高炉冶炼过程的复杂性机理及其预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高炉炼铁是钢铁工业的上游主体工序,作为国民经济支柱产业的重要组成部分,它对整个钢铁工业的发展与节能降耗都起重要的作用。本文以内蒙古包钢6#高炉在线采集的冶炼过程数据为基础,针对炼铁生产中工长关注的实际问题,主要从炉温变动的复杂性、炉温预测这两个角度深入研究高炉冶炼过程的复杂性机理及其预测,具有一定的理论意义和应用价值。
     高炉炼铁过程的炉温预测数学模型研究,既是炼铁自动化中的难题,也是实际生产中工长和厂长都十分关注的重要课题。分析炉温波动并对炉温进行准确预报,将有助于提高工长的操作水平,从而达到提高利用系数和降低焦比的目的。论文的第二章对表征铁水质量和高炉炉温的含硅量[Si]时间序列分别运用替代数据法和信息冗余图像法做定量和定性的非线性检验,证明[Si]序列存在较强的非线性相关,为非线性预测方法的应用建立了理论基础。并从平稳性和序列演化的确定性角度进一步研究铁水[Si]序列的波动特征,统计逆序检验的结果表明:[Si]序列方差具有显著的非平稳特征,而相空间重构后的目标方差检验初步显示:铁水硅含量序列的可预测性介于确定性系统和混沌Lorenz系统产生的时间序列之间。在此基础上,论文第三章结合包钢6#高炉在线采集的铁水含硅量数据,应用经验模式分解、支持向量机、Volterra级数、Hopfield网络等方法从非平稳和非线性的角度对[Si]序列做单变量拟合和预报。
     考虑到高炉冶炼过程是高炉主控制室指挥下的多工序复合系统,对铁水含硅量有影响的因素错综复杂,因此,仅仅考虑单一硅序列对高炉铁水含硅量做预报是不够的。根据包钢6#高炉数据采集的实际情况,论文第四章选取了风量、喷煤、料速等14个变量,通过灰色关联度和粗糙集方法深入分析变量与铁水含硅量之间的非线性相关度及这些变量之间的内部关联,对冗余信息做知识约简,确定了起主导作用的6个变量。依照所确定的变量,第五章针对现有模型不考虑噪声污染、不够稳健、无法确定输入变量与[Si]之间具体函数关系的缺点,分别运用集员辨识理论和遗传程序设计方法对包钢6#高炉连续100炉铁水含硅量[Si]做多变量时序预测,两种算法得出的命中率分别为85%和83%,具有一定的实际应用指导价值。第六章对全文的研究内容以及创新点做了归纳,并对课题的后续研究做了展望。
Blast Furnace(BF) ironmaking,which is the main working procedure of the metallurgical industry,is the pillar of the national economy,and is very important for the development of iron & steel industry and economizing energy consumption. Taking Blast Furnace smelting data obtained form No.6 BF at Baotou Steel as the foundation,the complexity of silicon content fluctuation and prediction of furnace temperature were studied in detail.
     The metallurgical figures pay extremely attention to the development of the mathematical prediction model of furnace temperature,because analyzing the behaviors of the furnace temperature fluctuation and accurately forecasting the temperature is the key,with which,BF operators can control ironmaking process well, the utilization coefficient of BF will increase and ratio of coke burden will decrease, Hot metal silicon content([Si]) is an important index in BF ironmaking process.Not only is silicon content a significant quality variable,it also reflects the thermal state of BF and can be used to represent the furnace temperature.As[Si]time series of No.6 BF at Baotou Steel to be sample space,the quantitative surrogate data technique and qualitative method based on information-theoretic functionals-redundancies(linear and nonlinear forms) are used to test nonlinearity in time series.The results show that there is intrinsic nonlinearity in[Si]time series and provide firm rationale for the nonlinear prediction and control of furnace temperature.To further explore the fluctuation characteristic of silicon content series,the stationarity test based on the number of reverse order and the DVV(Delay Vector Variance) predictability examination are implemented.The conclusion is:although the variance of[Si]time series is nonstationary,there still exists deterministic components in ironmaking process,the predictability of[Si]series is between time series generated from Lorenz chaotic system and deterministic system.On the basis of identification of nonlinear and nonstationary characteristics,Chapter 3 proposes two predictive models using empirical mode decomposition technique,support vector machine,Volterra theory and Hopfield network method.
