending systems. A series of tunable luminescence was obtained by controlling the donor/acceptor ratios. The absorption spectrum of PECP showed a good overlap with the luminescent emission spectrum of BFMPS from400nm to550nm. This overlapping indicated the possibility of energy transfer from BFMPS to PECP. Efficient energy transfer was detected in these unique blending systems, which were composed of small molecules and fluorescence macromolecules. Based on the energy transfer, the BFMPS/PECP blending system showed tunable fluorescence emission colors in both solution and thin films. In particular, pure white emission was obtained when the adequate blending ratio was adopted. Further characterizations and investigations were carried out to examine the energy transfer from donor to acceptor in both solution and solid thin films. Two different energy transfer mechanisms were deduced from the investigation of the ultraviolet absorption and luminescence spectra. Radiative energy transfer was dominant in solution while Foster resonant energy transfer was dominant in thin films.
     Based on the energy transfer mechanism between BFMPS and perylene tetracarboxylic acid bisimide, functional materials were prepared. N,N-dicyclohexyl-perylene-3,4,9,10-tetracarboxylic acid bisimide (CH-PTCDI), a PTCDI derived from simple modification, was selected as the acceptor for preparing energy transfer system. a series of organic composte BFMPS/CH-PTCDI nanoparticles with different CH-PTCDI content by reprecipitation were obtained. To our knowledge, it was the first report that the silicon-containing molecules were used in orgainc composite nanoparticles. The composite nanoparticles exhibited good stability and thermal properties. The fluorescence emission of the perylene bisimide dye can be efficiently enhanced in composite nanoparticles based on efficient Foster resonant energy transfer. The composite nanoparticles exhibited tunable emission colors from blue to red by changing the concentration of perylene bisimide dye. White-light emission with CIE coordinates (0.327,0.339) was obtained as a good candidate for applications in white optoelectronic devices.
     The materials with aggregation induced emission (AIE) were important in luminescenct materials because they could fundamentally solve the aggregation caused quenching of chromophore. In this paper, a novel AIE system based on dendritic bezene was reported. Tetraphenyl benzene and its two derivates were synthesized and their optical behaviors were partically investigated. All the three compounds exhibited aggregation induced emission enhancement (AIEE) properties at a low concentration. The AIEE mechnism was investigated and indue to restricted intramolecular rotation and unique molecular packing modes. However, this kind of dendritic benzene derivatives exhibited interesting optical properties with increased concentration which is different from common AIE molecules. Furthermore, a new phenonmenon that the silicon-cored structure could efficiently enhance emission intensity and adjust emission colors of dendritic benzene was found. The phenomenon was called "silicon-cored effect." This effect may give some guidance to the design of new luminescent materials with AIE properties.
引文
[1]Chan LH, Yeh HC, Chen CT. Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds. Adv. Mater.,2001,13,1637-1641.
    [2]Chan L-H, Lee R-H, Hsieh C-F, Yeh H-C, Chen C-T. Optimization of high-performance blue organic light-emitting diodes containing tetraphenylsilane molecular glass materials. J. Am. Chem. Soc.,2002,124,6469-6479.
    [3]Liu X-M, He C, Huang J, Xu J. Highly efficient blue-light-emitting glass-forming molecules based on tetraarylmethane/silane and fluorene:Synthesis and thermal, optical, and electrochemical properties. Chem. Mater.,2005,17,434-441.
    [4]Wei W, Djurovich PI, Thompson ME. Properties of fluorenyl silanes in organic light emitting diodes. Chem. Mater.,2010,22,1724-1731.
    [5]Bai DR, Liu XY, Wang S. Charge-Transfer Emission Involving Three-Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing. Chemistry-A European Journal, 2007,13,5713-5723.
    [6]Shen Q, Ye S, Yu G, Lu P, Liu Y. Synthesis of tetraarylsilanes and its usage as blue emitters in electroluminescence. Synth. Met.,2008,158,1054-1058.
    [7]Bai D, Han S, Lu Z-H, Wang S. Bright blue luminescent pyrenyl-containing organosilicon compounds with contrasting charge transport functionality-SiPh2 (p-C6H4-pyrenyl)(p-C6H4-N-benzimidazolyl) and SiPh2 (p-C6H4-pyrenyl)[p-C6H4-NPh (1-naph)]. Can. J. Chem.,2008,86,230-237.
    [8]Kim SH, Jang J, Lee SJ, Lee JY. Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents. Thin Solid Films 2008,517,722-726.
    [9]Lyu YY, Kwak J, Kwon O, Lee SH, Kim D, Lee C, et al. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices. Adv. Mater.,2008,20,2720-2729.
    [10]Han W-S, Son H-J, Wee K-R, Min K-T, Kwon S, Suh I-H, et al. Silicon-Based blue Phosphorescence host materials:structure and photophysical Property relationship on Methyl/Phenylsilanes Adorned with 4-(N-Carbazolyl) phenyl groups and Optimization of their electroluminescence by Peripheral 4-(N-Carbazolyl) phenyl Numbers. J. Phys. Chem. C,2009,113,19686-19693.
    [11]Lyu YY, Kwak J, Jeon WS, Byun Y, Lee HS, Kim D, et al. Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes. Adv. Funct. Mater.,2009,19,420-427.
    [12]Gong S, Chen Y, Yang C, Zhong C, Qin J, Ma D. De Novo Design of Silicon-Bridged Molecule Towards a Bipolar Host:All-Phosphor White Organic Light-Emitting Devices Exhibiting High Efficiency and Low Efficiency Roll-Off. Adv. Mater.,2010,22,5370-5373.
    [13]Gong S, Chen Y, Luo J, Yang C, Zhong C, Qin J, et al. Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off. Adv. Funct. Mater.,2011,21, 1168-1178.
    [14]Gong S, Zhong C, Fu Q, Ma D, Qin J, Yang C. Extension of Molecular Structure toward Solution-Processable Hosts for Efficient Blue Phosphorescent Organic Light-Emitting Diodes. J. Phys. Chem. C,2012,117,549-555.
    [15]Wang D, Niu Y, Wang Y, Han J, Feng S. Tetrahedral silicon-centered imidazolyl derivatives:Promising candidates for OLEDs and fluorescence response of Ag (I) ion. J. Organomet. Chem.,2010,695,2329-2337.
    [16]Liu X-M, Lin T, Huang J, Hao X-T, Ong KS, He C. Hyperbranched blue to red light-emitting polymers with tetraarylsilyl cores:Synthesis, optical and electroluminescence properties, and ab initio modeling studies. Macromolecules, 2005,38,4157-4168.
    [17]Liu X-M, Xu J, Lu X, He C. A comparative study on luminescent copolymers of fluorene and carbazole with conjugated or δ-Si interrupted structures:steric effects. Macromolecules,2006,39,1397-1402.
    [18]Ren X, Li J, Holmes RJ, Djurovich PI, Forrest SR, Thompson ME. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices. Chem. Mater., 2004,16,4743-4747.
    [19]Kim YH, Jeong HC, Kim SH, Yang K, Kwon SK. High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene. Adv. Funct. Mater.,2005,15,1799-1805.
    [20]Kang J-W, Lee D-S, Park H-D, Park Y-S, Kim JW, Jeong W-I, et al. Silane-and triazine-containing hole and exciton blocking material for high-efficiency phosphorescent organic light emitting diodes. J. Mater. Chem.,2007,17,3714-3719.
    [21]Shih P-I, Chien C-H, Chuang C-Y, Shu C-F, Yang C-H, Chen J-H, et al. Novel host material for highly efficient blue phosphorescent OLEDs. J. Mater. Chem.,2007, 17,1692-1698.
    [22]Lee KH, Kang LK, Lee JY, Kang S, Jeon SO, Yook KS, et al. Molecular Engineering of Blue Fluorescent Molecules Based on Silicon End-Capped Diphenylaminofluorene Derivatives for Efficient Organic Light-Emitting Materials. Adv. Funct. Mater.,2010,20,1345-1358.
