低刚度摆线轮缘高速铣削变形与铣削力建模方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决高速铣削过程中薄壁结构件加工质量控制难的问题,针对低刚度摆线轮轮廓高精度的加工要求,建立了低刚度轮缘的铣削变形预测模型以及弹性铣削力模型。其中,低刚度摆线轮缘的铣削变形预测模型是控制摆线轮加工质量的关键理论,也是弹性铣削力建模的重要理论依据。该研究成果可为高精度薄壁机构件的加工质量控制提供重要的理论基础,对提升我国制造业整体水平,满足国家重点发展行业的需求具有重要意义。
     建立了低刚度轮缘在静态铣削过程中弯扭剪耦合的铣削变形模型。该模型中针对低刚度摆线轮轮缘的多种耦合铣削变形,建立了切削啮合区的基本微分方程;推导了低刚度轮缘的弯曲、扭转耦合变形,以及横向力引起的剪切变形;结合低刚度轮缘超静定的结构特点,根据卡氏定理推导出支座反力及其所引起的变形。
     建立了细长径铣刀的铣削变形方程。该模型中将刀具等效为Timoshenko梁结构,结合刀刃的惯性矩计算关系式,建立了铣刀的铣削变形方程;基于刀具的偏心角和偏心半径,给出刀具偏离理论中心的坐标关系式。
     基于低刚度轮缘的铣削变形模型和细长径铣刀的铣削变形模型,建立了变曲率弹性铣削力模型。该模型中结合周铣自由轮廓时曲率沿路径连续变化的特点,建立了变曲率弹性工艺几何模型;基于低刚度工件的铣削变形和细长径铣刀的弹性铣削变形以及偏心跳动对瞬时铣削厚度和瞬时切削啮合角的影响,建立了低刚度工艺系统的铣削力模型;采用Newton-Raphson迭代算法,仿真出铣削摆线轮整个轮廓时的铣削力、铣削变形以及刀具的铣削变形,并结合铣削试验,验证了铣削变形模型和铣削变形测试结果,以及变曲率弹性铣削力与铣削力测试结果比较一致。
     根据仿真和试验结果可知,低刚度工艺系统中工件的弹性铣削变形和工艺几何模型对瞬时切削啮合角、瞬时铣削厚度的影响较大,因此,对弹性铣削力的影响较大;铣削变形与轮盘的刚度、轮缘张角、轮廓的结构形式以及轮缘厚度密切相关,且轮盘厚度和轮缘厚度均具有均载作用,其中,轮盘厚度相对轮缘厚度的均载作用较大;另外,低刚度工件的铣削变形和细长径铣刀的弹性变形在高精度的铣削过程中对工件轮廓加工精度的影响较明显,铣削变形和铣削力之间关系复杂且密切相关,并进一步影响低刚度零件的加工精度。另外,铣削力与加工参数密切相关。
To resolve the problem of high accuracy profile for thin-wall component with complex profile during high speed milling process,a model for predicting tooth profile deflection and the flexible milling force model for low-rigidity component with cycloid gear profile is presented to solve the problem of controlling the machined quality in high speed milling. In this model, the key to controlling the machined quality lies in predicting tooth profile deflection for low-rigidity cycloid gear tooth rim. And it provides a theory basis for flexible cutting forces. The achievements of research provide significant in theory for the controlling the machined quality in high speed milling thin-wall component. And the modeling method and the conclusions have important significance in increasing the whole level of Manufacture and meeting the China key business.
     A milling deflection model for predicting the bending-torsional coupled deflection based on low-rigidity cycloid tooth profile, to determine the relationship between deflection and milling force is approached. In the model a differential equation that describes the coupled deflection of the cutting immersed area on the low-rigidity cycloid tooth profile is provided. And a method is provided to identify the key processing characteristics of the coupled deflection which involves the bending deflection, torsional deflection and shearing deflection. According to the construction of the statically indeterminate low-rigidity tooth rim fixed two ends the supporting forces and deflections under the action of applied forces on the end are derived on Casfigliano’s Second Theorem.