     Recognizing that Blast Furnace ironmaking is a complex system consisting of multi-procedure,a range of factors is involved in influencing the silicon content in hot metal.The prediction models are insufficient if we take no account of the influences of some operational and controlling factors.In accordance to data acquisition capability of No.6 BF at Baotou Steel,fourteen variables,such as blast volume FL. pulverized coal injection PM and material velocity LS,were selected.Employing the grey incidence analysis and rough set method,Chapter 4 provides precious insight into the analysis of relationships among these variables and silicon content.Then six crucial factors were finalized.In view of the extant models' shortcomings,such as instability causing by noise pollution,uncertain functional relation between variables and silicon content,etc,Chapter 5 made multivariate time series predictions respectively by set membership theory and genetic programming method according to the selected factors.The hit rates of silicon content are 85%and 83%.These algorithms come up to the industry index and they are valuable for practical application.Finally,Chapter 6 gives the conclusion and theoretical innovations in this paper,issues for further research are also investigated.
引文
[1]Rune L.Steel development review and prospects for future[J].Scandinavian joumal of metallurgy,1997(26),6:255
    [2]国家科技部.《国家级科技成果重点推广计划》项目证书.项目编号:2005EC000166,证书编号:050166
    [3]刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003
    [4]周传典,徐矩良,刘云彩等.高炉操作的第三代技术[J].炼铁,1999(18),5:53
    [5]朱苗勇.现代冶金学[M].北京:冶金工业出版社,2005
    [6]Ogata I,Sanui M.The latest trends and future aspects in Japanese ironmaking technology[J].Stahl und Eisen,2003(123),9:41-47
    [7]Liu X G,Li Q H.Intelligent automation models for BF ironmaking process[J].Processing of the World Congress on Intelligent Control and Automation(WCICA),2004(4):3547-3551
    [8]Sterneland J,Andersson M A T,Josson P G.Comparison of iron ore reduction in experimental blast furnace and laboratory scale simulation of blast furnace process[J].Ironmaking and Steelmaking,2003(30),4:313-327
    [9]万谷志郎著.李宏译.钢铁冶炼[M].北京:冶金工业出版社,2001
    [10]李启会.高炉冶炼过程的模糊辨识、预测及控制[D].浙江大学博士论文,2005
    [11]周明,秦民生.高炉铁水含硅量预报数学模型[J].钢铁,1986(21),5:7
    [12]Van langen J M.Blast Furnace Technology[M].New York,1972
    [13]姬田冒孝,西尾通卓,西川洁等.统计制御理论の高炉炉热制御への适用[J].铁と钢,1980,S96..
    [14]Pandit S M,Clum J A,Wu S M.Modeling,prediction and control of blast furnace operation from observed data by multivariate time series[C].Ironmaking Proceedings,Metallurgical Society of AIME,Iron and Steel Division,1975,34:403
    [15]施鸿宝.神经网络及其应用.西安:西安交通大学出版社,1993
    [16]Yao B,Yang T J,Ning X J.An improved artificial neural network model for predicting silicon content of blast furnace hot metal[J].Journal of University of Science and Technology Beijing,2000(7),4:269
    [17]Zhao M,Liu X G.,Luo S H.An evolutionary artificial neural networks approach for BF hot metal silicon content prediction based on chaotic analysis[J].LNCS(Lecture Notes in Computer Science),2005(3610):572-575
    [18]高小强,郑忠,黄庆周.高炉铁水含硅量和含硫量动力学预报研究[J].钢铁,1995(30).4: 10
    [19]Miyano T,Kimoto S,Shibuta H,et al.Time series analysis and prediction on complex dynamical behavior observed in a blast furnace[J].Physica D,2000(135),3-4:305
    [20]郜传厚.高炉炼铁过程的混沌动力学研究[D].浙江大学博士论文,2004
    [21]Luo S H,Liu X G,Zhao M.Using generalized iterated function systems to model BF hot metal silicon content sequences[C].The 6th World Congress on Intelligent Control and Automation,Dalian,2006:7766-7770
    [22]Liu J K,Deng S Q,Xu X H.Design and implementation of expert system for judging blast furnace condition[J].Journal of Iron and Steel Research International,1996(3),2:11
    [23]#12
    [24]Pekka I,Antti K,Matti S.Computer systems for controlling blast furnace operations at Rautaruukki[J].Iron and Steel Engineer,1995(72),8:44
    [25]Druckenthaner H.Blast furnace automation for maximizing economy[J].Steel Times International,1997(21),1:16
