复叠制冷系统低温环路自然工质混合物的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以R13为主的工业用制冷剂对环境的破坏作用很大,在发达国家已经被停止使用,在发展中国家也将于2010年停止使用。其目前常用的替代制冷剂R23、R508b在替代中存在着一些问题,而且价格昂贵。寻找环境性能友好,热力性能优良,价格低廉的制冷剂迫在眉睫。
     单一的环境性能友好制冷剂在低温下都或多或少存在一些问题,但利用它们的混合物将弱化其中单一制冷剂的弱点,强化单一制冷剂的优点,有可能组合出低温性能优良的制冷剂混合物。本文将围绕制冷剂的优选和新型制冷剂性能展开。
     本文首先对混合制冷剂的组分进行筛选。在甲烷和乙烷的衍生物、自然制冷剂以及碳氢制冷剂中,根据环境性能、安全性能、物理化学性能、热力性能和循环性能的优劣对制冷剂进行筛选。最终确定了R290和CO_2为最佳的制冷剂组合。
     凝固点温度的确定。CO_2在混合物中的凝固点温度随着其分数的增加而升高。为了找到混合物在-70℃左右的凝固点温度,运用CO_2和备选组分的非理想溶液的固液平衡模型,采用活度系数修正的方法使得计算出的溶解度更加精确。混合物受凝固点温度的影响,使得CO_2在混合物中组分受到限制。
     新型制冷剂组分配比的确定。根据不同组分配比的R744/R290混合物热力性能和安全性能,以及循环性能的差异最终确定混合制冷剂R744/R290(71%/29%)。
     通过最小不可逆(火用)损失和部件(火用)损失法两种模型的有机结合,计算得到复叠制冷系统主要部件的最小不可逆换热温差和最小不可逆(火用)损失,精确地计算了系统各部件的总体(火用)损失,准确地得到系统的可进一步优化的量。最后,在搭建的复叠制冷系统实验台上,将不同组分的R290和CO_2进行实验,找到循环性能随组分变化规律,验证了理论选择的新型制冷剂的正确性。同时将新型制冷剂与R13进行了循环性能对照,结果表明,新型制冷剂的制冷量和COP均优于R13。新型制冷剂的连续稳定性实验则表明新型制冷剂安全可靠,稳定性好。
Industry refrigerant predominated by R13 has greatly damage effect on its ambient environment. For this, R13 has been phased out by the year 1996 in developed countries and before 2010 in developing countries. The alternative refrigerants of R13 such as R23 and R508b also have some disadvantages in the substitute process. And these alternative refrigerants are quite expensive. It is important to find alternative refrigerant which has good enveironmental, thermodynamical performance and low cost.
     Pure refrigerant which is friendly with ambient environment has some problems when used at low temperature. However, when mixed by two of them, the defects will be weakened and the merits will be swelled. And then the mixture will has good low temperature performance. In this paper, an environmental-friendly new alternative refrigerant was proposed, and performance of the new refrigerant was forcased in theory, and related experiments were carried out.
     At first, compositions of mixture were chosed from methane and ethane derivatives, natural refrigerants, and hydrocarbons refrigerants by environment performance, safty performance, physics and chemical performance, transmitting performance, thermodynamics and cycle performance. Then the binary mixture composed by R290 and CO_2 is considered as the best low temperature refrigerant.
     Second, freezing point temperature of mixture was found. Freezing point temperature of mixture moves up with the increasing of CO_2 fraction. In order to find the exact freezing point temperature at around -70℃, solid-liquid equilibrium model of non-idea solution was set up. The modifying of activity coefficient makes the solubility calculating more accurate. Influnced by the freezing point temperature of mixture, the fraction of CO_2 was limited in mixtures.
     The mixture ratio was determined. Based on the difference of thermodynamics, safety and cycle performance the mixture ratio of R290 and CO_2 was confirmed as 29% and 71%.