     Assuming the slender cutter as a Timoshenko beam consisting of the shank and the flute the cutter bending deflection is derived. In the bending deflection model, take into account the effects on the inertia of the cutter edges. In this paper, tool runout is presented. The method can be used to express the centre coordinates of tool due to the cutter runout.
     A flexible force model suitable for cycloid gear profile is proposed based on the milling deflection in the workpiece-tool process. Taking into account the deflections of workpiece and cutter the expressions are derived for process geometries parameters in peripheral milling where curvature varies continuously along the tool path. Then modified cutting tooth immersion angle and undeformed chip thickness have been introduced due to the deflections and process geometries. In machining workpiece geometries, the milling force distribution, deflections of the gear rim and tool for are solved interatively by the modified Newton-Raphson method. According to the measured forces and deflections the results have shown good convergence between predicted and measured values.
     From the present study it has shown that the cutting tooth immersion angle and undeformed chip thickness subject to the deflectons and process geometries parameters. These will influence the flexible force model. The study has shown that any of the values of the gear stiffness, disk dimension, angle responding to the thin-wall rim, tooth construction and rim dimension has a strongly effect on the milling deflection. It can be shown that the disk width of rim is shared with the cutting force much more than the rim width. When high speed mills the precision cycloid gear profile the deflections of the low-rigidity workpiece and slender tool bring about a great effect on the dimension stability of the finished parts. This is attributed to the complex relation between the milling force and the milling deflection, which will influence the precision of the part.
引文
[1]张大卫,王刚,黄田. RV减速机动力学建模与结构参数分析[J].机械工程学报,2001,37(1):69-74.
    [2]王宏猷,石田武,日高照晃等.采用摆线齿轮的K-H-V行星齿轮装置回转传动误差的研究[J].日本机械学会论文集(C编),1994,60(578):286-293.
    [3]刘继岩,孙涛,戚厚军. RV减速器的动力学模型与固有频率研究[J].中国机械工程,1999,10(4):381-383.
    [4]戚厚军,孙涛,刘继岩等. 2K-V型摆线针轮减速器传动系统的动态特性分析[J].机械传动,2004,28(2):13-15.
    [5]戚厚军. RV减速器动态特性分析: [硕士学位论文],天津:天津大学,2000.
    [6] Ratchev S., Liu S., Huang W. et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools & Manufacture, 2004, 44: 1629-1641.
    [7] Ratchev S., Liu S., Becker A. A.. Modeling and simulation environment for machining of low-rigidity components[J]. Journal of Materials Processing Technology, 2004, 153-154: 67-73.
    [8] Ratchev S., Liu S., Becker A. A.. Error Compensation Strategy in Milling Flexible Thin-Wall Parts[J]. Journal of Materials Processing Technology, 2005, 162-163: 673-681.
    [9] Ratchev S., Liu S., Huang W. et al. A Flexible Force Model for End Milling of Low-Rigidity Parts[J]. Journal of Materials Processing Technology, 2004, 153-154: 134-138.
    [10] Wang S.P., Padmanaban S. A new approach for FEM simulation of NC machining processes[J]. AIP Conference Proceedings, 2004, 712(1): 137-145.
    [11] Tsai J.S., Liao C. L.. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94: 235-246.
    [12] Budak E., Altintas Y.. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools & Manufacturing, 1995, 35 (3): 459-476.
    [13] Wan M., Zhang W. H.. Efficient algorithms for calculations of static form errors in peripheral milling[J]. Journal of Materials Processing Technology, 2006, 171: 156-165.
    [14] Budak E.. Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1478-1488.
    [15] Tsai J.S., Liao C.L.. Finite-Element Modeling of Static Surface Errors in the Peripheral Milling of Thin-Walled Workpieces[J]. Journal of Materials Processing Technology, 1999, 94(2-3): 235-246.
    [16] Ratchev S., Govender E., Nikov S.. Force and Deflection Modeling in Milling of Low-Rigidity Complex Parts[J]. Journal of Materials Processing Technology, 2003, 143: 796-801.
    [17] Ratchev S., Liu S., et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 542-551.
    [18] Kline W A, Devor R E, Lindberg R.. The prediction of cutting forces in end milling withapplication to cornering cuts[J]. International Journal of Machine Tool Design and Research, 1982, 22(1): 7-12.
