单/双基地极化干涉SAR信号建模、检测及参数反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化干涉合成孔径雷达(Synthetic Aperture Radar,SAR)是将极化SAR和干涉SAR有机结合的新型雷达体制,它利用多幅极化SAR干涉图像进行信息提取,在植被参数反演和地面运动目标检测领域取得了广泛应用。极化干涉SAR复相关系数模型是极化干涉SAR的基础,决定着极化干涉SAR信息提取精度,而极化干涉SAR复相关系数模型依赖于干涉雷达的收发模式。最初的极化干涉SAR系统都是两部雷达各自收、发的单基地极化干涉SAR系统,随着一发多收技术的发展,极化干涉SAR系统正由单基地体制向着双基地(本文中的双基地极化干涉SAR专指一部雷达自发自收、而另一部雷达被动接收的干涉系统)体制转变,双基地极化干涉SAR是未来雷达技术的发展趋势,是当前雷达遥感领域的研究热点。本文以单/双基地极化干涉SAR植被参数反演和运动目标检测为研究背景,对极化干涉SAR协方差矩阵的高精度估计、单/双基地两层植被极化干涉建模及其植被参数反演新方法、单/双基地三层植被极化干涉建模及其植被参数反演新方法、单/双基地沿航向极化干涉SAR-GMTI性能提高方法及系统参数优化方法等关键问题进行了研究。论文的主要工作包括:
     第二章主要介绍单/双基地极化干涉SAR基础。首先,建立了单/双基地全极化线性调频信号的发射、接收和全极化SAR图像信号模型;然后,基于全极化SAR图像信号模型,建立了各类目标通用的极化干涉SAR信号模型;最后,基于极化干涉SAR植被参数反演信号模型,阐述了植被参数反演的基本原理,分析了体相关系数估计误差对经典三阶段植被参数反演方法性能的影响。
     第三章研究极化干涉SAR协方差矩阵高精度估计方法。提出了基于区域增长寻窗和相位补偿的极化干涉SAR协方差矩阵迭代估计方法。该方法首先挑选干涉条纹质量最好的极化单视复相位图像进行旋滤波,获得干涉相位估计值,并利用该干涉相位估计值对干涉矩阵进行相位补偿,消除相位非平稳性的不利影响;然后,利用全极化强度图像进行区域增长寻窗,保证多视窗口里的像素满足散射同质性;最后,对于满足散射同质性和相位平稳性的窗口,提出了基于Hermitian乘积模型的协方差矩阵迭代估计方法。该方法不仅可抑制散射异质性和相位非平稳性导致的协方差矩阵估计偏差,还可减小低相干性导致的估计偏差,具有较高的极化干涉SAR协方差矩阵估计精度。实验结果验证了本文方法的优越性。
     第四章研究两层植被单/双基地极化干涉模型及其植被参数反演方法。建立了两层植被单/双基地极化干涉SAR复相关系数模型,重点分析了收发模式和散射机理对极化干涉SAR复相关系数分布特征的影响,进而研究了收发模式和散射机理对三阶段植被参数反演方法精度的影响,发现了新模型下三阶段植被参数反演方法精度不高的原因。提出了基于BP神经网络的极化干涉SAR植被参数反演方法,该方法利用BP神经网络直接模拟极化干涉复相关系数与植被参数之间的非线性关系,避免了三阶段植被参数反演方法面临的地面干涉相位模糊和体相关系数估计误差的不利影响,同时,由于该方法直接拟合复相关系数与植被参数之间的非线性关系,不受极化复相关系数分布特征的影响,因此,该方法同样适合于双基地极化干涉SAR植被参数反演。提出了基于Freeman分解的极化干涉SAR植被参数反演方法,该方法利用极化协方差矩阵、极化干涉矩阵与Freeman分解之间的关系,把植被参数反演问题转化为非线性优化问题,进行植被参数反演,具有思路直观、反演精度高、速度快等特点。更重要的是该方法不受极化干涉SAR复相关系数分布特征的限制,即使对于双基地极化干涉SAR系统,该方法仍然适用,实验结果验证了新方法的有效性。
     第五章研究单/双基地三层植被极化干涉模型及其植被参数反演方法。建立了三层植被单/双基极化干涉SAR复相关系数新模型,分析了三层植被单/双基极化干涉SAR复相关系数分布特征,讨论了新模型下三阶段植被参数反演方法的局限性,提出了基于多基线极化干涉SAR的三层植被参数反演方法。三层植被模型是两层植被模型的扩展,基于多基线极化干涉SAR的三层植被参数反演方法,不仅能够提高植被参数反演精度,更重要的是,还能够获得更多的植被参数信息,实验结果验证了新模型的正确性和新方法的有效性。
     第六章研究单/双基地极化SAR-ATI运动目标检测及系统参数优化设计。针对单基地极化沿航向干涉SAR系统,提出了极化虚拟多基线的概念和构造方法,分析了基于极化虚拟多基线的运动目标检测性能,比较了极化虚拟多基线相对于单极化沿航向干涉SAR系统的运动目标检测优势。建立了以最大化不模糊可测速区间长度比为目标函数的系统优化模型,优化模型的自变量是实际基线长度和脉冲重复周期,经过模型优化处理得到的实际基线长度和脉冲重复周期的组合能够将极化信息在提高运动目标检测能力方面的优势最大化。针对乒乓模式的全极化沿航向干涉SAR系统,研究了其极化虚拟多基线的构成及特征,分析了新模式下极化沿航向干涉SAR系统的运动目标检测潜能,并以TanDEM-X和TanDEM-L系统为参考,分析了基于极化虚拟多基线的运动目标检测潜能。
Polarimetric SAR Interferometry (Pol-InSAR) is an advanced SAR system, which combines both the advantages of the Polarimetric SAR and those of the interferometric SAR. It can get the interferometric information of many different polarimetric SAR, so it has been widely used in the domains of vegetation parameters inversion and moving target detection. The model of the Pol-InSAR complex correlation coefficient is the base of the information extraction and decides the precision of the information extraction. Especially, the study on the Pol-InSAR system has been changed from the mono-static mode to the bi-static mode. In this dissertation, the mono-static Pol-InSAR system means that both radars transmit the radar signal and receive its signal at the same time. The bi-static Pol-InSAR system means that only one of the radars transmits the signal and both radars receive the signal. The bi-static Pol-InSAR system is a developing trend of the radar and is a study hotspot in the current domain of radar remoting sensing.