     By the organic combination of the least irreversible exergy loss method and com- -ponent exergy loss method, two exergy losses were obtained as follows: one was the least irreversible exchanging heat temperature difference and the least irreversible exergy loss, the other was the whole exergy loss of refrigeration system components. All of these gave the more accurate values for the system to improve its performance.
     Finally, at the cascade refrigeration sytem experiment table, experiments about diffent mixture ratio of R290 and CO_2 were done and then found the rules that cycle performance varied with the changing mixture ratio, and validated the new refrigerant chosed in theory. The experiments on the cycle performance comparison of R13 and the new refrigerant showed that the new refrigerant had more refrigeration capacities and COP. And the consecutive stability experiments showed that the new refrigerant was safety and stability.
引文
[1] UNEP.Montreal protocol on substances that deplete the ozone layer[J].2002 Report of the refrigeration, air conditioning and heat pumps technical options committee.2002
    [2] Rudy Stegmann, P.E.Low temperature refrigeration[J].ASHRE Journal, 2000, 42(1):42-50
    [3] 马国远,邵双全.寒冷地区空调用热泵的研究,太阳能学报[J].2002, 23(1):17-21
    [4] 苏航,陈蕴光,袁秀玲,等.R410A 与 R404A 制冷系统过冷应用分析[J].制冷与空调,2002,2(1):64-68
    [5] 田长青,石文星,王森.用于寒冷地区双级压缩变频空气源热泵的研究[J].太阳能学报,2004,25(3):388-393
    [6] G.E. Kinard, L.S. Gaumer, Mixed refrigerant cascade cycle for LNG, Chemical engineering Progress, 1973,69(1):56-61
    [7] 程有凯、常琳、张文虎,等.两级压缩与复叠式制冷方式的比较[J].制冷与空调,2004,4(3):66-69
    [8] Calm J M., Hourahan G C., Refrigerant data summary[J].Engineered Systems, 2001, 18(11):74-88
    [9] G.Lorentzen, Revival of carbon dioxide as a refrigerant[J] .International Journal of Refrigeration, 1994, 17(5):292-301
    [10] Goosman J.The progressive development of carbon dioxide Refrigerating methods[J].Refrig Engng,1927,14(6):188-189
    [11] Lorentzen, G., Application of “Natural” Refrigerants-a rational solution to a pressing problem[A]. IIR International conference: Energy efficiency in refrigeration and global warming impact[C], Chent Belgium, 1993.
    [12] G.Lorentzen, The use of natural refrigerants: a complete solution to the CFC/ HCFC predicament[J].International Journal of Refrigeration, 1995,18(3):190-197
    [13] Pettersen J, Jakobsen A.A dry ice slurry system for low temperature refrigeration[A].International Symposiumon Refrigeration in Sea Transport Today and in the Future[C], Gdansk, Poland, Sep/Oct 1994.
    [14] N.P. Vestergaard, max Robinson.CO_2 in industry refrigeration[Z].Air condi-tioning heating and refrigeration news, 2003, 3(9):16-17.
    [15] Briley, George C.CO_2 making comeback[J].ASHRAE Journal, 2003, 45 (12):104-104.
    [16] Girotto S, Neksa P.Commercial refrigeration systems with refrigerant CO_2 Theoretical considerations and experimental results[A].Proceedings of new technologies in commercial refreigeration[C].University of Illinois, 2002:3–10.
    [17] Sergio Girotto, Silvia Minetto, Petter Neksa.Commercial refrigeration system using CO_2 as the refrigerant[J].International Journal of Refrigeration, 2004, 27(7):717–723.
    [18] Samer Sawaiha.Using CO_2 in Supermarket Refrigeration[J].ASHRAE Journal, 2005,48(8):26-30.
    [19] 曲天非,王如竹,张早校,等.改进二氧化碳制冷循环性能的理论分析[J].流体机械,1999,27(9):43-45.
