平台与天线的一体化电磁建模及工程实践研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实现功能的多样化,越来越多的天线被架设到装备平台上,系统也变得更为复杂。天线与平台之间的相互耦合不仅影响天线本身的性能,同时也影响到系统整体的电磁兼容特性、电磁隐身特性、空气动力学特性等等。因此平台与天线一体化建模分析的重要性逐渐体现了出来。在具体的工程应用中,为降低平台载荷、减少天线数目,有效的宽带/超宽带天线被放到一个显著的位置;另外,弹载/机载平台天线的共形或共口径研究等也被提到了日程上来。
     本文的工作正是基于上述背景而开展的,研究内容不仅包括平台天线的一体化电磁建模技术,还包括应用需求极强的工程设计。所涉及到的方法不仅有精确的积分方程方法、高效的混合/近似方法,还包括实验测试、缩比模型等方法。
     围绕平台天线一体化建模的数值方法,本文首先以矩量法为基础,考查了基本流程,分析了其中的关键技术,也给出了在电小或谐振尺度平台下天线问题的实例。在涉及到馈电区几何/电磁建模的细节时,提出了“线簇—面”型及“角—面/角”型单点连接基函数,优点是能够节省未知量、加快求解时间。
     为提高求解效率,进一步研究了混合的电磁场迭代方法及(多层)快速多极子方法。这些方法,特别是后者,不仅具有精确性、同时具有显著的高效性。对于(多层)快速多极子方法,本文不仅研究了其用于电大PEC平台天线建模的详细过程,同时还将其应用于金属—介质复合平台上的天线仿真。所给出的验模及应用实例也都具有较强的针对性。
     平台天线问题实际上具有显著的特点,即局部或本地特性。基于这个特点,一些混合或近似方法可被利用以节省计算量、提高求解效率。本文主要考查了平台远端边界硬截断、忽略平台中远区互耦的矩量法—物理光学混合方法、新型相位基函数在辐射问题中的应用、考虑有耗地面影响的格林函数平面波反射系数修正法等。这些方法的有效性在与精确结果的对比中得到了很好地体现。
     舰载短波/超短波全向超宽带通信天线的设计是本文基于实验研究方法的一项重要工程实践。在综合现有天线宽带技术的基础上,本文采用结构复用、双端馈电、套筒匹配、分布参数优化等手段设计出的新型双馈组合式笼锥超宽带舰载通信天线在超过30个倍频的带宽内实现了很好的匹配,而所需尺寸却较国内外同类型参考天线表现出明显的优势,因而在实用上更具竞争力。
     本文还在真实的弹载介质罩下研究了很具挑战性的定位+遥测、定位+引信两个双天线共口径方案。将传统的四绕螺旋天线加以改进并作为定位天线,遥测天线考查了环形地板上的单极振子及二元阵列,而引信天线简单地采用以腔壁为地的水平单极振子。通过实验详细研究了口径尺寸及互耦对天线性能的影响,最终的布局方案能很好地实现定位天线口径法向右旋圆极化辐射、遥测天线口径面线极化掠射及引信天线的法向线极化辐射,各自的带宽也得到了满足。
     虽然所作工作还较为粗浅,然而已在平台天线一体化建模及实验探索方面形成了大概的轮廓,已经具备了精确求解电大复杂平台天线辐射问题的能力,为将来的研究打下了较好的基础。两项工程设计均具有很好的技术性能及应用前景,目前已经开始向实用化方向努力。
More and more antennas are being mounted on weapon platforms for multifunction, and armament systems become more complex. The mutual couplings between the antennas and the platform affect not only the parameters of the former but also the other characteristics of the whole system including electromagnetic compatibility, low observability, and aerodynamics, etc. Hence, the importance of the integrative platform-antenna modeling and analyzing gets more evident. In actual engineering, to decrease the platform load and the antenna number, efficient wideband/ultra-wideband antennas have been put on an important position; in addition, co-aperture or conformal studies for onboard antennas have also been recorded in calendar.
     The work in this paper is carried out based on the above mentioned backgrounds; its content includes some integrative electromagnetic modeling techniques and also some engineering designs according to urgent requirements. The involved methods include rigorous integral equation methods, high efficient combined/approximate algorithms, experimental testing and scale model methods, etc.
     Surrounding the integrative numerical modeling, this paper firstly takes the moment methods as a foundation. The main process of this approach is shown, some key techniques are analyzed, and several examples of antennas mounted on electrically small or resonant platforms are given out. When emphasis focused on the details of the geometrical/electromagnetic modeling of the antenna feed regions, two new-typed wires-to-surface and pyramid-to-surface/pyramid junction bases are presented, which enjoys the benefits of decreasing unknowns and accelerating solving speed.