     This dissertation focuses on the vegetation parameters inversion and the moving target detection by the mono/bi -static Pol-InSAR. The research topics include the highly precise estimation of the Pol-InSAR covariance matrix, the modeling of the mono/bi -static Pol-InSAR complex correlation coefficient of the two-layer vegetation structure and the new parameter inversion method to it, the modeling of the mono/bi -static Pol-InSAR complex correlation coefficient of the three-layer vegetation structure and the new parameter inversion method to it, the method to improve the detection performance of the moving target by the fully-polarimetric along-track interferometry SAR system and the optimization method to the along-track Pol-InSAR system. The main work of this dissertation includes:
     Chapter 2 introduces the base of the Pol-InSAR. The receive-transit signal model of the mono/bi -static fully-polarimetric LFM signal and the mono/bi- static fully-polarimetric SAR image signal model are established firstly. Then, based on the fully-polarimetric SAR image signal model, the generalized Pol-InSAR signal model is proposed. Finally, based on the signal model of the vegetation parameters inversion, the basic principle of vegetation parameters inversion is expatiated and the effect to the performance of the three-stage inversion method is analyzed.
     In chapter 3, the method to the highly precise estimation of the Pol-InSAR covari ance matrix is investigated. A novel method based on the adaptive neighborhood region-growing principle and the compensated phase is proposed. Firstly, the bad effect by the phase nonstationarity is eliminated by the way in which the interferometric matrix is compensated with the interferometric phase estimated from the polarimetric interferogram with the best interferometric performance. Then, the region-growing principle is used to the fully-polarimetric SAR intensity images to get a window, in which the pixels satisfy the local scattering stationarity hypothesis. To the window satisfying the local phase stationarity hypothesis and the local scattering stationarity hypothesis, a novel iterative method based on the Hermitian product model is proposed. This new method could overcome the estimation errors caused by the nonstationarities both in the phase and in the scattering intensity, furthermore, it takes into account the characteristics of the Hermitian model, so it has a high estimation precision. Experimental results validate the superiority of this method.