    [20] 张早校、郁永章、曲天非.在工业制冷装置中用二氧化碳替代 R502 的应用研究[J].流体机械,2000,28(3):52-55.
    [21] 顾兆林,刘红娟,李云.NH3/CO_2 低温制冷系统研究[J].西安交通大学学报,2002,36(5):536-540.
    [22] 卢 苇,马一太,王志国,等.低温级以 CO_2 为制冷剂的复叠式制冷循环热力学分析[J].天津大学学报,2004,37(3):245-248.
    [23] Vesovic V, Wakeham W A, Olchowy G A et al.The transport properties of carbon dioxide[J].Journal Physical Chemical Reference Data, 1990, 19(3):356-367.
    [24] Span R, Wagner W.A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6):1509-1596.
    [25] 李洪芳、陈坚,许述圣.氨双级制冷系统最佳中间温度及目标值的计算和关联[J].制冷,1993,(1):27-34.
    [26] 庄友明 叶美萍.冷库氨双级压缩制冷系统最佳工况研究[J].制冷学报,2001,(1):48-52.
    [27] 孙 刚,陈汝东.A.C.Cleland 公式在氨制冷循环最佳中间温度求解中的应用[J].流体机械,2004,32(2):56-58.
    [28] 徐明.-15℃蒸发温度下单双级压缩制冷循环的能耗分析[J].制冷技术,1997,65(3):43-45
    [29] 余国和.制冷循环的选择与节能[J].制冷学报,1994,(2):1-5
    [30] 王勤,陈光明,周金坤.对-15℃氨双级制冷系统的技术经济性分析[J].流体机械,2000,28(8):56-59
    [31] Kitzmiller, W. R.Advantages of CO_2-Ammonia system for low- tempera -ture refrigeration[J].Power,1932, (1):92—94.
    [32] 周启瑾.介绍一种新型的低温冷藏库制冷系统 CO_2/NH3 复叠式制冷系统[J].制冷与空调,2003,3(1):42-44
    [33] 查世彤,马一太,王景刚等.自然制冷剂低温复叠式制冷循环的热力学分析与比较[J].热科学与技术,2003,2(1):20-24
    [34] ClodicD, CaiW.Tests and simulations of diffusion of various hydrocarbons in rooms form air conditioners and refrigerators[A].Proc.of IIF/IIR Conf. Applications for Natural Refrigerants[C], Aarhus, Denmark, 1996
    [35] Eric Granryd.Hydrocarbons as refrigerants—an overview[J].International Journal of Refrigeration, 2001 24(1):15-24
    [36] 周沛丽,梁荣光,林奇.天然制冷剂碳氢化合物的研究现状和前景分析[J].制冷,2004,23(2):25-28
    [37] 沈永年,黄柏才.天然制冷剂应用于逆向 Brayton 循环中的理论分析[J].低温工程,2001,(2):27-32
    [38] 田贯三.可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究[M].博士论文,天津:天津大学,2000
    [39] 周彦红,郁中杰,何绍书.低温工况下碳氢化合物替代 R22 的制冷循环分析[J].制冷与空调,2001,1(6):26-28
    [40] 周志华,张于峰.碳氢化合物混合制冷剂在制冷系统中的应用研究[J].制冷学报,2002,(2):50-52
    [41] 晏刚,马贞俊,吴业正.碳氢化合物在制冷空调中的应用研究分析[J].制冷学报,2003,(2):41-46
    [42] Souvik Bhattacharyya, S. Mukhopadhyay, A. Kumar et al.Optimization of a CO_2–C3H8 cascade system for refrigeration and heating[J].International Journal of Refrigeration, 2005, 28(8):1284–1292
    [43] G.K. Christensen.Refrigeration systems in supermarkets with propane and CO_2 energy consumption and economy, 21th IIR international congress of refrigeration, Washington, DC USA, 2003.