    [23]Fan C, Chen Y, Liu Z, Jiang Z, Zhong C, Ma D, et al. Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy:host materials for efficient blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2013,1,463-469.
    [24]May F, Al-Helwi M, Baumeier Br, Kowalsky W, Fuchs E, Lennartz C, et al. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes. J. Am. Chem. Soc.,2012,134,13818-13822.
    [25]Wang Q, Liu H, Lu H, Xu Z, Lai G, Li Z, et al. Synthesis, characterization and solid-state emission properties of arylsilyl-substituted pyrene derivatives. Dyes Pigm., 2013,99,771-778.
    [26]You Y, An C-G, Lee D-S, Kim J-J, Park SY. Silicon-containing dendritic tris-cyclometalated Ir (III) complex and its electrophosphorescence in a polymer host. J. Mater. Chem.,2006,16,4706-4713.
    [27]Whang DR, Sakai K, Park SY. Highly Efficient Photocatalytic Water Reduction with Robust Iridium (III) Photosensitizers Containing Arylsilyl Substituents. Angewandte Chemie,2013,125,11826-11829.
    [28]Chan KL, McKiernan MJ, Towns CR, Holmes AB. Poly (2,7-dibenzosilole):a blue light emitting polymer. J. Am. Chem. Soc.,2005,127,7662-7663.
    [29]Wang E, Li C, Mo Y, Zhang Y, Ma G, Shi W, et al. Poly (3,6-silafluorene-co-2, 7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. J. Mater. Chem.,2006,16, 4133-4140.
    [30]Wang E, Li C, Peng J, Cao Y. High-efficiency blue light-emitting polymers based on 3,6-silafluorene and 2,7-silafluorene. J. Polym. Sci., Part A:Polym. Chem.,2007,45,4941-4949.
    [31]Wang J, Zhang C-q, Zhong C-m, Hu S-j, Chang X-y, Mo Y-q, et al. Highly efficient and stable deep blue light emitting poly (9,9-dialkoxyphenyl-2, 7-silafluorene):synthesis and electroluminescent properties. Macromolecules,2010, 44,17-19.
    [32]Brouwer HJ, Krasnikov W, Hilberer A, Hadziioannou G Blue superradiance from neat semiconducting alternating copolymer films. Adv. Mater.,1996,8, 935-937.
    [33]Garten F, Hilberer A, Cacialli F, Esselink E, van Dam Y, Schlatmann B, et al. Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration. Adv. Mater.,1997,9,127-131.
    [34]Paik KL, Baek NS, Kim HK, Lee J-H, Lee Y. White light-emitting diodes from novel silicon-based copolymers containing both electron-transport oxadiazole and hole-transport carbazole moieties in the main chain. Macromolecules,2002,35, 6782-6791.
    [35]Jiang X, Liu S, Liu MS, Herguth P, Jen AY, Fong H, et al. Perfluorocyclobutane-Based Arylamine Hole-Transporting Materials for Organic and Polymer Light-Emitting Diodes. Adv. Funct. Mater.,2002,12,745-751.
    [36]Su F-K, Hong J-L, Lin L-L. Light emitting oligomers containing 2,3,4, 5-tetraphenylthiophenyl moiety and silyl linkage. Synth. Met.,2004,142,63-69.
    [37]Jacky W, SingaKwok H, ZhongaTang B. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun.,2001,1740-1741.
    [38]Hong Y, Lam JW, Tang BZ. Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.,2009,4332-4353.
    [39]An B-K, Kwon S-K, Jung S-D, Park SY. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc.,2002,124,14410-14415.
    [40]ZhongaTang B, Lee PP. Efficient blue emission from siloles. J. Mater. Chem., 2001,11,2974-2978.
    [41]Chen J, Law CC, Lam JW, Dong Y, Lo SM, Williams ID, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2, 3,4,5-tetraphenylsiloles. Chem. Mater.,2003,15,1535-1546.
    [42]Boydston A, Yin Y, Pagenkopf BL. Synthesis and electronic properties of donor-acceptor π-conjugated siloles. J. Am. Chem. Soc.,2004,126,3724-3725.
    [43]Lee J, Liu Q-D, Bai D-R, Kang Y, Tao Y, Wang S.2,3,4,5-Tetrafunctionalized siloles:syntheses, structures, luminescence, and electroluminescence. Organometallics,2004,23,6205-6213.
    [44]Boydston AJ, Pagenkopf BL. Improving Quantum Efficiencies of Siloles and Silole-Derived Butadiene Chromophores through Structural Tuning. Angewandte Chemie,2004,116,6496-6498.
    [45]Bhongale CJ, Chang C-W, Wei-Guang Diau E, Hsu C-S, Dong Y, Tang B-Z. Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions. Chem. Phys. Lett.,2006,419,444-449.
    [46]He G, Peng H, Liu T, Yang M, Zhang Y, Fang Y. A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J. Mater. Chem.,2009,19, 7347-7353.
    [47]Zhan X, Barlow S, Marder SR. Substituent effects on the electronic structure of siloles. Chem. Commun.,2009,1948-1955.
    [48]Son H-J, Han W-S, Wee KR, Lee S-H, Hwang A-R, Kwon S, et al. Intermolecular peripheral 2,5-bipyridyl interactions by cyclization of 1, l'-silanylene unit of 2,3,4,5-aryl substituted siloles:enhanced thermal stability, high charge carrier mobility, and their application to electron transporting layers for OLEDs. J. Mater. Chem.,2009,19,8964-8973.
    [49]Liu J, Zhong Y, Lam JW, Lu P, Hong Y, Yu Y, et al. Hyperbranched conjugated polysiloles:synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules,2010,43,4921-4936.
    [50]Wu WC, Chen CY, Tian Y, Jang SH, Hong Y, Liu Y, et al. Enhancement of Aggregation-Induced Emission in Dye-Encapsulating Polymeric Micelles for Bioimaging. Adv. Funct. Mater.,2010,20,1413-1423.
    [51]Amro K, Clement S, Dejardin P, Douglas WE, Gerbier P, Janot J-M, et al. Supported thin flexible polymethylhydrosiloxane permeable films functionalised with silole groups:new approach for detection of nitroaromatics. J. Mater. Chem.,2010, 20,7100-7103.
    [52]Yabusaki Y, Ohshima N, Kondo H, Kusamoto T, Yamanoi Y, Nishihara H. Versatile Synthesis of Blue Luminescent Siloles and Germoles and Hydrogen-Bond-Assisted Color Alteration. Chemistry-A European Journal,2010, 16,5581-5585.
    [53]Luo Q, Gu L, Wang C, Liu J, Zhang W, Xi Z. Synthesis of functionalized siloles from Si-tethered diynes. Tetrahedron Lett.,2009,50,3213-3215.
    [54]Zhao Z, Liu J, Yip Lam JW, Chan CY, Qiu H, Tang BZ. Luminescent aggregates of a starburst silole-triphenylamine adduct for sensitive explosive detection. Dyes Pigm.,2011,91,258-263.
    [55]Du X, Wang ZY. Donor-acceptor type silole compounds with aggregation-induced deep-red emission enhancement:synthesis and application for significant intensification of near-infrared photoluminescence. Chem. Commun., 2011,47,4276-4278.
    [56]Mahtab F, Yu Y, Lam JW, Liu J, Zhang B, Lu P, et al. Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications. Adv. Funct. Mater.,2011,21,1733-1740.
    [57]Zhao Z, Liu D, Mahtab F, Xin L, Shen Z, Yu Y, et al. Synthesis, Structure, Aggregation-Induced Emission, Self-Assembly, and Electron Mobility of 2, 5-Bis (triphenylsilylethynyl)-3,4-diphenylsiloles. Chemistry-A European Journal, 2011,17,5998-6008.