    [19] Sutherl J. W, Devor R. E.. An improved method for cutting force and surface error prediction flexible end milling systems[J]. Trans. ASMEJ, Eng. Ind., 1986, 108: 269-27.
    [20] Devor R. E., Sutherland J. W., Kline W. A.. Control of surface error in end milling[C]. Eleventh North American Manufacturing Research Conference Proceedings, WI, USA, NAMRI/SME, 1983.
    [21] Rai J., Xirouchakis P.. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools & Manufacture,2008, 48: 629-643.
    [22] Liao C. L., Tsai J. S.. Dynamic response analysis in end milling using pre-twisted beam finite element[J]. ASME J. Vibra. Acous, 1995, 1171-1180.
    [23]王志刚,何宁.薄壁零件加工变形分析及控制方案[J].中国机械工程,2002,2:114.
    [24]武凯,何宁.薄壁腹板加工变形规律及其变形控制方案的研究[J].中国机械工程,2004,(8):670-674.
    [25]武凯,张平.有限元技术在航空薄壁件立铣变形分析中的应用[J].应用科学学报,2003,1:68-71.
    [26]武凯,张平. Apdl在立铣受力变形分析中的应用[J].机械科学与技术(西安),2002,6:885-887.
    [27]武凯,何宁.基于变形控制的薄壁结构件高速铣削参数选择[J].机械科学与技术(西安),2005,7:788-791.
    [28] He N., Wang Zh., Jiang Ch. et al. Finite element method analysis and control stratagem for machining deformation of thin-walled components[J]. Journal of Materials Processing Technology, 2003, 139: 332-336.
    [29]黄志刚,柯映林,王立涛.基于正交切削加工模拟的零件铣削加工变形预测[J].机械工程学报,2004,40 (11): 117-122.
    [30]黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究[J].中国机械工程,2004,15(1): 991-995
    [31]梅中义,王运巧.飞机结构件数控加工变形控制研究与仿真[J].航空学报,2005, 26(2): 234-239.
    [32]王运巧,梅中义.航空薄壁弧形件加工变形的非线性有限元分析[J].航空制造技术,2004,(6): 84-86.
    [33]王运巧,梅中义,范玉青.航空薄壁结构件数控加工变形控制研究[J].现代制造工程,2005,(1): 31-33.
    [34]魏丽,郑联语.改进薄壁零件数控加工质量的进给量局部优化方法[J].航空精密制造技术,2001,37(4): 10-14.
    [35]郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法[J].航空学报,2001,22(5):424-428.
    [36]高彤,张卫红.周铣加工表面形貌仿真新算法[J].西北工业大学学报,2004,(2):221-224.
    [37]万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报,2005,26(5): 598-603.
    [38]邱克鹏,张卫红.基于超单元方法的铣削加工变形快速仿真计算[J].机械科学与技术(西安),2004, 10: 1188-1190,1222.
    [39] Guo H.,Zuo D. W. et al. Effect of tool-path on milling accuracy under clamping[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2005, 22(3): 234-239.
    [40]王树宏.航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究:[博士学位论文],南京:南京航空航天大学,2005.
    [41]郭魂.航空多框整体结构件铣削变形机理与预测分析研究:[博士学位论文],南京:南京航空航天大学,2005.
    [42] Sim C.,Yang M.. The prediction of the cutting force in ball-end milling with a flexible cutter[J]. International Journal of Machine Tools and Manufacture, 1993, 33(2): 267-284.
    [43]马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究[J].南京航空航天大学学报, 1998, 30(6): 633-640.
    [44] Feng H. Y., Menq C. H.. A flexible ball-end milling system model for cutting force and machining error prediction[J]. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1996, 118(4): 461-469.
    [45] Sutherland J. W., DeVor R. E.. An improved method for cutting force and surface error prediction in flexible end milling system[J]. Transaction of the ASME, Journal of Engineering for Industry, 1986, 108: 269-279.
    [46] Shi H. R, Chong N. C.. The form error reduction in side wall machining using successive down and up milling[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1523-1530.