     To improve computational efficiency, the hybrid electromagnetic iterative methods and the fast multipole method (or multilevel fast multipole algorithm, MLFMA) are further studied. These two categories of methods, are accurate and high efficient. For the MLFMA, its detailed process in the modeling for problems of antennas mounted on electrically large PEC objects and also its applications in dielectric-metal combined platforms are studied in this paper. All the examples for demonstration are pertinent.
     Platform-antenna problems have distinct characteristics, namely the localized or restricted features. Some hybrid or approximate methods based on these characteristics can be adopted to save computational cost and increase solving efficiency. In this paper, the emphases are mainly put on the truncations of the far ends of the platforms, the hybrid moments-physical optics methods in which the mutual couplings between the elements of the middle/far regions of the platforms are ignored, the applications of the new-typed phase-extracted basis functions in radiation problems, and the modification to the Green's function by plane-wave reflection coefficients when considering the effects of lossy grounds. The efficiencies of these methods are well confirmed by the comparisons between their results with those obtained through accurate methods.
     The design of the shipboard shortwave/ultrashort ultra-wideband communication antenna in this paper is an important engineering practice based on experiment methods. With the aid of some existing wideband techniques, a new-typed dual-feed combined cage/cone-shaped ultra-wideband antenna for shipboard omnidirectional communication has been designd successfully though the integration of structure combining, dual-port feeding, sleeve matching, and distributed parameter optimizing. The proporsed antenna has a good impedance match in a bandwidth larger than 4.9 octaves, and its geometrical dimensions are much smaller than those of the internal/external congeneric ones, so it is more preponderant in practicality.
     Two very challenging co-aperture arrangements of dual antennas for orientation plus telemetry or orientation plus fuze are proposed under actual missile-board dielectric radomes in this paper. A traditional quadrifilar helix is improved to act as the orientation antenna, a single monopole or a two-element array mounted on a ring-shaped ground are adopted to suit the telemetry role, while the fuze antenna is simply made of a horizontal monopole threaded out of the inner wall of the cavity. The effects of the aperture dimensions and the mutual couplings on the antenna performances are analized through a large number of experiments. A right-hand circular polarized radiation normal to the aperture surface for the orientation antenna, a radiation in the grazing direction of the aperture surface for the telemetry antenna, and a linear polarized radiation normal to the aperture for the fuze antenna are simultaneously and well realized in the final arrangements, and the bandwidth requirements for these antennas are also met.
     Although the work might be some superficial, it has formed a rough profile about the integrative modeling and the experimental investigating methods for platform-antenna problems. At the same time, it has formed the capability to analize radiation problems of antennas on electrically large and complex platforms and also formed a good base for future studies. The two engineering designs both have good electric performances and application foregrounds and are being put forward with great efforts.
引文
[1]Yee K S.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Trans.Antennas Propagat.,1966,AP-14(3):302 - 307.
    [2]Taflove A and Hagness S C.Computational Electrodynamics:The Finite Difference Time Domain Method.Boston,MA:Artech House,2000.
    [3]高本庆,刘波.电磁场时域数值技术新进展.北京理工大学学报,2002,22(4):401-406.
    [4]Wang J,Gao B.A method of sub-region connection in FDTD algorithm.Microw.Opt.Technol.Lett.,1998,19(3):229 - 233.
    [5]Young J L,Gaitonde D,Shang J J S,etal.Toward the construction of fourth-order difference scheme for transient EM wave simulation:Staggered grid approach.IEEE Trans.Antennas Propagat.,1997,45(11):1573 - 1580.
    [6]Namiki T.3-D ADI-FDTD method-Unconditionally stable time domain algorithm for solving full vector Maxwell's equations.IEEE Trans.Microw.Theory Tech.,2000,48(10):1743 - 1748.
    [7]Ohtani T,Taguchi K,Kashiwa T,and Kanai Y.Overlap algorithm for the nonstandard FDTD method using nonuniform mesh.IEEE Trans.Magn.,2007,43(4):1317 - 1320.
    [8]薛正辉,高本庆.机载短波天线间隔离度的全波分析.电波科学学报,2000,15(4):477-481.
    [9]闫玉波,李清亮.复杂载体短波天线特性的FDTD模拟与分析.电波科学学报,2004,19(2):135-142.
    [10]李玉星,葛俊祥.毫米波有源柱面共形微带阵列天线的理论与实验研究.电子学报,1999,27(6):61-64.
    [11]余彦民,赵建中,吴文.共形环状毫米波微带天线研究.制导与引信,2005,26(3):43-46.
    [12]金建铭著,王建国译,葛德彪校.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [13]Everentt E.3-D finite element analysis of induction logging in a dipping formation.IEEE Trans.Geosci.Remote Sens.,2001,39(10):2244 - 2252.
    [14]Graglia R D,Wilton D R,and Peterson A F.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.Antennas Propagat.,1997,45(3):329 - 342.