     In chapter 4, the two-layer vegetation Pol-InSAR correlation coefficient model to the bi-static Pol-InSAR system and the vegetation parameters inversion method to it are studied. A new model to the two-layer vegetation complex correlation coefficient of the bi-static Pol-InSAR system is established. Based on this new model, the effect of scattering components and the receive-transit mode of the interferometric radar to the complex correlation coefficient distribution is analyzed, furthermore, the effect of scattering components and the receive-transit mode of the interferometric radar to the inversion precision of three-stage method is studied. The reason why the inversion precision of the three-stage method is low is discovered. A new vegetation parameter inversion method based on the BP neural network is proposed. This new method uses the BP neural network to fit the nonlinear mapping relationship between the complex polarimetric correlation coefficients and the vegetation parameters. It not only reduces the error caused by the error in the estimations of the ground interferometric phase and the volume correlation coefficient, but also reduces the error caused by the scattering model error. Because this method is not affected by the distribution characteristics of complex correlation, this new method is suitable to vegetation parameter inversion by bi-static Pol-InSAR working in one-transmit bi-receive mode. A Novel vegetation parameter inversion method based on the Freeman decomposition is proposed. Based on the relationship among the polarimetric covariance matrix, the polarimetric interfero- metric matrix and the Freeman decomposition, the new method models the problem of the vegetation parameter inversion as a nonlinear optimization problem, the variables of which are the vegetation parameters. Compared to three-stage inversion process, this new method supplies a new approach to the inversion of the vegetation parameters and has higher precision and quicker computing velocity. This new method doesn’t suffer from the limitation of the distribution characteristics of the Pol-InSAR correlation coefficient, so this method could be used to the vegetation parameter inversion by bi- static Pol-InSAR working in the one-transmit bi-receive mode too. Experimental results validate the correctness of the new model and the superiority of this method.
     In chapter 5, the three-layer vegetation Pol-InSAR correlation coefficient model to bi-static Pol-InSAR system and the vegetation parameter inversion method to it are studied. A new model to the three-layer vegetation complex correlation coefficient of the bi-static Pol-InSAR system is established. Based on this new model, the distribution characteristics of its Pol-InSAR correlation coefficient is analyzed, the limitation of the three-stage inversion method is discussed and a new vegetation parameter inversion method based on the dual-baseline Pol-InSAR is proposed. Three-layer vegetation construction is the extension of the two-layer vegetation construction. Compared to the single-baseline Pol-InSAR, this new method could improve the parameter inversion accuracy and estimate more vegetation parameters. Experimental results validate the correctness of the new model and the superiority of this new method.
     In chapter 6, a method to improve the moving target detection performance of the fully-polarimetric along-track interferometric SAR system and the optimization design method to the fully-polarimetric along-track interferometric SAR System are studied. To the fully-polarimetric along-track interferometric SAR System working in the pursuit mono-static mode, the concept and the construction method of the polarimetric virtual multi-baseline are proposed. The potential of the moving target detection by the polarimetric virtual multi-baseline is analyzed and advantages of the fully-polarimetric along-track interferometric SAR System to the the single polarimetric along-track interferometric SAR System is compared. An optimization model in which the object function is the proportion of the detectable velocity length of the two interferometric SAR systems is constructed. The variables of the optimization model include the real length of the baseline and the pulse repetition period. The optimization results of the variables maximize the superiority of the polarimetric information in the improvement of the moving target detection performance. To the fully-polarimetric along-track interferometric SAR system working in the alternating bi-static mode, the construction and the characteristics of the polarimetric virtual multi-baseline are studied. The potential of the moving target detection by the polarimetric virtual multi-baseline of this new mode is analyzed. Especially, the potential of the moving target detection by the polarimetric virtual multi-baseline of this new mode is analyzed based on the parameters of the TanDEM-X and the TanDEM-L system.
引文
[1]李蕴滋,黄培康,郝足全等.雷达工程学[M].北京:海洋出版社,1999.3: 1~28.
    [2] W M Boerner and Jong-Son Lee.Recent Advances in Extra-Wide-Band multi-model Pol-IN-SAR Imaging[C].In proceedings of IGARSS 2001.Australia: 1092~1094.
    [3] W M Boerner, S R. Cloude, J S Lee et al. Advances in Extra Wide-Band multi-modal Air/Space-borne Radar Polarimetry, POL-IN-SAR Imaging and its Applications[C]. In proceedings of IGARSS 2002, Canada: 408~410.