    [44] Rudy Stegmann, P.E.Practical guide low temperature refrigeration [Z].http://www.hvacindia.org.in/journals/2000july/article05.html
    [45] Agnew, B. and Ameli, S.M..A finite time analysis of a cascade refrigeration system using alternative refrigerants[J].Applied. Thermal. Engineering, 2004, 24(17-18):557-2565
    [46] George L. Molenaar.Use of R-22/23 in lieu of R502/13 in a cascade refrigeration system[A].Proceeding of the ASME national heat transfer conference[C], Anaheim, California, 2001, 243-246.
    [47] Cho, Keumnam,Park, Jonghoon,Cho, Honggi.performance of the cascade system using alternative refrigerants[A].Proceedings of the ASME National Heat Transfer Conference[C], 2001, Anaheim, California, 595-600.
    [48] Robert Paul Wadell.Design of compact evaporators for ultra low temperature thermal management of microprocessors[D].Master thesis, Georgia Institute of Technology, 2005.
    [49] A. Kilicarslan.An experimental investigation of a different type vapor comp -ression cascade refrigeration system[J] . Applied Thermal Engineering, 2004,24 (17-18):2611–2626
    [50] Murat HOSO。。Z.Performance comparison of single-stage and cascade refrige -ration systems using R134a as the working fluid[J].Turkish Journal of Engineering and Environmental Sciences,2005,29(5):285-296.
    [51] N. D. AMOST., CHADDERTON.A C. CLELAND.Performance of a cold store R502 refrigeration system retrofitted with the ozone-benign R507 refrigerant[A].19TH International Congress of Refrigeration[C], 1995, 727-733.
    [52] 万立波,蒋能照.R502 的四种长期替代制冷剂[J].流体机械,1997,25(12):57-59
    [53] 张建一.制冷剂 R22 和 R502 替代物研究的新进展[J].制冷,1995,53(4):26-29
    [54] 王春燕,蒋能照.R507 与 R502 理论循环性能分析与比较[J].制冷与空调,1997,(2):58-62
    [55] 闵东红 张早校.R502 新的替代制冷剂 R507 回热循环变工况性能分析,流体机械,1999,27(6):43-47
    [56] 朱明善.制冷空调行业替代技术的最新发展动向—1995 年国际 CFC 与 Halon 替代物会议[J].暖通空调,1996,(2):29-34
    [57] Lorenz,K.Meutzner. Application of nonazeotropic two-component Refrig -erants in domestic refrigerators and home freezers[A]. Proceeding of 14thInt.Congr.Refrig.[C],1975,1005
    [58] 苏长荪,谭连城,刘桂玉.高等工程热力学[M].北京:高等教育出版社,1987,529-533
    [59] 陈宏芳.高等工程热力学[M].北京:清华大学出版社,2003,213-216
    [60] Giovanni Di Nicola, Giuliano Giuliani, Fabio Polonara. Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating systems[J].International journal of refrigeration, 2005, 28(2): 130-140
    [61] 王鑫,史琳.制冷剂替代物安全性评价现状和研究课题[J].暖通空调,2002, 32 (2):38-42
    [62] Calm J M. The toxicity of refrigerants[A]. Proceedings of the 1996 Inter -national Refrigeration Conference[C], Purdue University, West Lafayette, 1996,157-162
    [63] Safety Information Resources, Inc. http://Hazard.com/msds/index.php
    [64] Alternative Fluorocarbons Environmental Acceptability Study. http://www.afeas.org/paft/
    [65] Yaws C L.Chemical Properties Handbook[M].McGraw-Hill Book Co. Bei- jing, 1999.
    [66] http://www.refrigerants.com/frame.htm
    [67] 陈斌,陈光明,刘利华,等.混合制冷剂变容量调节技术及其应用[J].流体机械,2004,32(12):64-68.
    [68] 杨昭,刘靖.替代混合物容量调节的匹配及动态特性[J].天津大学学报,1999,32(3):378-380.