    [58]Jiang T, Jiang Y, Qin W, Chen S, Lu Y, Lam JW, et al. Naphthalene-substituted 2, 3,4,5-tetraphenylsiloles:synthesis, structure, aggregation-induced emission and efficient electroluminescence. J. Mater. Chem.,2012,22,20266-20272.
    [59]Zhang LH, Jiang T, Wu LB, Wan JH, Chen CH, Pei YB, et al.2,3,4, 5-Tetraphenylsilole-Based Conjugated Polymers:Synthesis, Optical Properties, and as Sensors for Explosive Compounds. Chemistry-An Asian Journal,2012,7, 1583-1593.
    [60]Shi H, Liu J, Geng J, Tang BZ, Liu B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc.,2012,134,9569-9572.
    [61]Zhao Z, Jiang T, Guo Y, Ding L, He B, Chang Z, et al. Silole-containing poly (silylenevinylene) s:Synthesis, characterization, aggregation-enhanced emission, and explosive detection. J. Polym. Sci., Part A:Polym. Chem.,2012,50,2265-2274.
    [62]Mei J, Wang J, Sun JZ, Zhao H, Yuan W, Deng C, et al. Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. Chemical Science,2012,3,549-558.
    [63]Yu Y, Liu J, Zhao Z, Ng KM, Luo KQ, Tang BZ. Facile preparation of non-self-quenching fluorescent DNA strands with the degree of labeling up to the theoretic limit. Chem. Commun.,2012,48,6360-6362.
    [64]Xu X, Li J, Li Q, Huang J, Dong Y, Hong Y, et al. A Strategy for Dramatically Enhancing the Selectivity of Molecules Showing Aggregation-Induced Emission towards Biomacromolecules with the Aid of Graphene Oxide. Chemistry-A European Journal,2012,18,7278-7286.
    [65]Mei J, Wang J, Qin A, Zhao H, Yuan W, Zhao Z, et al. Construction of soft porous crystal with silole derivative:strategy of framework design, multiple structural transformability and mechanofluorochromism. J. Mater. Chem.,2012,22, 4290-4298.
    [66]Jim CK, Lam JW, Qin A, Zhao Z, Liu J, Hong Y, et al. Luminescent and Light Refractive Polymers:Synthesis and Optical and Photonic Properties of Poly (arylene ethynylene) s Carrying Silole and Tetraphenylethene Luminogenic Units. Macromol. Rapid Commun.,2012,33,568-572.
    [67]Yuan WZ, Hu R, Lam JW, Xie N, Jim CK, Tang BZ. Conjugated Hyperbranched Poly (aryleneethynylene) s:Synthesis, Photophysical Properties, Superquenching by Explosive, Photopatternability, and Tunable High Refractive Indices. Chemistry-A European Journal,2012,18,2847-2856.
    [68]Zhou J, He B, Chen B, Lu P, Sung HH, Williams ID, et al. Deep blue fluorescent 2,5-bis (phenylsilyl)-substituted 3,4-diphenylsiloles:Synthesis, structure and aggregation-induced emission. Dyes Pigm.,2013,99,520-525.
    [69]Yin S, Zhang J, Feng H, Zhao Z, Xu L, Qiu H, et al. Zn< sup> 2+</sup>-selective fluorescent turn-on chemosensor based on terpyridine-substituted siloles. Dyes Pigm.,2012,95,174-179.
    [70]Tracy HJ, Mullin JL, Klooster WT, Martin JA, Haug J, Wallace S, et al. Enhanced photoluminescence from group 14 metalloles in aggregated and solid solutions. Inorg. Chem.,2005,44,2003-2011.
    [71]Lai C-T, Hong J-L. Aggregation-Induced Emission in Tetraphenylthiophene-Derived Organic Molecules and Vinyl Polymer. J. Phys. Chem. B,2010,114,10302-10310.
    [72]Fukazawa A, Ichihashi Y, Yamaguchi S. Intense fluorescence of l-ary1-2,3,4, 5-tetraphenylphosphole oxides in the crystalline state. New J. Chem.,2010,34, 1537-1540.
    [73]Banerjee M, Emond SJ, Lindeman SV, Rathore R. Practical synthesis of unsymmetrical tetraarylethylenes and their application for the preparation of [triphenylethylene-spacer-triphenylethylene] triads. J. Org. Chem.,2007,72, 8054-8061.
    [74]Shih PI, Chuang CY, Chien CH, Diau EG, Shu CF. Highly Efficient Non-Doped Blue-Light-Emitting Diodes Based on an Anthrancene Derivative End-Capped with Tetraphenylethylene Groups. Adv. Funct. Mater.,2007,17,3141-3146.
    [75]Yuan WZ, Lu P, Chen S, Lam JW, Wang Z, Liu Y, et al. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission:Development of Highly Efficient Light Emitters in the Solid State. Adv. Mater.,2010,22,2159-2163.
    [76]Vyas VS, Rathore R. Preparation of a tetraphenylethylene-based emitter: Synthesis, structure and optoelectronic properties of tetrakis (pentaphenylphenyl) ethylene. Chem. Commun.,2010,46,1065-1067.
    [77]Zhao Z, Chen S, Lam JW, Lu P, Zhong Y, Wong KS, et al. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem. Commun.,2010,46,2221-2223.
    [78]Yuan WZ, Chen S, Lam JW, Deng C, Lu P, Sung HH, et al. Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem. Commun.,2011,47,11216-11218.
    [79]Liu Y, Chen S, Lam JW, Lu P, Kwok RT, Mahtab F, et al. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater.,2011,23,2536-2544.
    [80]Wang J, Mei J, Hu R, Sun JZ, Qin A, Tang BZ. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc.,2012,134,9956-9966.
    [81]Zhao Z, Lam JW, Chan CY, Chen S, Liu J, Lu P, et al. Stereoselective synthesis, efficient light emission, and high bipolar charge mobility of chiasmatic luminogens. Adv. Mater.,2011,23,5430-5435.
    [82]Wang J, Mei J, Yuan W, Lu P, Qin A, Sun J, et al. Hyperbranched polytriazoles with high molecular compressibility:aggregation-induced emission and superamplified explosive detection. J. Mater. Chem.,2011,21,4056-4059.
    [83]Yuan WZ, Yu Z-Q, Tang Y, Lam JW, Xie N, Lu P, et al. High solid-state efficiency fluorescent main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics. Macromolecules,2011,44,9618-9628.
    [84]Zhao Z, Deng C, Chen S, Lam JW, Qin W, Lu P, et al. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chem. Commun.,2011,47,8847-8849.
    [85]Zhao Z, Chen S, Lam JW, Wang Z, Lu P, Mahtab F, et al. Pyrene-substituted ethenes:aggregation-enhanced excimer emission and highly efficient electroluminescence. J. Mater. Chem.,2011,21,7210-7216.
    [86]Lu P, Lam JW, Liu J, Jim CK, Yuan W, Chan CY, et al. Regioselective Alkyne Polyhydrosilylation:Synthesis and Photonic Properties of Poly (silylenevinylene) s. Macromolecules,2011,44,5977-5986.
    [87]Zhao Z, Chen S, Deng C, Lam JW, Chan CY, Lu P, et al. Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light-emitting diodes. J. Mater. Chem.,2011,21,10949-10956.
    [88]Zhao Q, Zhang XA, Wei Q, Wang J, Shen XY, Qin A, et al. Tetraphenylethene modified perylene bisimide:effect of the number of substituents on AIE performance. Chem. Commun.,2012,48,11671-11673.
    [89]Shen XY, Wang YJ, Zhao E, Yuan WZ, Liu Y, Lu P, et al. Effects of Substitution with Donor-Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. J. Phys. Chem. C,2013,117,7334-7347.
    [90]Wang J, Mei J, Zhao E, Song Z, Qin A, Sun JZ, et al. Ethynyl-Capped Hyperbranched Conjugated Polytriazole:Click Polymerization, Clickable Modification, and Aggregation-Enhanced Emission. Macromolecules,2012,45, 7692-7703.