    [47] Ryu S. H., Lee H. S., Chu C. N.. The form error prediction in side wall machining considering tool deflection[J]. Int. J. Mach. Tools Manufact.,2003, 43: 1405-1411.
    [48] Sim C., Yang M.. The prediction of the cutting force in ball-end milling with a flexible cutter[J]. International Journal of Machine Tools & Manufacturing, 1993, 33(2): 267-284.
    [49] Kline W.A., Devor R. E.. Effect of Runout on Cutting Geometry and Forces in End Mil ling[J]. ASME. Journal of Engineering for industry, 1983, 23(2-3): 123-140.
    [50] Kline W. A., Devor R. E.. Prediction of cutting force in end milling with application to cornering cuts. International Journal of Machine Tools & Manufacture,1982,22(1):7-22.
    [51] Sim C., Yang M.. Prediction of Cutting Force in Ball-End Milling with a flexible cutter[J]. International Journal of Machine Tools & Manufacture, 1993, 33(2): 267-284.
    [52] Budak E., Altintas Y.. Peripheral milling conditions for improved dimensional accuracy[J]. International Journal of Machine Tools & Manufacturing, 1994, 34(7): 907-918.
    [53] Shirase K., Altintas Y.. Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills[J]. International Journal of Machine Tools & Manufacture, 1996, 36(5): 567-584.
    [54] Salgado M. A., López L.N., Lacalle D. E., et al. Evaluation of the stiffness chain on the deflection of end-mills under cutting forces[J]. Int. J. Mach. Tools Manufact., 2005, 45: 727-739.
    [55] Kim G. M., Kim B. H., Chu C. N.. Estimation of cutter deflection and form error in ball-end milling processes[J]. Int. J. Mach. Tools Manufact., 2003, 43: 917-924.
    [56] Xu A. P., Qu Y. X., Zhang D. W., et al. Simulation and experimental investigation of the end milling process considering the cutter flexibility[J]. Int. J. Mach. Tools Manufact., 2003, 43: 283-292.
    [57] Tai C. C., Fuh K. H.. A predictive force model in ball-end milling including eccentricity effects[J]. International Journal of Machine Tools &Manufacture, 1994, 34(7): 959-979.
    [58] Feng H. S., Menq C. H.. The prediction of cutting forces in the ball end milling process model-I, Formulation and model building procedure[J]. International Journal of Machine Tools & Manufacture, 1994, 34(5): 697-710.
    [59] Jeong Hoon Ko, Won-Son Yun, Dong-Woo Cho, et al. Development of a virtual machining system, part 1:approximation of the size effect for cutting force prediction[J]. International Journal of Machine Tools & Manufacture, 2002, 42: 1595-1605.
    [60]张臣,周儒荣,庄海军.确定铣削力模型中刀具偏心参数的一种算法[J].机械科学与技术, 2006, 25(5): 509-513.
    [61]黄田,弓占勇,张大卫等.考虑几何偏心的螺旋铣刀铣削力建模方法[J].天津大学学报,1995,28(3): 155-162.
    [62] Lee P., Altintas Y.. Prediction of ball-end milling forces from orthogonal cutting data[J]. International Journal of Machine Tools and Manufacture, 1996, 36(9): 1059-1072.
    [63] Feng H. Y., Menq C. H.. The prediction of cutting forces in the ball-end milling process, model formulation and model building procedure[J]. International Journal of Machine Tools and Manufacture, 1994, 34(5): 697-710.
    [64] Feng H. Y., Menq C. H.. The prediction of cutting forces in the ball-end milling process-II , cut geometry analysis and model verification[J]. International Journal of Machine Tools and Manufacture, 1994, 34(5): 711-719.
    [65]马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究[J].南京航空航天大学学报. 1998,30(6): 633-640.
    [66] Kim G. M., Cho P. J., Chu C. N.. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools and Manufacture, 2000, 40(2): 277-291.
    [67] Ismail, Lazoglu. Sculpture surface machining: a generalized model of ball-end milling force system[J]. International Journal of Machine Tools &Manufacture, 2003(43): 453-462.
    [68] Wang J. J.. Angle and frequency domain force models for a roughing end mill with a sinusoidal edge profile[J]. International Journal of Machine Tools & Manufacture, 2003, 43: 1509-1520.