    [4] W M Boerner.Recent Advances in Polarimetric-Interferometric SAR theory &technology and its application[J].In the proceedings of the 13th international conference on microwaves,radar and wireless communications,2000: 212~229.
    [5] W M Boerner.Recent Advances in Polarimetry and Polarimetric Interferometry[C]. In proceedings of IGARSS 2006, Denver, USA: 49~51.
    [6] W M Boerner.Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications[J].IEE Proc.-Radar Sonar Navig, 2003,150(3): 113~124.
    [7] J. Praks, M. Hallikainen, F. Kugler,et al. L band Polarimetric Interferometry in Boreal Forest Parameter Estimation,a Case Study[C], In Proceedings of IGARSS 2006, Denver, USA: 2216~2219.
    [8] F. Kugler, K. P. Papathanassiou, I. Hajnsek,et al. Forest Height Estimation in Tropical Rain Forest using Pol-InSAR Techniques[C], In Proceedings of IGARSS 2006, Denver,USA: 2193~2196.
    [9] F. Kugler, K.P. Papathanassiou, I. Hajnsek,et al.INDREX-II– Tropical Forest Height Estimation with L- and P-Band Polarimetric Interferometric SAR[C], Proceedings of EUSAR 2006, Dresden,Germany.
    [10] J. Praks, F. Kugler, K. Papathanassiou, M. Hallikainen. Forest HeightEstimates for Boreal Forest using L- and X-band Pol-InSAR and HUTSCAT Scattero-meter[J], Pol-InSAR workshop 2007, 22-26 January,Frascati, Italy. 2007.
    [11] F. Kugler, I. Hajnsek, K. P. Papathanssiou, et al. INDREXII–Indonesian Ariborne Radar Experiment Campaign over Tropical Forest In L- and P-Band Polarimetric interferometric SAR[J], In Proceedings of 3D Remote Sensing in Forestry, Vienna, 2005.
    [12] T. Mette, K. P. Papathanassiou, I. Hajnsek, et al. P. Biber,Applying a Common Allometric Equation to Convert height fromPol-InSAR data to Forest Biomass[J], In Proceedings of IGARSS 2004, Alaska, USA: 269~272.
    [13] T. Mette, K. P. Papathanassiou, I. Hajnsek. Potential of forest height derived by Polarimetric SAR Interferometry to estimate forest biomass[C], In Proceedings of EUSAR 2004, Ulm, Germany.
    [14] T. Mette, K. P. Papathanassiou, I. Hajnsek. Estimating Forest Biomass from Polarimetric Interferometric SAR Data in Combination with Forest Allometry - Results from temperate spruce forest test site Traunstein,Proceedings on Retrieval of Bio and Geophysical Parameters from SAR data for land applications[C], Innsbruck, Austria, 16 - 19 November 2004.
    [15] K P.Papathanassiou,F Kugler, S Lee,et al.Recent advances in Polarimetric SAR Interferometry for forest parameter estimation[C].In proceedings of IEEE radar conference 2008: 1~6.
    [16]熊涛.极化干涉合成孔径雷达应用的关键技术研究.北京:清华大学研究生院,2009,4.
    [17] J. Dall, K.P. Papathanassiou, and H. Skriver.Polarimetric SAR interferometry applied to land ice: first results[C], In proceedings of IGARSS 2003,France: 1432~1434.
    [18] M Neumann, A Reigber and L F–Famil. Data Classification Based on Pol-InSAR Coherence Shapes[C]. In Proceedings of EUSAR 2004, Ulm, Germany.
    [19] L. Ferro-Famil, E. Pottier, and J. Lee. Classification and interpretation of polarimetric interferometric SAR data[C], In Proceedings of IGARSS 2002, Toronto: 635~637.
    [20] J.S. Lee, K.P. Papathanassiou, I. Hajnsek, et al. Grunes.Applying Polarimetric SAR Interferometric Data for Forest Classification[C]. In proceedings of IGARSS 2005, Korea: 4848~4851.
    [21] L. Ferro-Famil, E. Pottier and J.S. Lee. Unsupervised classification of natural scenes from polarimetric interferometric SAR data[C], In proceedings of IGARSS 2001, Australia: 2715~2717.
    [22] L. Ferro-Fan, E. Pottier, J.S. Lee.Classification and interpretation of polarimetric interferometric SAR data[C]. In proceedings of IGARSS 2002, Canada: 635~637.