    [91]Zhao Z, Chan CY, Chen S, Deng C, Lam JW, Jim CK, et al. Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. J. Mater. Chem.,2012,22,4527-4534.
    [92]Zhao Z, Geng J, Chang Z, Chen S, Deng C, Jiang T, et al. A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. J. Mater. Chem.,2012,22, 11018-11021.
    [93]Jacky W, SingaKwok H, ZhongaTang B. Tuning the electronic nature of aggregation-induced emission chromophores with enhanced electron-transporting properties. J. Mater. Chem.,2012,22,5184-5189.
    [94]Yuan WZ, Yu Z-Q, Lu P, Deng C, Lam JW, Wang Z, et al. High efficiency luminescent liquid crystal:aggregation-induced emission strategy and biaxially oriented mesomorphic structure. J. Mater. Chem.,2012,22,3323-3326.
    [95]Yuan WZ, Gong Y, Chen S, Shen XY, Lam JW, Lu P, et al. Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics:molecular design, synthesis, photophysical behaviors, and OLED application. Chem. Mater.,2012,24,1518-1528.
    [96]Zhao Q, Zhang S, Liu Y, Mei J, Chen S, Lu P, et al. Tetraphenylethenyl-modified perylene bisimide:aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem.,2012,22,7387-7394.
    [97]Yuan WZ, Mahtab F, Gong Y, Yu Z-Q, Lu P, Tang Y, et al. Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles. J. Mater. Chem.,2012,22,10472-10479.
    [98]Chen S, Qin W, Zhao Z, Tang BZ, Kwok H-S. One-step fabrication of organic nanoparticles as scattering media for extracting substrate waveguide light from organic light-emitting diodes. J. Mater. Chem.,2012,22,13386-13390.
    [99]Shen XY, Yuan WZ, Liu Y, Zhao Q, Lu P, Ma Y, et al. Fumaronitrile-based fluorogen:red to near-infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer. J. Phys. Chem. C,2012, 116,10541-10547.
    [100]Heng L, Qin W, Chen S, Hu R, Li J, Zhao N, et al. Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features. J. Mater. Chem.,2012,22,15869-15873.
    [101]Chan CY, Zhao Z, Lam JW, Liu J, Chen S, Lu P, et al. Efficient Light Emitters in the Solid State:Synthesis, Aggregation-Induced Emission, Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores and Multiple Triarylvinyl Peripherals. Adv. Funct. Mater.,2012,22,378-389.
    [102]Hu R, Lam JW, Liu J, Sung HH, Williams ID, Yue Z, et al. Hyperbranched conjugated poly (tetraphenylethene):synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polymer Chemistry,2012,3,1481-1489.
    [103]SingaKwok H, ZhongaTang B. Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chem. Commun.,2013, 49,594-596.
    [104]Hu R, Lam JW, Liu Y, Zhang X, Tang BZ. Aggregation-Induced Emission of Tetraphenylethene-Hexaphenylbenzene Adducts:Effects of Twisting Amplitude and Steric Hindrance on Light Emission of Nonplanar Fluorogens. Chemistry-A European Journal,2013,19,5617-5624.
    [105]SingaKwok H, ZhongaTang B. From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chem. Commun.,2013,49, 2491-2493.
    [106]Ning Z, Chen Z, Zhang Q, Yan Y, Qian S, Cao Y, et al. Aggregation-induced Emission (AIE)-active Starburst Triarylamine Fluorophores as Potential Non-doped Red Emitters for Organic Light-emitting Diodes and C12 Gas Chemodosimeter. Adv. Funct. Mater.,2007,17,3799-3807.
    [107]Feng X, Tong B, Shen J, Shi J, Han T, Chen L, et al. Aggregation-induced emission enhancement of aryl-substituted pyrrole derivatives. J. Phys. Chem. B,2010, 114,16731-16736.
    [108]Tong H, Hong Y, Dong Y, Ren Y, Haussler M, Lam JW, et al. Color-tunable, aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings. J. Phys. Chem. B,2007,111,2000-2007.
    [109]Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, et al. Multibranched triarylamine end-capped triazines with aggregation-induced emission and large two-photon absorption cross-sections. Chem. Commun.,2010,46,4689-4691.
    [1]Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl. Phys. Lett., 1987,51,913-915.
    [2]Yook KS, Lee JY. Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Mater.,2012,24,3169-3190.
    [3]Zhu M, Yang C. Blue fluorescent emitters:design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev.,2013,42,4963-4976.
    [4]Liu F, Tang C, Chen Q-Q, Shi F-F, Wu H-B, Xie L-H, et al. Supramolecular n-n Stacking Pyrene-Functioned Fluorenes:Toward Efficient Solution-Processable Small Molecule Blue and White Organic Light Emitting Diodes. J. Phys. Chem. C,2009, 113,4641-4647.
    [5]Kumar D, Thomas KRJ, Lin C-C, Jou J-H. Pyrenoimidazole-Based Deep-Blue-Emitting Materials:Optical, Electrochemical, and Electroluminescent Characteristics. Chemistry-An Asian Journal,2013,8,2111-2124.
    [6]Lyu Y-Y, Kwak J, Kwon O, Lee S-H, Kim D, Lee C, et al. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices. Adv. Mater.,2008,20,2720-2729.
    [7]Oldham WJ, Lachicotte RJ, Bazan GC. Synthesis, spectroscopy, and morphology of tetrastilbenoidmethanes. J. Am. Chem. Soc.,1998,120,2987-2988.
    [8]Kumar D, Thomas KRJ, Chen Y-L, Jou Y-C, Jou J-H. Synthesis, optical properties, and blue electroluminescence of fluorene derivatives containing multiple imidazoles bearing polyaromatic hydrocarbons. Tetrahedron,2013,69,2594-2602.
    [9]May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, et al. Design Rules for Charge-Transport Efficient Host Materials for Phosphorescent Organic Light-Emitting Diodes. J. Am. Chem. Soc.,2012,134,13818-13822.
    [10]Gong S, Chen Y, Luo J, Yang C, Zhong C, Qin J, et al. Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off. Adv. Funct. Mater.,2011,21, 1168-1178.
    [11]Wei W, Djurovich PI, Thompson ME. Properties of Fluorenyl Silanes in Organic Light Emitting Diodes. Chem. Mater.,2010,22,1724-1731.
    [12]Gong S, Chen Y, Yang C, Zhong C, Qin J, Ma D. De Novo Design of Silicon-Bridged Molecule Towards a Bipolar Host:All-Phosphor White Organic Light-Emitting Devices Exhibiting High Efficiency and Low Efficiency Roll-Off. Adv. Mater.,2010,22,5370-5373.
    [13]Bai D-R, Liu X-Y, Wang S. Charge-Transfer Emission Involving Three-Coordinate Organoboron:V-Shape versus U-Shape and Impact of the Spacer on Dual Emission and Fluorescent Sensing. Chemistry-A European Journal,2007, 13,5713-5723.
    [14]Chan L-H, Lee R-H, Hsieh C-F, Yeh H-C, Chen C-T. Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials. J. Am. Chem. Soc.,2002,124,6469-6479.
    [15]Chan LH, Yeh HC, Chen CT. Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds. Adv. Mater.,2001,13,1637-1641.
    [16]Wang H, Xie H, Liang Y, Feng L, Cheng X, Lu H, et al. Color-tunable organic composite nanoparticles based on perylene tetracarboxylic-diimides and a silicon-cored fluoranthene derivate. Journal of Materials Chemistry C,2013,1, 5367-5372.
    [17]Wang H, Liang Y, Feng L, Xie H, Zhang J, Cheng X, et al. Luminescence-tuning and energy transfer mechanism of blends based on silicon-containing compounds. Dyes Pigm.,2013,99,284-290.