    [69] Leelananda Rajapaksha.Influence of special attributes of zeotropic Refrig -erant mixtures on design and operation of vapour compression refrigeration and heat pump systems[J].Energy Conversion and Management,2006, 17 online
    [70] 赵力.基于传热窄点的非共沸混合工质优选方法[M].天津大学学报,2005,38(11):1001-1005
    [71] 骆赞椿,吕瑞东,刘国杰,等译,J.M.普劳斯尼茨著.流体相平衡的分子热力学[M].北京:化工出版社,460-475
    [72] 韩世钧译.斯坦利 M.瓦拉斯著.化工相平衡[M].北京:中国石化出版社,444-463.
    [73] Preston, G.T.,J.M.Prausnitz.Thermodynamics ofsolid solubility in cryogenicsolvents[J].Eng. Chem.. Process Des. Dev, 1970, 9(2):264-271.
    [74] Myers, A. L., J.M. Prausnitz.Thermodynamics of solid carbon dioxide solubility in liquid solvents at low temperature[J].Ind., Eng. Chem. Fundam., 1965, 4(2):209-212.
    [75] 宣永梅.新型替代制冷剂的理论及实验研究[D].博士论文.杭州:浙江大学,2004
    [76] Reed TM,Gubbins K E. Applied Statistical Mechanics McGraw-Hill [M].New York, 1973
    [77] Bett K E, Rowlinson J W, Saville G.. Thermodynamics for Chemical Engineers[M].The MIT Press, Cambridge, MA, 1975
    [78] Huber M L, Ely J F. A predictive extended corresponding states model for pure and mixed refrigerants including an equation of state for R134a [J]. International Journal of Refrigeration, 1994, 17(I):18-31
    [79] 吴业正.制冷与低温技术原理[M].北京:高等教育出版社,2004
    [80] 马一太,高志明.多元混合工质筛选及配比原则的研究[J].工程热物理学报,1997, 18 (1):17-20
    [81] J. G. ROOF, J. D. BARON.Critical loci of Binary Mixtures of Propane with Methane, Carbon Dioxide, and Nitrogen[J] . Journal Of Chemical And Engineering Data, 1967,. 12(3):292-293
    [82] Lambert J. Van Poolen, Cynthia D. Holcomb.Critical temperatures, pressures, and densities for the mixtures CO_2–C3H8, CO_2–nC4H10, C2H6–C3H8, and C3H8–nC4H10[J].Fluid Phase Equilibria, 1999, 165(2):157–168.
    [83] 张宇.新型中高温热泵混合工质的研究[D].硕士论文,天津:天津大学。
    [84] 陈斌,陈光明.R407C、R410A 制冷系统相关特性研究进展[J].流体机械.2003,31(2):42-45
    [85] J.T. McMullan, N.J. Hewitt, M.G. McNerlin,et al. Component separation in refrigerant equipment using HFC mixtures[J].Fluid Phase Equilibria, 2000, 174(1-2):133–141.
    [86] Johansson, P. Lundqvist.A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures[J].international journal of refrigeration, 2001, 24(8):798-808
    [87] Oleg O. Medvedev, Petr V. Zhelezny, Vitaly P. Zhelezny.Prediction of phase equilibria and thermodynamic properties of refrigerant/oil solutions [J]. Fluid Phase Equilibria, 2004, 215(1):29–38.