    [69] Lee T. S., Lin Y. J., A 3D predictive cutting-force model for end milling of parts having sculptured surfaces[J]. Int J Adv Manuf Technol, 2000, 16: 773-783.
    [70] Yun W.S., Cho D.W.. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[J]. International Journal of Machine Tools & Manufacture, 2001, 41: 463-478.
    [71] Yucesan G., AltintasY.. Mechanics of ball end milling process[J]. ASME Proc. Mfg. Sci. Engng., 1993: 543-551.
    [72] Yucesan G., AltintasY.. Improved modeling of cutting force coefficients in peripheral milling. International Journal of Machine Tools & Manufacture, 1994, 34: 473-487.
    [73] Jain S., Yang K, C.. A systematic force analysis of the milling operation[C]. Proceedings of ASME Winter Annual Meeting, San Francisco, 1989: 55-63.
    [74]冯志勇,张大卫,黄田等.一种新型的广义铣削力模型[J].中国机械工程,1998,9:41-44.
    [75] Bernard W., Ikuaa, Tanakab H., et al. Prediction of cutting forces and machining error in ball end milling of curved surfaces-I theoretical analysis[J]. Precision Engineering Journal of the International Societies for Precision Engineering, 2001, 25: 266-273.
    [76]张臣,周儒荣,庄海军等.基于Z-map模型的球头刀铣削力建模与仿真[J].航空学报,2006,27(3),347-352.
    [77] Sagherian R., M, A. Elbestawi.. A simulation system for improving machining accuracy in milling[J]. Comput. Ind.1990, 14: 293-305.
    [78] Kline W. A., Devor R. E. Shareef I. A.. The prediction of surface accuracy in end milling[J]. ASME J. Eng. Ind., 1982, 104: 272-278.
    [79] Kolarits F. M., Devries W. R.. A mechanistic dynamic model of end milling for process controller simulation[J]. Trans. ASME J.Engng Ind., 1991,113(2): 176-183.
    [80] Altintas Y., Montgomery D., Budak E.. Dynamic peripheral milling of flexible structures[J]. ASME J. Eng. Ind., 1992, 114: 137-145.
    [81] Montgomery D., Altintas Y.. Mechanism of cutting force and surface generation in dynamic milling[J]. Trans. ASME J. Engng Ind., 1991, 113(2): 160-168.
    [82] Schulz H., Bimschas K.. Optimization of precision machining by simulation of cutting process[J]. A nnals of the CIRP., 1993, 12(1): 55-58.
    [83] Kops L., Vo D. T.. Determination of the equivalent diameter of an end mill based on its compliance[J]. CIRP Annals. 1990, 39(1): 93-96.
    [84] Altintasa Y., A.. Spence. End milling force algorithms for CAD systems[J]. CIRP Annals, 1991, 40(1): 31-34.
    [85] Ikua B.W., Tanaka H., Obata F., et al. Prediction of cutting forces and machining error in ball end milling of curved surfaces-I theoretical analysis[J]. Journal of International Societies for Precision Engineering and Nanotechnology, 2001, 25: 266-273.
    [86] Klamecki B. E.. Incipient chip formation in metal cutting a three dimenstion finite analysis[D]. Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana. IL 1973.
    [87] Usui E., Shirakashi T.. Mechanics of machining-from descriptive to predictive theory, on the art of cutting metals-75 years later a tribute[J]. American Society of Mechanical Engineering, Pressure Vessel Directive(PED). 1982, 7.
    [88] Strebjiwsjum H. S., Carroll III J. T.. A finite element model of orthogonal metal cutting[A].in:Proceedings of the North American Manufacturing Research Conference. Bethlehem, Pennsylvania. 1987, 506-509.
    [89] Strenkowski J. S., Moon K-J.. Finite element prediction of chip geometry and tool/ workpiece temperature distribution in orthogonal metal cutting[J]. Transaction of ASME Journal of Engineering Industry. 1990, 127: 3l3-318.
    [90]董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析[J].浙江大学学报(工学版), 2006, 40(5):759-762.