    [18]Tucker SH, Whalley M. The Chemistry of Fluoranthene. Chem. Rev.,1952,50, 483-538.
    [19]Berlman IB, Wirth HO, Steingraber OJ. Anomalous fluorescence characteristics of fluoranthene and some of its derivatives. J. Am. Chem. Soc.,1968,90,566-569.
    [20]Zhou Y, Ding L, Shi K, Dai Y-Z, Ai N, Wang J, et al. A Non-Fullerene Small Molecule as Efficient Electron Acceptor in Organic Bulk Heterojunction Solar Cells. Adv. Mater.,2012,24,957-961.
    [21]Chiechi RC, Tseng RJ, Marchioni F, Yang Y, Wudl F. Efficient Blue-Light-Emitting Electroluminescent Devices with a Robust Fluorophore: 7,8,10-Triphenylfluoranthene. Adv. Mater.,2006,18,325-328.
    [22]Lee Y-H, Wu T-C, Liaw C-W, Wen T-C, Guo T-F, Wu Y-T. Benzo [k] fluoranthene-based linear acenes for efficient deep blue organic light-emitting devices. J. Mater. Chem.,2012,22,11032-11038.
    [23]Xu J, Hou J, Zhang S, Xiao Q, Zhang R, Pu S, et al. Electrochemical polymerization of fluoranthene and characterization of its polymers. J. Phys. Chem. B, 2006,110,2643-2648.
    [24]Yan Q, Zhou Y, Ni B-B, Ma Y, Wang J, Pei J, et al. Organic Semiconducting Materials from Sulfur-Hetero Benzo [k] fluoranthene Derivatives:Synthesis, Photophysical Properties, and Thin Film Transistor Fabrication. J. Org. Chem.,2008, 73,5328-5339.
    [25]Kapoor N, Thomas KJ. Fluoranthene-based triarylamines as hole-transporting and emitting materials for efficient electroluminescent devices. New J. Chem.,2010, 34,2739-2748.
    [26]Murahashi T, Kato N, Uemura T, Kurosawa H. Rearrangement of a Pd4 Skeleton from a 1D Chain to a 2D Sheet on the Face of a Perylene or Fluoranthene Ligand Caused by Exchange of the Binder Molecule. Angewandte Chemie,2007,119, 3579-3582.
    [27]Ma X, Wu W, Zhang Q, Guo F, Meng F, Hua J. Novel fluoranthene dyes for efficient dye-sensitized solar cells. Dyes Pigm.,2009,82,353-359.
    [28]Liu Y, Lv Y, Zhang X, Chen S, Lam JWY, Lu P, et al. From A Fluorescent Chromophore in Solution to An Efficient Emitter in the Solid State. Chemistry-An Asian Journal,2012,7,2424-2428.
    [29]Goel A, Kumar V, Chaurasia S, Rawat M, Prasad R, Anand RS. Synthesis, Electrochemical and Optical Properties of Stable Yellow Fluorescent Fluoranthenest-J. Org. Chem.,2010,75,3656-3662.
    [30]Xia Z-Y, Su J-H, Fan H-H, Cheah K-W, Tian H, Chen CH. Multifunctional Diarylamine-Substituted Benzo[k]fluoranthene Derivatives as Green Electroluminescent Emitters and Nonlinear Optical Materials. J. Phys. Chem. C,2010, 114,11602-11606.
    [31]Figueira-Duarte TM, Del Rosso PG, Trattnig R, Sax S, List EJW, Mullen K. Designed Suppression of Aggregation in Polypyrene:Toward High-Performance Blue-Light-Emitting Diodes. Adv. Mater.,2010,22,990-993.
    [32]Kruerke U. Zur darstellung von athinylsilanen. J. Organomet. Chem.,1970,21, 83-90.
    [33]Sporikou ABHaCN. Trimethylsilylacetylene. Org. Synth.,1987,65,61-65.
    [34]Lee Y-H, Wu T-C, Liaw C-W, Wen T-C, Guo T-F, Wu Y-T. Benzo[k] fluoranthene-based Linear Acenes for Efficient Deep Blue Organic Light-emitting Devices. J. Mater. Chem.,2012,22,11032-11038.
    [1]Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature,2009,459, 234-238.
    [2]Namai H, Ikeda H, Hoshi Y, Kato N, Morishita Y, Mizuno K. Thermoluminescence and a New Organic Light-Emitting Diode (OLED) Based on Triplet-Triplet Fluorescence of the Trimethylenemethane (TMM) Biradical. J. Am. Chem. Soc.,2007,129,9032-9036.
    [3]Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science (New York, N.Y.),1995,267,1332-1334.
    [4]Zhang L, Hu S, Chen J, Chen Z, Wu H, Peng J, et al. A Series of Energy-Transfer Copolymers Derived from Fluorene and 4,7-Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Light-Emitting Diodes. Adv. Funct. Mater., 2011,21,3760-3769.
    [5]Chen S, Tan G, Wong W-Y, Kwok H-S. White Organic Light-Emitting Diodes with Evenly Separated Red, Green, and Blue Colors for Efficiency/Color-Rendition Trade-Off Optimization. Adv. Funct. Mater.,2011,21,3785-3793.
    [6]Li X, Qian Y, Wang S, Li S, Yang G Tunable Fluorescence Emission and Efficient Energy Transfer in Doped Organic Nanoparticles. J. Phys. Chem. C,2009,113, 3862-3868.
    [7]Zhou G, Wang Q, Ho C-L, Wong W-Y, Ma D, Wang L. Duplicating "sunlight" from simple WOLEDs for lighting applications. Chem. Commun.,2009,0, 3574-3576.
    [8]Zhou G, Wang Q, Wang X, Ho C-L, Wong W-Y, Ma D, et al. Metallophosphors of platinum with distinct main-group elements:a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. J. Mater. Chem.,2010,20,7472-7484.
    [9]Ner Y, Grote JG, Stuart JA, Sotzing GA. White Luminescence from Multiple-Dye-Doped Electrospun DNA Nanofibers by Fluorescence Resonance Energy Transfer. Angew. Chem. Int. Ed.,2009,48,5134-5138.
    [10]Dawson K, Lovera P, Iacopino D, O'Riordan A, Redmond G Multi-colour emission from dye doped polymeric nanotubes by host-guest energy transfer. J. Mater. Chem.,2011,21,15995-16000.
    [11]Zhao YS, Fu HB, Hu FQ, Peng AD, Yang WS, Yao JN. Tunable Emission from Binary Organic One-Dimensional Nanomaterials:An Alternative Approach to White-Light Emission. Adv. Mater.,2008,20,79-83.
    [12]Zhao YS, Fu H, Peng A, Ma Y, Liao Q, Yao J. Construction and Optoelectronic Properties of Organic One-Dimensional Nanostructures. Acc. Chem. Res.,2009,43, 409-418.
    [13]Shen F, Peng A, Chen Y, Dong Y, Jiang Z, Wang Y, et al. Photoinduced Electron Transfer in Coaggregates of Dicyanonaphthalene and Pyrazoline. J. Phys. Chem. A, 2008,112,2206-2210.
    [14]Wu C, Zheng Y, Szymanski C, McNeill J. Energy Transfer in a Nanoscale Multichromophoric System:Fluorescent Dye-Doped Conjugated Polymer Nanoparticles. J. Phys. Chem. C,2008,112,1772-1781.
    [15]Lei Y, Liao Q, Fu H, Yao J. Orange-Blue-Orange Triblock One-Dimensional Heterostructures of Organic Microrods for White-Light Emission. J. Am. Chem. Soc., 2010,132,1742-1743.
    [16]Peng AD, Xiao DB, Ma Y, Yang WS, Yao JN. Tunable Emission from Doped 1,3,5-Triphenyl-2-pyrazoline Organic Nanoparticles. Adv. Mater.,2005,17, 2070-2073.