    [15]Andersen L S,and Volakis J L.Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics.IEEE Trans.Antennas Propagat.,1999,47(1):112- 120.
    [16]Webb J P.Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements.IEEE Trans.Antennas Propagat.,1999,47(8):1244 - 1253.
    [17]班永灵.高阶矢量有限元方法及其在三维电磁散射与辐射问题中的应用.电子科技大学博士论文,2006.
    [18]牛俊伟,钟顺时.柱面共形蝶形微带天线.上海大学学报,2003,9(4):287-290.
    [19]盛新庆.计算电磁学要论.北京:科学出版社,2002.
    [20]汪茂光.几何绕射理论.西安:西安电子科技大学出版社,1994.
    [21]Michaeli A.Equivalent edge currents for arbitrary aspects of observation.IEEE Trans.Antennas Propagat.,1984,AP-32:252 - 258.
    [22]Stutzman W L,and Thiele G A.Antenna theory and design.Hoboken,NJ:John Wiley & Sons Inc.,1998.
    [23]曹祥玉,项铁铭,马凤国,等.机载天线辐射方向图研究.微波学报,2002,18(1):15-19.
    [24]张玉,梁吕洪.并行UTD算法及在机载天线分析中的应用.电子学报,2003,31(3):332-334.
    [25]Ufimtsev P I.Approximate computation of the diffraction of plane electromagnetic waves at certain metal bodies.Part Ⅰ.Diffraction patterns at a wedge and a ribbon.Zh.Tekhn.Fiz.(USSR),1957,27(8):1708 - 1718.
    [26]Mitzner K M.Incremental length diffraction coefficients.Northrop Co.Tech.Tep.,NO.AFAL-TR-73-296,1974.
    [27]Obelleiro F,Todriguez J L,and Burkholder R J.An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities.IEEE Trans.Antennas Propagat.,1995,43(4):356 - 361.
    [28]Burkholder R J,Lundin T.Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities.IEEE Trans.Antennas Propagat.,2005,53(2):793 - 799.
    [29]马东立,赵彩霞.用迭代物理光学方法分析导弹的耦合散射效应.微波学报,2006,22(4):11-14.
    [30]连科峰,张红霞,陈益邻.NURBS曲面RCS物理光学方法混合计算.电波科学学报,2006,21(1):135-139.
    [31]李世智.电磁辐射与散射问题的矩量法.北京:电子工业出版社,1985.
    [32]Trueman C W,Kubina S J.Fields of complex surfaces using wire grid modeling.IEEE Trans. Magn.,1991,27(5):4262 - 4267.
    [33]Baldwin P J,Boswell A G,Brewester D C,Allwright J S.Iterative calculation of ship-borne HF antenna performance.Proc.H IEE Microw.Antennas Propagat.,1991,138(2):151 - 158.
    [34]Song J M,Chew W C.Moment method solutions using parametric geometry.J.Electromagn.Wave Applicat.,1995,9(1/2):71 - 83.
    [35]Rao S M,Wilton D R,and Glisson A W.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans.Antennas Propagat.,1982,AP-30:409 - 418.
    [36]赵延文,聂在平,徐建华,武胜波.基于RWG基函数的伽略金法中奇异性积分的精确快速计算.电子学报,2005,33(6):1019-1023.
    [37]Bhattacharya S,Long S A,and Wilton D R.The input impedance of a monopole antenna mounted on a cubical conducting box.IEEE Trans.Antennas Propagat.,1987,35:756 - 762.
    [38]Werner D H.A method of moments approach for the efficient and accurate modeling of moderately thick cylindrical wire antennas.IEEE Trans.Antennas Propagat.,1998,46(3):373 -382.
    [39]Sergey N M.Antenna and EM Modeling with Matlab.Hoboken,NJ:John Wiley & Son Inc.,2002.
    [40]James C G Matthews and Gerg G Cook.An efficient method for attaching thin wire monopoles to surfaces modeled using triangular patch segmentation.IEEE Trans.Antennas Propagat.,2003,51(7):1623 - 1629.
    [41]阙肖峰,聂在平,宗显政.复杂金属载体上线天线的MoM分析.微波学报,2006,22(5):16-20.
    [42]Newman E H and Pozar D M.Electromagnetic modeling of composite wire and surface geometries.IEEE Trans.Antennas Propagat.,1978,AP-26(6):784 - 789.
    [43]Richmond J H.Monopole antenna on circular disk.IEEE Trans.Antennas Propagat.,1978,32:1282- 1287.
    [44]Tekin Ibrahim and Newman E H.Method of moment solution for a wire attached to an arbitrary faceted surface.IEEE Trans.Antennas Propagat.,1998,AP-46(4):559-562.