    [26]刘祥官,刘芳,刘元和等.莱钢1号750m~3高炉智能控制专家系统[J].钢铁,2002(37),8:18-22
    [1]Kantz H,Schreiber T.Nonlinear Time Series Analysis[M].Cambridge:Cambridge University Press,2000
    [2]Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:the method of surrogate data[J].Physica D,1992(58),1:77-94
    [3]Timmer J.What can be inferred from surrogate data testing[J].Physical Review Letters,2000(85),12:2647-2647
    [4]Palus M.Testing for nonlinearity using redundancies:quantitative and qualitative aspects[J].Physica D,1995(80),2:186-205
    [5]Theiler J,Linsay P S,Rubin D M.Detecting nonlinearity in data with long coherence times,in:Time series prediction:Forecasting the Future and understanding the past[M].Reading,MA:Addison-Wesley Publishing Company,1994
    [6]罗世华.高炉冶炼过程的分形特征辨识及其应用研究[D].浙江大学博士论文,2006
    [7]Prichard D,Theiler J.Generating surrogate data for time series with several simultaneously measured variables.Physical Review Letters,1994(73),8:951-954
    [8]Kugiumtzis D.On the reliability of the surrogate data test for nonlinearity in the analysis of noisy time series[J].International Journal of Bifurcation and Chaos.2001(11),7:1881-1896
    [9]Palus M,Albrecht V,Dvorak I.Information-theoretic test for nonlinearity in time series[J].Physics Letters A,1993(175),3:203-209
    [10]郜传厚,周志敏,邵之江.高炉冶炼过程的混沌性解析[J].物理学报,2005(54),4:1490-1494
    [11]Prichard D,Theiler J.Generalized redundancies for time series analysis[J].Physica D,1995(84),3-4:476-493
    [12]Pawelzik K,Schuster H G.Generalized dimensions and entropies from a measured time series[J].Physical Review A,1987(35),1:481-484
    [13]杨培才,周秀骥.气候系统的非平稳行为和预测理论[J].气象学报,2005(63),5:556-570
    [14]Gribkov D,Gribkova V.Learning dynamics from nonstationary time series:Analysis of electroencephalograms[J],Physical Review E,2000(61),6:6538-6545
    [15]Harris R,Sollis R.Applied time series modeling and forecasting[M].Singapore:John Wiley & Sons,2003
    [16]Manuea R,Savit R.Stationarity and nonstationarity in time series analysis.Physica D,1996(99),2-3:134-161
    [17]Gautama T,Mandic D P,Van Hulle M M.A novel method for determining the nature of time series[J].IEEE Transactions on Biomedical Engineering,2004(51),5:728-736
    [18]Kim H S,Eykholt R,Salas J D.Nonlinear dynamics,delay times and embedding windows[J].Physiea D,1999(127),1-2:48-60
    [19]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真学报,2007(19),11:2527-2529
    [20]郜传厚,刘祥官.高炉冶炼过程的混沌性辨识[J].金属学报,2004(40),4:347-350
    [21]Pandit S M,Clum J A,Wu S M.Modeling,prediction and control of blast furnace operation from observed data by multivariate time series[C].Ironmaking Proceedings,Metallurgical Society of AIME,Iron and Steel Division,1975;34:403
    [22]Singh H,Sridhar N V,Deo B.Artificial neural nets for prediction of silicon content of blast furnace hot metal[J].Steel Research,1996(67),12:521
    [23]刘学艺.基于贝叶斯网络的高炉炉温[Si]预测控制模型研究[D].浙江大学硕士学位论文,2004
    [1]Bcdrosian E A.A product theorem for Hilbert Transform[J].Proceeding of the IEEE,1963(51),5:686-689
    [2]钟佑明,秦树人.HHT的理论依据探讨--Hilbert变换的局部乘积定理[J].振动与冲击,2006(25),2:12-15
    [3]Huang N E,Shen Z,Long S R et al.The empirical mode composition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A,1998(454),903-995
    [4]盖强,马孝江,张海勇.一种消除局域波法中边界效应的新方法[J].大理理工大学学报,2002(42),1:115-117
    [5]张郁山,梁建文,胡聿贤.利用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003(13),10:1054-1059
    [6]邓拥军,王伟,钱成春.EMD方法及Hilbert变换中边界问题的处理[J].科学通报,2001(46),10:257-263
    [7]Rillmg G,Flandrin P,Goncalves P.On empirical mode decomposition and its algorithms[C].IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03,2003
    [8]Huang N E,The Hilbert-Huang transform and its applications[M].Singapore:World Scientific Publishing Company,2005
    [9]Huang N E,Wu M C,Long S R et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proceedings of the Royal Society of London.Series A.2003(459),2317-2345