    [17]Hendler N, Belgorodsky B, Mentovich ED, Gozin M, Richter S. Efficient Separation of Dyes by Mucin:Toward Bioinspired White-Luminescent Devices. Adv. Mater.,2011,23,4261-4264.
    [18]Zhou G, Wong W-Y, Suo S. Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J. Photochem. Photobiol., C 2010,11,133-156.
    [19]Wu H, Zhou G, Zou J, Ho C-L, Wong W-Y, Yang W, et al. Efficient Polymer White-Light-Emitting Devices for Solid-State Lighting. Adv. Mater.,2009,21, 4181-4184.
    [20]Zhang B, Tan G, Lam C-S, Yao B, Ho C-L, Liu L, et al. High-Efficiency Single Emissive Layer White Organic Light-Emitting Diodes Based on Solution-Processed Dendritic Host and New Orange-Emitting Iridium Complex. Adv. Mater.,2012,24, 1873-1877.
    [21]Zou J, Wu H, Lam C-S, Wang C, Zhu J, Zhong C, et al. Simultaneous Optimization of Charge-Carrier Balance and Luminous Efficacy in Highly Efficient White Polymer Light-Emitting Devices. Adv. Mater.,2011,23,2976-2980.
    [22]Wild A, Teichler A, Ho C-L, Wang X-Z, Zhan H, Schlutter F, et al. Formation of dynamic metallo-copolymers by inkjet printing:towards white-emitting materials. J. Mater. Chem. C,2013,1,1812-1822.
    [23]Lyu Y-Y, Kwak J, Kwon 0, Lee S-H, Kim D, Lee C, et al. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices. Adv. Mater.,2008,20,2720-2729.
    [24]Kang J-W, Lee D-S, Park H-D, Park Y-S, Kim JW, Jeong W-I, et al. Silane-and triazine-containing hole and exciton blocking material for high-efficiency phosphorescent organic light emitting diodes. J. Mater. Chem.,2007,17,3714-3719.
    [25]Gong S, Fu Q, Wang Q, Yang C, Zhong C, Qin J, et al. Highly Efficient Deep-Blue Electrophosphorescence Enabled by Solution-Processed Bipolar Tetraarylsilane Host with Both a High Triplet Energy and a High-Lying HOMO Level. Adv. Mater.,2011,23,4956-4959.
    [26]Han W-S, Son H-J, Wee K-R, Min K-T, Kwon S, Suh I-H, et al. Silicon-Based Blue Phosphorescence Host Materials:Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(N-Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(N-Carbazolyl)phenyl Numbers. J. Phys. Chem. C,2009,113,19686-19693.
    [27]Wei W, Djurovich PI, Thompson ME. Properties of Fluorenyl Silanes in Organic Light Emitting Diodes. Chem. Mater.,2010,22,1724-1731.
    [28]Wong W-Y, Poon S-Y, Shi J-X, Cheah K-W. Synthesis and light-emitting properties of platinum-containing oligoynes and polyynes derived from oligo(fluorenyleneethynylenesilylene)s. J. Polym. Sci., Part A:Polym. Chem.,2006, 44,4804-4824.
    [29]Wong W-Y, Poon S-Y, Lee AWM, Shi J-X, Cheah K-W. Oligo(fluorenyleneethynylenegermylene)s and their metallopolymers. Chem. Commun.,2004,0,2420-2421.
    [30]Wong W-Y, Wong C-K, Lu G-L, Cheah K-W, Shi J-X, Lin Z. Synthesis, structures and optical spectroscopy of photoluminescent platinum-linked poly(silylacetylenes). J. Chem. Soc., Dalton Trans.,2002,0,4587-4594.
    [31]Lin M-J, Fimmel B, Radacki K, Wurthner F. Halochromic Phenolate Perylene Bisimides with Unprecedented NIR Spectroscopic Properties. Angew. Chem. Int. Ed., 2011,50,10847-10850.
    [32]Ramanan C, Smeigh AL, Anthony JE, Marks TJ, Wasielewski MR. Competition between Singlet Fission and Charge Separation in Solution-Processed Blend Films of 6,13-Bis(triisopropylsilylethynyl)pentacene with Sterically-Encumbered Perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc.,2011,134,386-397.
    [33]Seki T, Maruya Y, Nakayama K-i, Karatsu T, Kitamura A, Yagai S. Solution processable hydrogen-bonded perylene bisimide assemblies organizing into lamellar architectures. Chem. Commun.,2011,47,12447-12449.
    [34]Cui Y, Yao D, Chen Y, Wang Z. Synthesis and properties of novel functional polymers from tetrachlorinated perylene bisimide. J. Polym. Sci., Part A:Polym. Chem.,2012,50,3485-3492.
    [35]Yao D, Bender TP, Gerroir PJ, Sundararajan PR. Self-Assembled Vesicular Nanostructures of Perylene End-Capped Poly(dimethylsiloxane). Macromolecules, 2005,38,6972-6978.
    [36]Liang Y, Wang H, Wang D, Liu H, Feng S. The synthesis, morphology and liquid-crystalline property of polysiloxane-modified perylene derivative. Dyes Pigm., 2012,95,260-267.
    [37]Cazacu M, Vlad A, Airinei A, Nicolescu A, Stoica I. New imides based on perylene and siloxane derivatives. Dyes Pigm.,2011,90,106-113.
    [38]Dilthey W, ter Horst I, Schommer W. Tieffarbige aromatische Funfringketone. [Heteropolare, ⅩⅩⅦ]. J. Prakt. Chem.,1935,143,189-210.
    [39]Marcinow Z, Grove DI, Rabideau PW. Synthesis of a New C32H12 Bowl-Shaped Aromatic Hydrocarbon:Acenaphtho[3,2,1,8-ijkhn]diindeno[4,3,2,1-cdef:1',2',3',4'-pqra]triphenylene. J. Org. Chem.,2002,67,3537-3539.
    [40]Sporikou ABHaCN. Trimethylsilylacetylene. Org. Synth.,1987,65,61-65.
    [41]Kruerke U. Zur darstellung von athinylsilanen. J. Organomet. Chem.,1970,21, 83-90.
    [42]Wang ZY, Qi Y, Gao JP, Sacripante GG, Sundararajan PR, Duff JD. Synthesis, Characterization, and Xerographic Electrical Characteristics of Perylene-Containing Polyimides. Macromolecules,1998,31,2075-2079.
    [43]Andrew P, Barnes WL. Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science,2004,306,1002-1005.
    [44]Zhou Z-K, Li M, Yang Z-J, Peng X-N, Su X-R, Zhang Z-S, et al. Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging. ACS Nano,2010,4,5003-5010.
    [45]Lei Y, Liao Q, Fu H, Yao J. Phase-and Shape-Controlled Synthesis of Single Crystalline Perylene Nanosheets and Its Optical Properties. J. Phys. Chem. C,2009, 113,10038-10043.
    [46]Kevenhorster B, Kopitzke J, Seifert AM, Tsukruk V, Wendorff JH. Dewetting-Induced Formation of Hexagonal Microstructures in Discotic Guest-Host Systems. Adv. Mater.,1999,11,246-250.
    [47]Oldham WJ, Lachicotte RJ, Bazan GC. Synthesis, Spectroscopy, and Morphology of Tetrastilbenoidmethanes. J. Am. Chem. Soc.,1998,120,2987-2988.
    [48]Lyu Y-Y, Kwak J, Jeon WS, Byun Y, Lee HS, Kim D, et al. Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes. Adv. Funct. Mater.,2009,19,420-427.
    [49]Bulovic V, Shoustikov A, Baldo MA, Bose E, Kozlov VG, Thompson ME, et al. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts. Chem. Phys. Lett.,1998,287,455-460.
    [50]Bulovic V, Deshpande R, Thompson ME, Forrest SR. Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect. Chem. Phys. Lett.,1999,308,317-322.
    [51]Biju V, Itoh T, Baba Y, Ishikawa M. Quenching of Photoluminescence in Conjugates of Quantum Dots and Single-Walled Carbon Nanotube. J. Phys. Chem. B, 2006,110,26068-26074.