    [45]Rao S M.Electromagnetic scattering and radiation of arbitrary-shaped surfaces by triangular patch modeling.Ph.D.dissertation,Dept.Elect.Eng.,Univ.of Mississippi,Oxford,MS,1980.
    [46]Costa M F,Harrington R F.Minimization of radiation from computer systems.Proc.Elect.Electron.Int.Conf.,Toronto,Canada,1983:660- 665.
    [47]Costa M F.Electromagnetic radiation and scattering from a system of conducting bodies interconnected by wires.Ph.D.dissertation,Dept.Elect.Eng.,Syracuse Univ.,Syracuse,NY,1983.
    [48]郭景丽,刘其中,周斌.有限导体地面上的圆锥单极子天线.电子学报,2005,33(3):560-562.
    [49]宗卫华,万继响,梁昌洪.导体线面连接问题中奇异函数积分的计算.微波学报,2004,20(1):6-9.
    [50]Chao H Y,Zhao J S,and Chew W C.Application of curvilinear basis functions and MLFMA for radiation and scattering problems involving curved PEC structures.IEEE Trans.Antennas Propagat.,2003,51(2):331 - 336.
    [51]Zong X Z,Nie Z P,and Que X F.Numerical Analysis of Wire Conical Antennas Mounted on Circular Plates.Proc.IEEE Antennas Propagat.Int.Syrup.,2007,5648 - 5651.
    [52]Zong X Z,Nie Z P,and Que X F.Numerical Analysis of Cone/Pyramid-shaped Antennas Using Wires/Surface-to-surface Junction Basis.IEEE Trans.Antennas Propagat.,(minor revision).
    [53]Catedra M F,Gago E,and Nulo L.A numerical scheme to obtain the RCS of three dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform.IEEE Trans.Antennas Propagat.1989,37(5):528 - 537.
    [54]周永祖著,聂在平,柳清伙译.非均匀介质中的场与波.北京:电子工业出版社,1992.
    [55]Mendes L S,and Carvalho S A.Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions.Microw.Opt.Technol.Lett.,1996,12(6):327 - 331.
    [56]Rao S M,and Wilton D R.E-field,H-field,and combined field solution for arbitrarily shaped three-dimensional dielectric bodies.Electromagn.,1990,20(4):407 - 421.
    [57]Rao S M,Cha C C,Cravey R L,and Wilkes D.Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness.IEEE Trans.Antennas Propagat.1991,AP-39:627 - 631.
    [58]Sarkar T K,Rao S M,and Djordjevic A R.Electromagnetic scattering and radiation from finite microstrip structures.IEEE Trans.Microw.Theory Tech.,1990,38(11):1568 - 1575.
    [59]姚海英.介质以及涂敷介质结构电磁散射特性的基础研究-积分方程方法及其快速求解.电子科技大学博士学位论文.2002.
    [60]Nie Z P,Chew W C,and Lo Y Z.Analysis of annular-ring-loaded circular-disk microstrip antenna IEEE Trans.Antennas Propagat.1990,38(6):806 - 813.
    [61]Cui T J,Chew W C.Accurate model of arbitrary wire antennas in free space,above or inside ground.IEEE Trans.Antennas Propagat.,2000,48(4):482 - 493.
    [62]Burke G J and Poggio A J.Numerical Electromagnetics Code(NEC) - Part Ⅰ:Program Description-Theory.Technical Report,Lawrence Livermore Laboratory,January 1981.
    [63]Michalski K A,and Zheng D.Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media,Part Ⅰ and Part Ⅱ.IEEE Trans.Antennas Propagat.,1990,38(3):335 -352.
    [64]Michalski K A,and Mosig J R.Multilayered media Green's functions in integral equation formulations.IEEE Trans.Antennas Propagat.,1997,45(3):508 - 519.
    [65]Cui T J,Werner W,and Alexander H.Electromagnetic scattering by multiple three-dimensional scatters buried under multilayered media,Part Ⅰ and Part Ⅱ.IEEE Trans.Geosic.Remote Sens.,1998,36(2):526 - 546.
    [66]王建,兰康,彭仲秋.有耗半空间天线问题中的广义索末菲积分.电子学报.1995,23(3):104-107.
    [67]徐利明.分层介质中三维目标电磁散射的积分方程方法及其关键技术.电子科技大学博士学位论文,2004.
    [68]徐利明,聂在平,胡俊.半空间环境中任意位置三维倒替目标的电磁建模.电波科学学报,2005,20(3):330-335.
    [69]宗显政,陈涌频,聂在平,等.地面上方任意金属天线的MOM分析.已投电子科技大学学报.
    [70]Thiele G A and Newhouse T H.A hybrid technique for combining moment methods with the geometrical theory of diffraction.IEEE Trans.Antennas Propagat.,1975,AP-23:62 - 69.