    [88] 葛志松,昊献忠,崔晓钰,等.三元非共沸混合工质变组成容量控制空调系统可行性分析[J].上海理工大学学报,2005,27(4):336-340
    [89] 蒯大秋,马一太.混合工质变浓度空调系统的实验研究[J].工程热物理学报,2004,25(4):554-557
    [90] 马一太,郜志,杨昭,等.空调制冷工质 R143a/R227ea、R125/R227ea的理论与实验研究[J].工程热物理学报,1999,20(4):397-400
    [91] 朱明善、陈宏芳,等.热力学分析[M].北京:高等教育出版社,1992
    [92] 高洪亮.绿色替代制冷剂制冷剂性质的计算及应用[M].河南:黄河水利出版社,2005
    [93] McGovern, J. A.; Harte, S.An exergy method for compressor performance analysis[J].International Journal of Refrigeration, 1995, 18(6):421-433
    [94] Yumrutas Recep, Kunduz Mehmet, Kanoglu Mehmet.Exergy analysis of vapor compression refrigeration systems[J]. Exergy, 2002, 2(4):266-272
    [95] Nikolaidis C,Probert, D. Exergy-method analysis of a two-stage vapour -compression refrigeration-plants performance[J] . Applied Energy, 1998, 60(4):241-256
    [96] 杨洪海.蒸汽压缩制冷系数的热力学第二定律分析[J].流体机械,2002,30(10):57-59
    [97] 王伟,金苏敏,肖飚.复叠式低温制冷箱的?分析[J].制冷与空调,2005,5(4):23-26
    [98] Yang Jun Lan, Ma Yi Tai, Li Min Xia et al. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander[J]. Energy, 2005, 30(7):1162-1175.
    [99] Pridasawas Wimolsiri, Lundqvist Per. An exergy analysis of a solar-driven ejector refrigeration system[J].Solar Energy, 2004, 76(4):369-379.
    [100] Chen Qiyu, Prasad R C.Simulation of a vapour-compression refrigeration cycles using HFC134A and CFC12 [J]. International Communications in Heat and Mass Transfer, 1999, 26(4):513-521
    [101] 冯霄,李勤凌.化工节能原理与技术[M].北京:化学工业出版社,1998.
    [102] 傅秦生,冯霄.热力循环中的不可避免 yong 损失[J].西安交通大学学报,2001,35(11):1105-1108
    [103] 傅秦生,肖跃雷.蒸气压缩制冷循环中的不可避免 Yong 损失[J].西安交通大学学报,2003,37(5):546-548
    [104] 傅秦生,肖跃雷.换热器中的不可避免 Yong 损失[J].华北电力大学学报,2003,30(5):79-82
    [105] 庞麓鸣,汪孟乐,冯海仙.工程热力学[M].北京:高等教育出版社,1986。
    [106] 李树林.空调用制冷技术[M].北京:机械工业出版社,1995,159
    [107] M. Hogberg, L.Vamling, T. Berntsson.Calculation methods for comparing the performance of pure and mixed working fluids in heat pump applications [J]. Rev. Int. Froid, 1993,16(6):403-413
    [108] 冯健美.纯质与混合工质凝结换热计算及冷凝器的计算机模拟[D].西安建筑科技大学,1999
    [109] 姜盈霓.纯质与混合工质水平管内沸腾换热计算及直接蒸发式空气冷却器的计算机模拟[D].西安建筑科技大学,2000
    [110] 思勤.多组分蒸气在水平管内冷凝传热的计算方法及验证[J].化学工程,1988,16(6):16-21
    [111] T.Y.Choi, Y.J.Kim, M.S. Kim, et al.Evaporation heat transfer of R-32, R-134a, R-32/134a, and R-32/125/134a inside a horizontal smooth tube [J].International Journal of heat and mass transfer, 2000, 43(19):3651-3660
    [112] A. Cavallini, D.Del Col, L. Doretti, et al. Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes [J]. International journal of refrigeration, 2000, 23(1):4-25
    [113] 杨世铭.传热学[M].北京:高等教育出版社,2003
    [114] 赵镇南.传热学[M].北京:高等教育出版社,2002
    [115] 顾维藻,神家锐,马重芳,等.强化传热[M].北京:科学出版社,1990,422
    [116] 史美中,王中铮.热交换原理与设计[M].南京:东南大学出版社,2000, 278.
    [117] 张建一.制冷装置节能技术[M] .北京:机械工业出版社,1999,16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700