    [1]Horn D, Rieger J. Organic Nanoparticles in the Aqueous Phase—Theory, Experiment, and Use. Angew. Chem. Int. Ed.,2001,40,4330-4361.
    [2]Fu H-B, Yao J-N. Size Effects on the Optical Properties of Organic Nanoparticles. J. Am. Chem. Soc.,2001,123,1434-1439.
    [3]An B-K, Kwon S-K, Jung S-D, Park SY. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J. Am. Chem. Soc.,2002,124,14410-14415.
    [4]Fu H, Loo BH, Xiao D, Xie R, Ji X, Yao J, et al. Multiple Emissions from 1,3-Diphenyl-5-pyrenyl-2-pyrazoline Nanoparticles:Evolution from Molecular to Nanoscale to Bulk Materials. Angew. Chem. Int. Ed.,2002,41,962-965.
    [5]Xiao D, Xi L, Yang W, Fu H, Shuai Z, Fang Y, et al. Size-Tunable Emission from 1,3-Diphenyl-5-(2-anthryl)-2-pyrazoline Nanoparticles. J. Am. Chem. Soc.,2003,125, 6740-6745.
    [6]Peng AD, Xiao DB, Ma Y, Yang WS, Yao JN. Tunable Emission from Doped 1,3,5-Triphenyl-2-pyrazoline Organic Nanoparticles. Adv. Mater.,2005,17, 2070-2073.
    [7]Gesquiere AJ, Uwada T, Asahi T, Masuhara H, Barbara PF. Single Molecule Spectroscopy of Organic Dye Nanoparticles. Nano Lett.,2005,5,1321-1325.
    [8]Li X, Qian Y, Wang S, Li S, Yang G Tunable Fluorescence Emission and Efficient Energy Transfer in Doped Organic Nanoparticles. J. Phys. Chem. C,2009,113, 3862-3868.
    [9]Petkau K, Kaeser A, Fischer I, Brunsveld L, Schenning APHJ. Pre-and Postfunctionalized Self-Assembled π-Conjugated Fluorescent Organic Nanoparticles for Dual Targeting. J. Am. Chem. Soc.,2011,133,17063-17071.
    [10]Wu Y, Zhou Z, Fan Q, Chen L, Zhu M. Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. J. Mater. Chem.,2009, 19,7340-7346.
    [11]Lee Y-b, Lee SH, Kim K, Lee JW, Han K-Y, Kim J, et al. Single nanoparticle of organic p-type and n-type hybrid materials:nanoscale phase separation and photovoltaic effect. J. Mater. Chem.,2012,22,2485-2490.
    [12]Zhao YS, Fu HB, Hu FQ, Peng AD, Yang WS, Yao JN. Tunable Emission from Binary Organic One-Dimensional Nanomaterials:An Alternative Approach to White-Light Emission. Adv. Mater.,2008,20,79-83.
    [13]Lei Y, Liao Q, Fu H, Yao J. Orange-Blue-Orange Triblock One-Dimensional Heterostructures of Organic Microrods for White-Light Emission. J. Am. Chem. Soc., 2010,132,1742-1743.
    [14]Zhang C, Zhao YS, Yao J. Organic composite nanomaterials:energy transfers and tunable luminescent behaviors. New J. Chem.,2011,35,973-978.
    [15]Patra A, Chandaluri CG, Radhakrishnan TP. Optical materials based on molecular nanoparticles. Nanoscale,2012,4,343-359.
    [16]Ego C, Marsitzky D, Becker S, Zhang J, Grimsdale AC, Mullen K, et al. Attaching Perylene Dyes to Polyfluorene:Three Simple, Efficient Methods for Facile Color Tuning of Light-Emitting Polymers. J. Am. Chem. Soc.,2002,125,437-443.
    [17]Zang L, Che Y, Moore JS. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res.,2008,41,1596-1608.
    [18]Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, et al. Rylene and Related Diimides for Organic Electronics. Adv. Mater.,2011,23,268-284.
    [19]Malinovskii VL, Wenger D, Haner R. Nucleic acid-guided assembly of aromatic chromophores. Chem. Soc. Rev.,2010,39,410-422.
    [20]Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem. Soc. Rev., 2011,40,5361-5388.
    [21]Zhao Q, Zhang S, Liu Y, Mei J, Chen S, Lu P, et al. Tetraphenylethenyl-modified perylene bisimide:aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem.,2012,22,7387-7394.
    [22]Klarner G, Davey MH, Chen W-D, Scott JC, Miller RD. Colorfast Blue-Light-Emitting Random Copolymers Derived from Di-n-hexylfluorene and Anthracene. Adv. Mater.,1998,10,993-997.
    [23]Noda T, Ogawa H, Shirota Y. A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5'-Bis(dimesitylboryl)-2,2'-bithiophene. Adv. Mater.,1999,11,283-285.
    [24]O'Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME. Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices. Adv. Mater.,1998,10,1108-1112.
    [25]Steuber F, Staudigel J, Stossel M, Simmerer J, Winnacker A, Spreitzer H, et al. White Light Emission from Organic LEDs Utilizing Spiro Compounds with High-Temperature Stability. Adv. Mater.,2000,12,130-133.
    [26]Lyu Y-Y, Kwak J, Kwon O, Lee S-H, Kim D, Lee C, et al. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices. Adv. Mater.,2008,20,2720-2729.
    [27]Lyu Y-Y, Kwak J, Jeon WS, Byun Y, Lee HS, Kim D, et al. Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes. Adv. Funct. Mater.,2009,19,420-427.
    [28]May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, et al. Design Rules for Charge-Transport Efficient Host Materials for Phosphorescent Organic Light-Emitting Diodes. J. Am. Chem. Soc.,2012,134,13818-13822.
    [29]Chan LH, Yeh HC, Chen CT. Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds. Adv. Mater.,2001,13,1637-1641.
    [30]Che Y, Yang X, Balakrishnan K, Zuo J, Zang L. Highly Polarized and Self-Waveguided Emission from Single-Crystalline Organic Nanobelts. Chem. Mater., 2009,21,2930-2934.
    [31]Chen ZJ, Wang LM, Zou G, Zhang L, Zhang GJ, Cai XF, et al. Colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on perylene diimide derivatives. Dyes Pigm.,2012,94,410-415.
    [32]Cross JP, Lauz M, Badger PD, Petoud S. Polymetallic Lanthanide Complexes with PAMAM-Naphthalimide Dendritic Ligands:Luminescent Lanthanide Complexes Formed in Solution. J. Am. Chem. Soc.,2004,126,16278-16279.
    [33]Zhao YS, Fu H, Peng A, Ma Y, Liao Q, Yao J. Construction and Optoelectronic Properties of Organic One-Dimensional Nanostructures. Acc. Chem. Res.,2009,43, 409-418.
    [1]Berresheim AJ, Muiller M, Mullen K. Polyphenylene Nanostructures. Chem. Rev., 1999,99,1747-1786.
    [2]Watson MD, Fechtenkotter A, Mullen K. Big Is Beautiful-"Aromaticity" Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry. Chem. Rev.,2001,101,1267-1300.
    [3]Zhi L, Mullen K. A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem.,2008,18,1472-1484.
    [4]Pogantsch A, Wenzl FP, List EJW, Leising G, Grimsdale AC, Mullen K. Polyfluorenes with Dendron Side Chains as the Active Materials for Polymer Light-Emitting Devices. Adv. Mater.,2002,14,1061-1064.
    [5]Setayesh S, Grimsdale AC, Weil T, Enkelmann V, Mullen K, Meghdadi F, et al. Polyfluorenes with Polyphenylene Dendron Side Chains:Toward Non-Aggregating, Light-Emitting Polymers. J. Am. Chem. Soc.,2001,123,946-953.