    [91] ?zel T., Altan T.. Process simulation using finite element method-predictionof cutting forces, tool stresses and temperatures in high-speed flat end milling[J]. International Journal of Machine Tools & Manufacture, 2000, 40: 713-738.
    [92] Usui E., Maekawa K., Shirakashi T.. Simulation analysis of the built-up edge formation in machining of low carbon steel[J]. Bul1. Jan. Soc. Process. Eng., 1981, 15(4).
    [93] Sasahara H., Obikawa T., Shirakashi T.. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer[J]. Journal of Materials Processing Technology, 1996, 62: 448-453.
    [94] Ceretti E., Lazzaroni C., Menegardo L., et, al. Turning simulation using a three-dimension FEM code[J]. Journal of Materials Processing Technology, 2000, 98: 99-103.
    [95] Ceretti E., lucchi M., Ahan T. FEM simulation of orthogonal cutting l serrated chip formation[J]. Journal of Materials Processing Technology, 1999, 95: 17-26.
    [96] Ceretti E., Lazzaroni C., Menegardo L., et, al. Turning simulation using a three- dimension FEM code[J]. Journal of Materials Processing Technology, 2000, 98:99-103.
    [97] Zhang L. C.. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999, 88-89.
    [98] Huang J. M., Black J. T.. An evaluation of chip separation criteria for the FEM simulation of machining[J]. ASME. Journal of Manufacturing Science and Engineering, 1996, 118: 118-545.
    [99] Lin Z. Ch., Lai W. L., Lin H. Y., et al. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology, 2000, 97: 200-210.
    [100]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术(西安),2003,04:641-645.
    [101]李亮.钛合金高速铣削加工机理及工艺研究. [博士学位论文].南京:南京航空航天大学,2004.
    [102]王立涛,柯映林,黄志刚.航空铝合金7050-T745l铣削力模型的试验研究[J].中国机械工程,2003,14(19):1684-1686.
    [103] Fuh K. H., Hw ang R. M.. Apredicted milling force model for high-speed end milling operation[J]. International Journal of Machine Tools & Manufacture, 1997, 37(5): 969-979.
    [104]袁人炜,陈明,曲征洪.响应曲面法预测铣削力模型及影响因素的分析[J].上海交通大学学报,2001,35(7):1040-1044.
    [105] Kuang-Hua F., Ren-ming H.. A predicted milling force model for high-speed end milling operation[J]. Int. J. Mach. Tools manufact., 1997, 37(7): 969-979.
    [106] Wang C. M.. Buckling of polygonal and circular sandwich plates[J].AIAA J., 1995, 33: 962-964.
    [107]钟万勰,欧阳华江,邓子辰.非对边简支弹性板的级数解.固体力学及其应用,北京:清华大学出版社,1992.
    [108] Yellowley I.. Observations on the mean values of forces, torque and specific power in the peripheral milling process[J]. Int. J. Mach. Tool Des. Res., 1985, 25(4): 337-345.
    [109] You S. J., Ehmann K. F.. Scallop removal in die milling by tertiary cutter motion[J]. ASME J. Eng. Ind., 1989, 111: 213-219.
    [110] You S. J., Ehmann K.F.. Synthesis and generation of surfaces milled by ball nose end mills under tertiary cutter motion[J]. ASME J. Eng. Ind., 1991, 113: 17-24.
    [111] Montogomery D., Altintas Y.. Mechanism of cutting force and surface generation in dynamic milling[J]. ASME J. Eng. Ind., 1991, 113: 160-168.
    [112]Armarego E. J. A., Deshpande N. P.. Force prediction models and CAD/CAM software for helical tooth milling processes. II. Peripheral milling operations[J]. Int. J. Prod. Res., 1993, 31(10): 2319-2336.
    [113] Spiewak S. A.. Analytical modeling of cutting point trajectories in milling[J]. ASME J. Eng. Ind., 1994, 116: 440-448.
    [114] Wang J. J. -J., Liang S. Y., Book W. J.. Convolution analysis of milling force pulsation[J]. ASME J. Eng. Ind., 1994, 116: 17-25.
    [115] Bayoumi A. E., Yucesan G., Kendall L. A.. An analytic mechanistic cutting force model for milling operations: a theory and methodology[J].ASME J. Eng. Ind., 1994, 116: 324-330.