    [10]Lempel A,Ziv J.On the complexity of finite sequences[J].IEEE Transaction on Information Theory,1976(22),1:75-81
    [11]Kaspar F,Schuster H G.Easily calculable measure for the complexity of spatiotemporal patterns[J].Physical Review A,1987(36),2:842-848
    [12]Li M,Vitanyi P.An introduction to kolmogorov complexity and its applications[M].Berlin:Springer,1997
    [13]黄欣荣.复杂性究竟是什么--复杂性的语义分析[J].自然辩证法研究,2004(20),5:31-35
    [14]郝柏林.复杂性的刻画与“复杂性科学”[J].科学(3),3-8
    [15]渐令.支持向量机在高炉炉温预报中的应用[D].浙江大学硕士论文,2006
    [16]邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2006
    [17]Boyd S,Vandenberghe L.Convex Optimization[M].Cambridge University Press,2004
    [18]Aronszajn N.Theory of reproducing kernels[J].Transactions of the American Mathematical Society,1950(68),3:337-404
    [19]Lanckriet G,Cristianini N,Bartlett P et al.Learning the kernel matrix with semidefinite programming[J].Journal of Machine Learning Research,2004(5),27-72
    [20]Vandenberghe L,Boyd S.Semidefinite programming[J].SIAM Review 1996(38),1:49-95
    [21]Chih-Wei Hsu,Chih-Chung Chang,Chih-Jen Lin.A practical guide to support vector classification[M].台湾:http://www.csie.ntu.edu.tw,2007
    [22]Ding J,Wang W S,Zhao Y L.General correlation coefficient between variables based on mutual information[J].Journal of Sichuan University,2002(34),3:1-5
    [23]Schetzen M.The Volterra and Wiener Theories of Nonlinear Systems[M].Florida:Krieger Publishing Company,2006
    [24]Sandberg I W.On volterra expansions for time-varying nonlinear systems[J].IEEE Transactions on Circuits and Systems,1983(30),2:61-67
    [25]Koh T,Powers E J.Second-order Volterra filtering and its application to nonlinear system identification[J].IEEE Transactions on Signal Processing,1985(33),6:1445-1455.
    [26]Haykin S.Adaptive Filter Theory[M].New York:Prentice Hall,2001
    [27]Huffman S D,Nolte L W.Adaptive linear estimation based on time domain orthogonality[J].Acoustics,Speech,and Signal Processing,IEEE international conference on ICASSP'80.1980(5),4:453-456
    [28]Zhang J S,Wan J H,Xiao X C.Adaptive nonlinear feedback control of chaotic systems based on reduced parameter quadratic predictor[J].Chinese physics,2001(10),2:97-102
    [29]郜传厚.高炉冶炼过程的混沌动力学研究[D].浙江大学博士论文,2004
    [30]Hopfield J J.Neural networks and physical systems with emergent collective computational properties[J].Proceedings of the National Academy of Sciences,1982(79),8:2554-2558
    [31]Hopfield J J,Tank D W."Neural" computation of decisions in optimization problems[J].Biological Cybernetics,1985(52),141-152
    [32]Zhang J Y,Wang D F,Shi M H et al.Output-threshold coupled neural network for solving the shortest path problems.Science in China Series F-Information Sciences 2004(47),1:20-33
    [33]Atencia M,Joya G,Sandoval F.Hopfield Neural Networks for Parametric Identification of Dynamical Systems[J].Neural Processing Letters 2005(21),2:143-152
    [34]栗雪娟,崔尚森,张柯.最佳旅游路线选择的神经网络方法[J].交通与计算机,2006(24),5:103-106
    [35]孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2002
    [1]邓聚龙.灰色系统论基本方法[M].武汉:华中理工大学出版社,1987.
    [2]袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991.
    [3]Liu S F,Lin Y.An Introduction to Grey System Foundation,Methodology and Application[M].Slippery Rock:IIGSS Academic Publisher,1998
    [4]范金城,梅长林.数据分析[M].北京:科学出版社,2002
    [5]刘震宇.灰色系统分析中存在的两个基本问题[J].系统工程理论与实践,2000(20),9:123-124
    [6]Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982(11),5:341-356
    [7]Pawlak Z.Rough Sets:Theoretical Aspects of Reasoning about Data[M].Boston:Kluwer Academic Publishers,1991
    [8]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001
    [9]Hu X H.Knowledge discovery in databases:an attribute-oriented rough set approach[D].Computer Science Faculty of Graduate Studies,University of Regina,Canada,1995
    [10]Skowron A,Rauszer C.The discernibility matrices and functions in information system,in:Intelligent Decision Support:Handbook of Applications and advances of Roush Sets Theory[M].Boston:Kluwer Academic Publishers,1992,331-362.