    [6]Wu IY, Lin JT, Tao YT, Balasubramaniam E. Starburst Molecules Based on Hexathienylbenzene Units:Potential Hole-Transport Materials. Adv. Mater.,2000,12, 668-669.
    [7]Bera RN, Cumpstey N, Burn PL, Samuel IDW. Highly Branched Phosphorescent Dendrimers for Efficient Solution-Processed Organic Light-Emitting Diodes. Adv. Funct. Mater.,2007,17,1149-1152.
    [8]Sun X, Xu X, Qiu W, Yu G, Zhang H, Gao X, et al. A non-planar pentaphenylbenzene functionalized benzo [2,1,3]thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. J. Mater. Chem.,2008, 18,2709-2715.
    [9]Tong Q-X, Lai S-L, Chan M-Y, Lai K-H, Tang J-X, Kwong H-L, et al. High Tg Triphenylamine-Based Starburst Hole-Transporting Material for Organic Light-Emitting Devices. Chem. Mater.,2007,19,5851-5855.
    [10]Thomas KRJ, Velusamy M, Lin JT, Sun S-S, Tao Y-T, Chuen C-H. Energy harvesting star-shaped molecules for electroluminescence applications. Chem. Commun.,2004,2328-2329.
    [11]Hoffmann M, Karnbratt J, Chang M-H, Herz LM, Albinsson B, Anderson HL. Enhanced π Conjugation around a Porphyrin[6] Nanoring. Angew. Chem. Int. Ed., 2008,47,4993-4996.
    [12]Alam MA, Kim Y-S, Ogawa S, Tsuda A, Ishii N, Aida T. Directed 1D Assembly of a Ring-Shaped Inorganic Nanocluster Templated by an Organic Rigid-Rod Molecule:An Inorganic/Organic Polypseudorotaxane. Angew. Chem. Int. Ed.,2008, 47,2070-2073.
    [13]Hiraoka S, Harano K, Nakamura T, Shiro M, Shionoya M. Induced-Fit Formation of a Tetrameric Organic Capsule Consisting of Hexagram-Shaped Amphiphile Molecules. Angew. Chem. Int. Ed.,2009,48,7006-7009.
    [14]O'Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TD, Saywell A, et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature,2011,469, 72-75.
    [15]Gagnon E, Maris T, Arseneault P-M, Maly KE, Wuest JD. Structural features in crystals of derivatives of benzene with multiple contiguous phenyl substituents. Crystal Growth & Design,2009,10,648-657.
    [16]Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature chemistry,2014,6,126-132.
    [17]Dossel L, Gherghel L, Feng X, Mullen K. Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free. Angew. Chem. Int. Ed.,2011,50, 2540-2543.
    [18]Tan Y-Z, Yang B, Parvez K, Narita A, Osella S, Beljonne D, et al. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature communications,2013,4.
    [19]Yang S, Bachman RE, Feng X, Mullen K. Use of Organic Precursors and Graphenes in the Controlled Synthesis of Carbon-Containing Nanomaterials for Energy Storage and Conversion. Acc. Chem. Res.,2012,46,116-128.
    [20]Nishiuchi T, Feng X, Enkelmann V, Wagner M, Mullen K. Three-Dimensionally Arranged Cyclic p-Hexaphenylbenzene:Toward a Bottom-Up Synthesis of Size-Defined Carbon Nanotubes. Chemistry-A European Journal,2012,18, 16621-16625.
    [21]Roll MF, Kampf JW, Laine RM. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes. Macromolecules,2011,44,3425-3435.
    [22]Piot L, Marchenko A, Wu J, Mullen K, Fichou D. Structural Evolution of Hexa-p eri-hexabenzocoronene Adlayers in Heteroepitaxy on n-Pentacontane Template Monolayers. J. Am. Chem. Soc.,2005,127,16245-16250.
    [23]Kumar U, Neenan TX. Diels-Alder Polymerization between Bis(cyclopentadienones) and Acetylenes. A Versatile Route to New Highly Aromatic Polymers. Macromolecules,1995,28,124-130.
    [24]Cathy K, ZhongaTang B. Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations:AIE and AIEE effects. Chem. Commun.,2007,70-72.
    [25]Hong Y, Lam JW, Tang BZ. Aggregation-induced emission. Chem. Soc. Rev., 2011,40,5361-5388.
    [26]Hong Y, Lam JW, Tang BZ. Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.,2009,4332-4353.
    [27]Lyu YY, Kwak J, Kwon O, Lee SH, Kim D, Lee C, et al. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices. Adv. Mater.,2008,20,2720-2729.
    [28]Yook KS, Lee JY. Organic Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Mater.,2012,24,3169-3190.
    [29]Gong S, Chen Y, Luo J, Yang C, Zhong C, Qin J, et al. Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off. Adv. Funct. Mater.,2011,21, 1168-1178.
    [30]Wang H, Xie H, Liang Y, Feng L, Cheng X, Lu H, et al. Color-tunable organic composite nanoparticles based on perylene tetracarboxylic-diimides and a silicon-cored fluoranthene derivate. Journal of Materials Chemistry C,2013,1, 5367-5372.
    [31]Wang H, Liang Y, Feng L, Xie H, Zhang J, Cheng X, et al. Luminescence-tuning and energy transfer mechanism of blends based on silicon-containing compounds. Dyes Pigm.,2013,99,284-290.
    [32]Zhao Z, Lam JW, Tang BZ. Tetraphenylethene:A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem.,2012,22,23726-23740.
    [33]Jacky W, SingaKwok H, ZhongaTang B. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun.,2001,1740-1741.
    [34]Son H-J, Han W-S, Wee KR, Lee S-H, Hwang A-R, Kwon S, et al. Intermolecular peripheral 2,5-bipyridyl interactions by cyclization of 1, l'-silanylene unit of 2,3,4,5-aryl substituted siloles:enhanced thermal stability, high charge carrier mobility, and their application to electron transporting layers for OLEDs. J. Mater. Chem.,2009,19,8964-8973.
    [35]Boydston AJ, Pagenkopf BL. Improving Quantum Efficiencies of Siloles and Silole-Derived Butadiene Chromophores through Structural Tuning. Angewandte Chemie,2004,116,6496-6498.
    [36]Wang J, Mei J, Hu R, Sun JZ, Qin A, Tang BZ. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc.,2012,134,9956-9966.
    [37]An B-K, Kwon S-K, Jung S-D, Park SY. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc.,2002,124,14410-14415.
    [38]Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, et al. Aggregation-induced emission enhancement of 2-(2'-hydroxyphenyl) benzothiazole-based excited-state intramolecular proton-transfer compounds. J. Phys. Chem. B,2007,111,5861-5868.
    [39]Wang Z, Shao H, Ye J, Tang L, Lu P. Dibenzosuberenylidene-ended fluorophores: Rapid and efficient synthesis, characterization, and aggregation-induced emissions. J. Phys. Chem. B,2005,109,19627-19633.
    [40]Chen P, Lu R, Xue P, Xu T, Chen G, Zhao Y. Emission Enhancement and Chromism in a Salen-Based Gel System. Langmuir,2009,25,8395-8399.
    [41]Zhang P, Wang H, Liu H, Li M. Fluorescence-enhanced organogels and mesomorphic superstructure based on hydrazine derivatives. Langmuir,2010,26, 10183-10190.
    [42]Zhang H, Wang S, Li Y, Zhang B, Du C, Wan X, et al. Synthesis, characterization, and electroluminescent properties of star shaped donor-acceptor dendrimers with carbazole dendrons as peripheral branches and heterotriangulene as central core. Tetrahedron,2009,65,4455-4463.
    [43]Li S, He L, Xiong F, Li Y, Yang G. Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures. J. Phys. Chem. B,2004,108, 10887-10892.
    [44]Samanta SK, Bhattacharya S. Excellent chirality transcription in two-component photochromic organogels assembled through J-aggregation. Chem. Commun.,2013, 49,1425-1427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700