    [23] S. Guillaso, L. Ferro-Famil, A. Reigber, et al. Building Characterisation Using L-Band Polarimetric Interferometric SAR Data[J].IEEE Geosci. Remote Sensing Letters, 2005, 3(2): 347~351.
    [24] E Colin, W T Andreas REIGBER. Polarimetric Interferometry and time-frequency analysis applied to a urban area at X-band[C]. In proceedings of IGARSS 2005, Korea: 1077~1080.
    [25] R Z Schneider, K Papathanassiou, I Hajnsek et al.Polarimetric Interferometry over Urban Areas: Information Extraction Using Coherent Scatterers[C]. In proceedings of IGARSS 2005, Korea: 1089~1092.
    [26]李廷伟,梁甸农,朱炬波.全极化沿航虚拟多基线干涉SAR动目标检测性能分析[J].信号处理.2009, 25(6):895~899.
    [27] Chen Liu. Effects of target motion on polarimetric SAR images[J]. Can.J.Remotesensing. 2006, 32(2): 51~64.
    [28] Genyuan Wang,Xiang-Gen Xia and V C.Chen.Radar imaging of moving targets in foliage using bifrequency biaperture polarimetric SAR[C].IEEE Transactions on Geoscience and Remote Sensing,2003,41(8): 1755~1764.
    [29] N. Wllis. Bistatic Radar [M]. Boston: Artech House, 1991.
    [30] Y. S. Hsu and D. C. Loreti. Spaceborne bistatic radar– an overview [J]. IEE Proc., Radar Sonar Navig., 1986, 133(7): 642~648.
    [31] G. Krieger and A. Moreira. Spceborne bi- and bistatic SAR: potential and challenges [J]. IEE Proc.-Radar Sonar Navig., 2006, 153(3): 184~198.
    [32]杨科锋.移变双基地SAR特性与成像方法研究[D].长沙:国防科技大学研究生院,2009,12: 1~11.
    [33]黄海风,分布式星载SAR干涉测高系统技术研究[D].长沙:国防科技大学研究生院,2005.: 1~18.
    [34]孙造宇.星载分布式InSAR信号仿真与信号处理研究[D].长沙:国防科技大学研究生院,2007,3: 21~58.
    [35] G. Krieger and A. Moreira and H Fiedler et al.TanDEM-X: A Satellite Formation for high-resolution SAR interferometry. IEEE Transactions on geosciences and remote sensing, 2007, 45(11): 3317~3341.
    [36]周梅,王新鸿,唐伶俐等.极化干涉合成孔径雷达技术发展与应用.科技导报[J],2008,26(21): 90~93.
    [37]郭华东,李新武,王长林等.极化干涉雷达遥感机制及作用[J].遥感学报,2002,6(6): 401~405.
    [38]吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5),: 1258~1262.
    [39]邹斌,张腊梅,孙得明,等.极化干涉合成孔径雷达图像信息提取技术的进展及未来[J].电子与信息学报,2006,28(10): 1978~1984.
    [40]李廷伟,梁甸农,朱炬波.极化干涉SAR植被高度反演综述[J],遥感信息,2009,3: 95~101.
    [41]张晓玲,韦顺军,韩迪.结合相干系数的极化干涉SAR植被高度估计方法研究.电子科技大学学报.2009, 38(3): 321~324.
    [42]陈尔学,李增元,庞勇,等.基于极化合成孔径雷达干涉测量的平均树高提取技术.林业科学.2007, 43(4): 66~71.
    [43] S R Cloude, K P. Papathanassiou. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing. 1998. 36(5): 1551~1565.
    [44] S R .Cloude. Pol-InSAR training course[R]. Tech reports in POLSARpro software. 2005.
    [45] E. Colin, C. Titin-Schnaider, and W. Tabbara. Coherence optimization methods for scattering centers separation in polarimetric interferometry[J], J. Electromagn. Waves Appl., 2005, 19(9): 1237~1250.
    [46] R N.Treuhaft, P R.Siqueira. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar[J]. Radio Science, 2000, 35(1): 141~177.
    [47] K. P. Papathanassiou, S. R. Cloude, and A. Reigber. Estimation of vegetation parameters using polarimetric SAR interferometry part i and ii[C], in Proc. CEOS SAR Worhshop 1999 CNES, Toulouse, France, Oct. 26–29, 1999.