    [116] Spiewak S.. An improved model of the chip thickness in milling[J]. Ann. CIRP., 1995, 44(1): 39-42.
    [117] Zheng L., Chiou Y. S., Liang S. Y.. Three dimensional cutting force analysis in end milling[J]. Int. J. Mech. Sci., 1996, 38(3): 259-269.
    [118] Abrari F., Elbestawi M. A.. Closed form formulation of cutting forces for ball and flat end mills[J]. Int. J. Mach. Tool Manuf., 1997, 37(1): 17-27.
    [119] Zheng L., Liang S. Y., Melkote S. N.. Angle domain analytical model for end milling forces[J]. ASME J. Eng. Ind., 1998, 120: 252-258.
    [120] Li X. P., Nee A. Y. C., Wong Y. S., et al. Theoretical modeling and simulation of milling forces[J]. J. Mater. Process. Technol., 1999, 89-90: 266-272.
    [121] Li H. Z., Zhang W. B., Li X. P.. Modelling of cutting forces in helical end milling using a predictive machining theory[J]. Int. J. Mech. Sci., 2001, 43: 1711-1730.
    [122] Li H. Z., Liu K., Li X. P.. A new method for determining the unreformed chip thickness in milling[J]. J. Mat. Proc. Tech., 2001, 113: 378-384.
    [123] Rao V. S., Rao P. V. M.. Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 617-630.
    [124] Rao V. S., Rao P. V. M.. Tool deflection compensation in peripheral milling of curved geometries[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 2036-2043.
    [125]姚玲森.曲线梁.北京:人民交通出版社,1994,1-12.
    [126] B.H. Mop?b.受集中载荷短而宽的肱梁弯曲压力计算方法及其在诺维柯夫齿轮强度计算中的应用.郑州:郑州机械研究所齿轮室,1976.
    [127] Armarego E. J., Despande N. P.. Computerized predictive cutting model for cutting forces in end-milling including eccentricity effects[J]. Annals of the CIRP., 1989, 38(1): 45-49.
    [128] Wang J. J., Huang C. Y.. A force-model-based approach to estimating cutter axis offset in ball end milling[J]. International Journal of Advanced Manufacturing Technology, 2004, 24(6): 910-918.
    [129] Wang J.J., Zheng C. M.. Identification of cutter offset in end milling without a prior knowledge of cutting coefficients[J]. International Journal of Machine Tools & Manufacture, 2003, 43(7): 687-697.
    [130]张臣,数控铣削加工物理仿真关键技术研究: [博士学位论文],江苏:南京航空航天大学, 2005.
    [131] Kops L., Vo. D. T.. Determination of the Equivalent diameter of an end mill based on its compliance[J]. Annals of the CIRP., 1990, 39(1): 93-96.
    [132] Kivanc E. B., Budak E.. Structural modeling of end mills for form error and stability analysis[J]. International Journal of Machine Tools & Manufacture, 2004, 44: 1151-1161.
    [133] Ko J. H., Cho D. W.. 3D ball end milling force model using instantaneous cutting force coefficients[J]. ASEM Journal of Manufacturing Science and Engineering, 2005, 127: 1-12.
    [134] Ko J. H., Cho D. W.. Feed rate scheduling model considering transverse rupture strength of a tool for 3D ball-end milling[J]. International Journal of Machine Tools & Manufacture, 2004, 44: 1047-1059.
    [135] Marusich T. D., Ortiz M.. Modelling and simulation of high speed machining. International Journal for Numerical Methods in Engineering, 1995, (38): 3675-3694.
    [136] Zhang L., Zheng L., Zhang Z.-H., et. ai. On cutting forces in peripheral milling of curved surfaces[J]. Proc. Inst. Mech. Engrs Part B, 2002, 216: 1385-1397.
    [137] Armarego E. J. A., Whitfield R. C.. Computer based modeling of popular machining operations for force and power predictions[J]. Annuals of the CIRP., 1985, 34: 65-69.
    [138] Altintas Y.. Manufacturing automation-metal cutting mechanics, machines tool vibration and CNC design. cambrige University Press, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700