    [71]Theron I P,Davidson D B,and Jakobus U.Extensions to the hybrid method of moments/uniform GTD formulation for sources located close to a smooth convex surface.IEEE Trans.Antennas Propagat.,2000,48(6):940 - 945.
    [72]Persson P,Josefsson L.Calculating the mutual coupling between apertures on a convex circular cylinder using a hybrid UTD-MoM method.IEEE Trans.Antennas Propagat.,2001,49(4):672- 677.
    [73]Kim C S,Rahmat-Samii Y.Low profile antenna study using the physical optics hybrid method (POHM).Proc.IEEE Antennas Propagat.Int.Symp.,London,ON,Canada,1991,3:1350-1353.
    [74]Obelleiro F,Taboada J M,Rodriguez J L,et al.Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas.Microw.Opt. Technol.Lett.,2000,27(2):88-93.
    [75]Obelleiro F,Taboada J M,Rodriguez J L,et al.HEMCUVI:A software package for the electromagnetic analysis and design of radiating systems on board real platforms.IEEE Trans.Antennas Propagat Mag.,2002,44(5):44-61.
    [76]Jakobus U,and Landstorfer F.Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape.IEEE Trans.Antennas Propagat.,1995,43(2):162-169.
    [77]Miroslav D,Branislav M N.Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces.IEEE Trans.Antennas Propagat.,2005,53(2):800 - 813.
    [78]张浩斌,杜建春,聂在平.MOM-NPO混合算法分析天线-载体系统.电子与信息学报,2006,28(9):1731-1734.
    [79]Min Chen,Yu Zhang,Xunwang Zhao,et al.Analysis of antenna around NURBS surface with hybrid MOM-PO technique.IEEE Trans.Antennas Propagat.,2007,55(2):407 - 413.
    [80]Hodges R E,Rahmat-Samii Y.An iterative current-based hybrid method for complex structures.IEEE Trans.Antennas Propagat.,1997,45(2):265 - 276.
    [81]宗显政,聂在平,阙肖峰.MOM,MOM-PO,HEMI三种算法在辐射问题中的比较.电子科技大学学报,已录用,待发表.
    [82]Cui T J,Lu W B,Qian Z G,Hong W,et al.An efficient multiregion model for electromagnetic scattering and radition by PEC targets.IEEE Trans.Antennas Propogat.,2004,52(7):1707 -1716.
    [83]Lu W B and Cui T J.Fast algorithm to study the radiation of antennas near to or attached on a large PEC object.全国电磁散射与逆散射专业委员会暨纪念谢处方教授逝世一周年学术交流会论文集.2004,54-68.
    [84]Engheta N,Murphy W D,Rokhlin V,et al.The fast multipole method(FMM) for electromagnetic scattering problems.IEEE Trans.Antennas Propagat.,1992,40(6):634 - 641.
    [85]Lu C C,Chew W C.Fast algorithm for solving hybrid integral equations.Proc.H IEE Microw.Antennas Propagat.,1993,140(6):455 - 460.
    [86]Song J M,Lu C C,Chew W C.Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects.IEEE Trans.Antennas Propagat.,1997,45(10):1488-1493.
    [87]聂在平,胡俊,姚海英,等.用于复杂目标三维矢量散射分析的快速多极子方法.电子学 报,1999,27(6):104-109.
    [88]胡俊.复杂目标矢量电磁散射的高效方法-快速多极子方法及其应用.电子科技大学博士论文.2000.
    [89]王浩刚.电大尺寸含腔体复杂目标矢量电磁散射一体化精确建模与高效算法研究.电子科技大学博士学位论文,2001.
    [90]Graglia R D,Wilton D R,and Peterson A F.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.Antennas Propagat.,1997,45(3):329 - 342.
    [91]Cai W,Yu Y J,and Yuan X C.Singularity treatment and high order RWG basis function for integral equations of electromagnetic scattering.Int.J.Numer.Mesh.Engng.,2000,00:1 - 6.[92]Kang G,Song J M,Chew W C,et al.Grid-robust higher-order vector basis functions for solving integral equations.Proc.IEEE Antennas Propagat.Int.Symp.,2000,1:468 - 471.
    [93]Hamilton L R,Macdonald P A,et al.Electromagnetic scattering computations using high-order basis functions in the method moments.Proc.IEEE Antennas Propagat.Int.Symp.,1994,3:2166 - 2169.
    [94]弓晓东.复杂目标电磁散射精确建模的高阶快速多极子方法.电子科技大学硕士学位论文,2003.
    [95]胡劼.基于多层快速多极子方法的高效快速算法研究.电子科技大学硕士学位论文,2004.
    [96]温剑.基于快速多极子方法的高效迭代方法及其工程应用.电子科技大学硕士学位论文,2005.
    [97]Jorgensen E,Volakis J L,Meincke P,et al.Higher order hierarchical Legendre basis functions for electromagnetic modeling.IEEE Trans.Antennas Propagat.,2004,52(11):2985 - 2995.