    [11]Pawlak Z,Skowron A.Rough sets and Boolean reasoning[J].Information Sciences.2007(177),1:41-73
    [12]陶志,许宝栋,赵春.基于区分函数与强等价集理论的属性约简算法[J].中山大学学报(自然科学版),2004(43),2:13-16
    [13]Ziarko W.Variable precision rough set model[J].Journal of Computer and System Sciences,1993(46),1:39-59
    [14]柳景青.调度时用水量预测的系统理论方法及应用研究[D].浙江大学博士论文,2005.
    [15]Hu Q H,Yu D,Xie Z X.Neighborhood classifiers[J].Expert Systems with Applications,2008,34:866-876
    [16]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:中科技大学出版社,2000
    [17]Bazan J G,Skowron A,Synak P.Dynamic reducts as a tool for extracting laws for decision tables[C].Methodologies for Intelligence systems,Berlin:Springer,1994:346-355
    [18]Li Q H,Liu X G.Fuzzy prediction of BF hot metal silicon content[J].Journal of iron and steel research international,2005(12),6:1-4
    [19]Yao B,Yang T J.An improved artificial neural network model for predicting silicon content of blast furnace hot metal[J].Journal of University of Science and Technology Beijing,2000(7),4:269
    [1]杨可苹.基于小波神经网络的高炉炉温预报模型研究[D].浙江大学硕士论文,2006
    [2]刘学艺.基于贝叶斯网络的高炉炉温[Si]预测控制模型研究[D].浙江大学硕士论文,2004
    [3]李启会.高炉冶炼过程的模糊辨识、预测及控制[D].浙江大学博士论文,2005
    [4]罗世华.高炉冶炼过程的分形特征辨识及其应用研究[D].浙江大学博士论文,2006
    [5]Witsenhausen H S.Sets of possible states of linear systems given perturbed observation[J].IEEE Transactions on Automatic Control,1968(13),5:556-558
    [6]Schweppe F C.Recursive state estimation:unknown but bounded errors and system inputs[J].IEEE Transactions on Automatic Control,1968(13),1:22-28
    [7]Milanese M,Vicino A.Optimal estimation theory for dynamic systems with set membership uncertainty:an overview[J].Automatica,1991(27),6:997-1009
    [8]Belforte G,Bona B,Cerone V.Parameter estimation algorithms for a set-membership description of uncertainty[J].Automatica,1990(26),5:887-898
    [9]Norton J P.Identification and application of bounded-parameter models[J].Automatica,1987(23),4:497-507
    [10]Milanese M,Norton J,Piet-Lahanier H,et al.Bounding approaches to system identification [M].New York:Plenum Press,1996
    [11]Fogel E,Huang Y F.On the value of information in system identification-bounded noise case[J].Automatica,1982(18),2:229-238
    [12]李代甜,袁震东.双线性系统参数的集员辨识[J].控制理论与应用,1994(11),4:404-412
    [13]Milanese M,Tempo R.Optimal algorithms theory for robust estimation and prediction[J].IEEE Transactions on Automatic Control,1985(30),8:730-738
    [14]王文正.集员辨识及在飞行器气动参数的应用[D].西北工业大学博士论文,1996
    [15]Milanese M,Novara C.Set membership identification of nonlinear systems[J].Automatica,2004(50),11:1655-1669
    [16]Milanese M,Novara C.Nonlinear set membership prediction of river flow[C].Proceedings of the 41st IEEE Conference on Decision and Control.Las Vegas,Nevada USA,931-936,2002
    [17]Milanese M,Novara C.Set membership prediction of nonlinear time series[J].IEEE Transactions on Automatic Control,2005(50),11:1655-1669
    [18]周培德.计算几何--算法分析与设计[M].北京:清华大学出版社,2000
    [19]Wasilkowski G W,Wozniakowski H.Complexity of weighted approximation over R-d[J].Journal of Complexity,2001(17),4:722-740
    [20]Gollamudi S,Nagaraj S,Yih-Fang Huang.Smart:A Toolbox for set-membership filtering[M].Indiana:http://www.nd.edu/-aspect/pub/html
    [21]Raissi T,Ramdani N,Candau Y.Set membership state and parameter estimation for systems described by nonlinear differential equations[J].Automatica,2004(40),10:1771-1777
    [22]刘祥官,罗世华,刘元和.高炉炼铁过程炉温的非线性混合控制[J].控制理论与应用2006(23),3:391-396
    [23]王小平,曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [24]Koza J R.Introduction to Genetic Programming[M].Cambridge,MA:The MIT Press,1994.
    [25]David A C.An Introduction to Genetic Algorithms for Scientists and Engineers[M].Singapore:World Scientific Publisher Company,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700