    [98]Jorgensen E,Kim O S,Meincke P,et al.Higher order hierarchical diseretization scheme for surface integral equations for layered media.IEEE Trans.Geosci.Remote Sens.,2004,42(4):764 - 772.
    [99]Jorgensen E,Volakis J L,Meincke P,et al.Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling.Proc.IEEE Antennas Propagat.Int.Symp.,2002,4:618 - 621.
    [100]Ren Y,Zhao Y W and Nie Z P.Higher order hierarchical vector basis function used in the frequency domain.Proc.China-Japan Joint Microw.Conf.,2006,2:523 - 526.
    [101]马文敏.宽带电磁散射频域高效算法.电子科技大学硕士学位论文,2007.
    [102]Liu Q H,and Chew W C.Apphcation of the conjugate gradient fast Fourier Hankel transfer method with an improved fast Hankel transform algorithm.Radio Sci.,1994,29:1009 - 1022.
    [103]Liu Q H,Zhang Z Q,and Xu X M.The hybrid extended Born approximation and CG-FFT method for electromagnetic induction problems.IEEE Trans.Geosci.Remote Sens.,2001,39(2):347 - 354.
    [104]Hu B,and Chew W C.Fast inhomogeneous plane wave algorithm for electromagnetic solution in layered medium structures:two-dimensional case.Radio Sci.,2000,35(1):31 - 43.
    [105]Hu bin,and Chew W C.Fast inhomogeneous plane wave algorithm for scattering from objects above the multilayered medium.IEEE Trans.Geosci.Remote Sens.,2001,39(5):1028 - 1038.
    [106]陈涌频.复杂目标电磁散射的快速非均匀平面波算法.电子科技大学硕士学位论文,2006.
    [107]Nie Z P,Yan S,He S Q,and Hu J.The basis functions with traveling wave phase factor for efficient MoM solutions of scattering from electrically large targets.IEEE Trans.Antennas Propagat,Special Issue on Large and Multiscale Computational Electromagnetics,submitted.
    [108]Nie Z P,and Yan S.A novel basis functions with phase information for MoM solutions of scattering from electrically large targets.IEEE Trans.Antennas Propagat.,submitted.
    [109]Zong X Z,Nie Z P,Yan S,and He S Q.Applications of the PE-basis Functions in Hybrid MOM-PO Methods.Proc.IEEE Antennas Propagat.Int.Symp.,2008,submitted.
    [110]林昌禄.天线测量.北京:国防工业出版社,1981.
    [111]林昌禄,聂在平,等.天线工程手册.北京:电子工业出版社,2002.
    [112]丁晓磊,王建,林昌禄.弹载天线载体截短对天线辐射特性的影响.电波科学学报,2001,16(1):49-53.
    [113]Preston E L.Shipboard Antenna.Norwood,MA:Artech House inc,1986.
    [114]Steven R B.On the use of scale brass models in HF shipboard communication antenna design.IEEE Trans.Antennas Propagat.Mag.,2002,44(2):12 - 23.
    [115]Cdr GJ Panicker and Lt Cdr VM Tyagi.RF Scale Model Range.Proc.2003 8th Electromagn.Interference Compat.Int.Conf.,2003:353 - 358.
    [116]张坤元,黄嵩高,郑生全,黄琼.通信天线方向图品质的“船模法”分析.舰船电子工程,1998.4:38-44.
    [117]汤仕平,陈黎平,万海军,张勇.电磁兼容性船模预测在电波暗室中的实现.中国造船,2006,47(2):42-49.
    [118]维施可夫M B.船用通信天线.北京:国防工业出版社,1983.
    [119]Andrews A W.Antenna systems in the shipboard environment.IRE Trans.Commun.Syst.,1955,3(1):47 - 49.
    [120]Li S T,Koyama L B,Schukantz J H,and Dinger R J.EMC study of a shipboard HF surface wave radar.Proc.IEEE Electromag.Compat.Int.Symp.,1995:406 - 410.
    [121]Jagannath T,Kulkarni P P and Tyagi V M.HF broadband antenna design considerations on warships.Proc.1997 Electromagn.Interference Compat.Int.Conf.,1997,12:421 - 428.
    [122]J L Fernandez Jambrina,F Las Heras Andres.Analysis of shipboard HF antennas with the PDMPH2 computer code.Proc.2006 Mathematical Methods in Electromagn.Theory Int.Conf.,1988:120- 124.
    [123]Mattioni L,Marrocco G.Design of a broadband HF antenna for multimode naval communications.IEEE Antennas Wireless Propagat.Lett.,2005,4:179 - 182.
    [124]余吾弟.船用宽频带天线的研制和实船应用.舰船电子工程,2000,1:38-40.
    [125]徐良,石守元,焦永昌,董玉良.低轮廓全向宽带单极天线研究.电子学报,1995,23(12):89-92.
    [126]徐良,朱红星,毛乃宏.一种新型的舰用短波宽带天线.电波科学学报,1998,13(1):74-78.
    [127]陈海涛.一种舰用短波宽带天线的效率及增益分析.舰船电子工程,2002,1:35-37.
    [128]Edson W A.Broadband trapped multiple-wire antennas.Proc.IEEE Antennas Propagat.Int.Symp.,1981,19:586 - 589.
    [129]Reuster D D,and Cybert K J.A high-efficiency broadband HF wire-antenna system.IEEE Trans.Antennas Propagat.Mag.,2000,42(4):53 - 61.
    [130]Yegin K,and Martin A Q.Very broadband loaded monopole antennas.Proc.IEEE Antennas Propagat.Int.Symp.,1997,1:232 - 235.
    [131]Moritz J R,and Sun Y.Frequency agile antenna tuning and matching.Proc.2000 Eigth HF Radio Syst.Tech.Int.Conf.,2000:169 - 174.
    [132]王元坤,李玉权.线天线的宽频带技术.曲安:西安电子科技大学出版社,1995.
    [133]延晓荣,金元松.阻容加载偶极子的宽带性能及效率分析.电波科学学报,2000,15(2):169-173.
    [134]Yegin K,Martin A Q.On the design of broad-band loaded wire antennas using the simplified real frequency technique and a genetic algorithm.IEEE Trans.Antennas Propagat.,2003,51(2):220 - 228.
    [135]Gao H T,Li J,and Zheng X.Optimal design of broadband loaded receiving antenna for HFSWR using simulated annealing.Proc.2003 6th.Antennas Propagat.EM Theory Int.Symp.,2003:30 - 33.
    [136]杨恩耀,李思敏.一体化双盘锥天线的研制.桂林电子工业学院学报,1996,16(4):6-11.
    [137]Lu W Z,Jiang Y,and Yuan A M,et al.A novel short-wave broadband antenna.Proc.5th Antennas Propagat.EM Theory Int.Symp.,2000:366 - 369.
    [138]张斌.短波宽带全向天线技术研究.电子科技大学硕士学位论文,2003.
    [139]文武丰.短波超短波宽带小型化天线及匹配网络研究.电子科技大学硕士学位论文,2005.
    [140]宗显政,文武丰,张斌,等.新型舰载超短波宽带天线.电波科学学报(增刊),2004,19:243-246.
    [141]宗显政,聂在平,杨学恒.船用双馈组合式笼锥宽带天线.电波科学学报,2007,22(1):91-94
    [142]Zong X Z,Nie Z P,and Yang X H.Novel Dual Feed Broadband Antennas with a Combined Shape.Proc.2006 Asian-Pacific Environm.Electromagn.Conf.,2006,1:472 - 475.
    [143]宗显政,文武丰,聂在平,等.短波超短波通信用组合式笼锥超宽带天线.国家发明专利,中请号:200410040876.5.
    [144]聂在平,宗显政,文武丰,等.一种超宽带天线双馈匹配器.国家发明专利,授权号:ZL200410040874.6.
    [145]郭修煌,何松华,孟庆华.精确制导技术,北京:国防工业出版社.1999.
    [146]孙桦,李祥鹏.GPS用于导弹轨道测量的研究.宁航计测技术,2001,21(2):47-50.
    [147]陈晶,袁书明.GPS的发展及在精确制导武器中的应用.全球定位系统,2005,1:22-27.
    [148]赵树强,许爱华.箭载GPS实时定轨精度估计.全球定位系统,2006,2:19-22.
    [149]Ortigosa J I,Padros N,and Iskander M F.Comparative study of high performance GPS receiving antenna designs.Proc.IEEE Antennas Propagat.Int.Symp.,1996,3:1958 - 1961.
    [150]Ansbro A P,Crozzoli M,amd Gianola P.Design of circular polarized printed antennas in L-band.Proc.Tenth Antennas Propagat.Int.Conf.,1997,1:314 - 317.
    [151]Kilgus C C.Resonant quadrifilar helix.IEEE Trans.Antennas Propagat.,1969,AP-17:349 -451.
    [152]Shumaker P K,Ho C H,and Smith K B.A new GPS quadrifilar helix antenna.Proc.IEEE Antennas Propagat.Int.Symp.,1996,3:1966 - 1969.
    [153]Petros A."Folded" quadrifilar helix antenna.Proc.IEEE Antennas Propagat.Int.Symp.,2001,4:569 - 572.
    [154]Srinivas S,Sharma R,and Balakrishnan T,et al.Printed quadrifilar helix:development of a novel antenna for measurement of electromagnetic interference.Proc.Electromag.Interference Compat.Int.Conf.,2003:349 - 352.
    [155]李邦复.遥测系统.北京:宇航出版社,1991.
    [156]于志坚,房鸿瑞.对我国遥测技术发展的思考.遥测遥控,2003,9:1-8.
    [157]霍培锋,郭小兵.国外航空遥测发展综述.遥测遥控,2003,11:1-5.
    [158]Anderson R E,Dorrenbacher C J,Krausz R,and Margerum D L.A multiple telemetering antenna system for supersonic aircraft.IEEE Trans.Antennas Propagat.1955,3:173 - 176.
    [159]Kumar A.Telemetry antenna for radarsat.Proc.12th Geosci.Remote Sens.Int.Symp.,1989:226 - 229.
    [160]Yang G,Ali M,and Dougal R.A multi-functional stacked patch antenna for wireless power beaming and data telemetry.Proc.IEEE Antennas Propagat.Int.Symp.,2005,2A:359 - 362.
    [161]林吕禄,陆亿泷.斜射波束梳形微带行波阵的设计.电子科学学刊,1989,11(5):458-467.
    [162]秦毅.飞行器载低剖面倒F天线特性分析.遥测遥控,2004,9:38-43.
    [163]李志勇.微带共形天线阵在遥测系统中的设计应用.航空兵器,2006,4:28-31.
    [164]张松年.引信天线的新发展.制导与引信,1984,4:32-47.
    [165]张松年.引信天线的新发展(续).制导与引信,1985,1:20-38.
    [166]毛康侯,沈心雄,袁则直等.防空导弹天线.北京:宁航出版社,1991.
    [167]Oliner A A.Leakage from higher modes on microstrip line with application to antenna.Radio Sci.,1987,11(6):907-912.
    [168]任保坤.对无线电引信“帽-弹体”天线的分析.探测与控制学报,1982,1:48-57.
    [169]张立东.柱形弹体引信天线布局与作用盲点分析.上海航天,2004,6:59-61.
    [170]Zong X Z,Nie Z P,and Wang J.Co-aperture Arrangement of Dual Antennas for Orientation and Telemetry in a Conformal Cavity.J.Syst.Eng.Electron.,已录用,待发表.
    [171]宗显政,王军,聂在平,等.厚介质罩深腔内双天线共口径设计.电波科学学报,2007,22(6):928-931.
    [172]宗显政,王军,聂在平,等.定位/通信双天线深腔共口径实验研究.电子与信息学报,2008,30(1):249-251.
    [173]聂在平,宗显政,王军,等.XXX天线.国防专利,申请号:200710080448.9.
    [174]宗显政,聂在平,王军,等.XXX天线.国防专利,申请号:200710080447.4.
    [175]毛康候,方振民.飞行器天线工程设计指南.北京:国防工业出版社,1989.
    [176]金显盛.再入飞行器天线.北京:国防工业出版社,2000.
    [177]Meeks D N and Wahid P F.Input impedance of a wraparound microstrip antenna on a conical surface. Proc. IEEE Antennas Propagat. Int. Symp., 1996, 7(1):676 - 679.
    [178] B. Rama Krishna Rao, N.S. Murthy Sarma, A.D. Sarma and K. Ravindra. Modeling of planar spiral antenna mounted on a rocket shaped structure using wedge diffraction analysis. Proc. Electromagn. Interference Compat. Int. Conf., 2002,2:287 - 289.
    [179] Kubina S J. Computer modeling of performance of installed antennas. Proc. Seventh Antennas Propagat. Int. Conf., 1991, 2:840 - 844.
    [180] Zavosh F and Aberle J. Single and stacked circular microstrip patch antennas backed by a circular cavity. IEEE Trans. Antennas Propagat. 1995,43(7):746 - 750.
    [181] Karmakar N C. Investigations into a cavity-backed circular-patch antenna. IEEE Trans. Antennas Propagat. 2002,50(12):1706 - 1715.
    [182] Guha D, and Siddiqui J Y. Studies of the resonant characteristics of a cavity-backed microstrip patch antenna. Proc. IEEE Antennas Propagat. Int. Symp., 2003,3:148-151.
    [183] Morishita H, Hirasawa K, and Fujimoto Kyohei. Analysis of a cavity-backed annular slot antenna with one point shorted. IEEE Trans. Antennas Propagat. 1991, 39(10):1472 - 1478.
    [184] Jakobus U, Christ J, and Landstorfer F M. PO-MOM analysis of cavity-backed antennas. Proc. Eigth Antennas Propagat. Int. Conf., 1993, 1:111-114.
    [185] Zainud-Deen S H, Mahmoud K R, Shaalan A A M, and Ibrahem SMM.A cavity-backed quadrifilar-curl antenna. Proc. 20th Radio Sci. Nat. Conf., Cairo, Egypt, 2003, B2:1 - 8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700