    [48] K P. Papathanassiou, S R Cloude. Single-Baseline Polarimetric SAR Interferometry [J]. IEEE Transactions on GRS. 2001, 39(11): 2352~2362.
    [49] S R Cloude and K P. Papathanassiou. Three-stage inversion process for Polarimetric SAR interferometry [J]. IEEE Proc.-radar sonar Navig, 2003, 150(3): 125~134.
    [50] S R Cloude. Robust parameter estimation using dual baseline polarimetric SAR interferometry[C]. In proceedings of IGARSS 2002, Canada: 838~840.
    [51] K P Papathanassiou, I Hajnsek, A.Moreira, et al. Forest parameter estimation using a passive polarimetric microsatellite concept[C]. In proceedings of IGARSS 2002, Canada: 826~828.
    [52] Irena Hainsek, F Kugler, S K Lee, et al. Tropical-Forest Parameter estimation by Means of Pol-InSAR: The INDREX-II Campaign[J].IEEE Transactions on geosciences and remote sensing, 2009,47(2): 481~493.
    [53] B.Mercer, Qing Zhang and M.Schwaebisch et al. Forest height and ground topography at L-Band from an Experimental Single-Pass Airborne Pol-InSAR System[C], Pol-InSAR 2009:Frascati,Italy,Jan 26-31 ,2009.
    [54] Y L Desnos.POL-INSAR Achievements and Plans[C]. Pol-InSAR 2009: Frascati, Italy, Jan 26-31, 2009.
    [55] M Lavalle, D.Solimini, E.Pottier et al.Pol-InSAR Forest Parameters Retrieval results using the ESA ALOS-PALSAR Prototype processor[C]. Pol-InSAR 2009: Frascati, Italy, Jan 26-31, 2009.
    [56] S R.Cloude, M L.Williams. A coherent EM scattering model for dual baseline Pol-InSAR[C]. In Proceedings of IGARSS 2003, France: 1423~1425.
    [57] S R.Cloude. Pol-InSAR Regularisation using Dual Frequency Interferometry[C]. In proceedings of the international Radar conference, 2003: 92~97.
    [58] H Yamada, Y Yamaguchi, E Rodriguez, et al. Polarimetric SAR interferometry for forest canopy analysis by using the super-resolution method[C]. In proceedings of IGARSS 2001: 1101~1103.
    [59] H Yamada, Y Yamaguchi, W M Boerner. Interferometric phase and coherence of forest estimated by ESPRIT-based polarimetric SAR interferometry[C], Inproceedings of IGARSS 2002, Canada: 829~831.
    [60] H Yamada, Y Yamaguchi, M Boerner. Forest height feature extraction in polarimetric SAR interferometry by using rotational invariance property[C]. In proceedings of IGARSS 2003, France: 1426~1428.
    [61] Guillaso S. Polarimetric Interferometric SAR Data Analysis Based on ESPRIT /MUSIC Methods [J]. In proceedings of IGARSS 2003, France: 77~81.
    [62] H Yamada, H Okada, Y Yamaguchi. Accuracy improvement of ESPRIT-based polarimetric SAR interferometry for forest height estimation[C]. In proceedings of IGARSS 2005, Korea: 4077~4080.
    [63] H Yamada, M Yamazaki, Y Yamaguchi. On scattering model decomposition of POLSAR image and its application to the ESPRIT-base Pol-InSAR[C],Dresden, EUSAR 2006.
    [64] H Yamada, M Yamazaki, Y Yamaguchi. On Scattering Model Decomposition with Pol-InSAR data[C]. Friedrichshafen, Germany, EuSAR, 2008.
    [65]杨磊,赵拥军,王志刚.基于功率和相位联合估计TLS_ESPRIT算法的极化干涉SAR数据分析[J].测绘学报,2007, 36(2): 163~168.
    [66] Lu Bai, Wen Hong, Fang Cao, et al. A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data[C]. Pol-InSAR 2009, Jan 26-30, 2009 Frascati, Italy.
    [67] S Guillaso, A Reigber, L F Famil. Evaluation of the ESPRIT approach in polarimetric interferometric SAR[C]. In proceedings of IGARSS 2005, Korea: 32~35.
    [68] S R Cloude and K P. Papathanassiou.Polarimetric optimisation in radar interferometry[J].Electronics Letters, 1997,33(13): 1176~1178.
    [69] J.S.Lee, S.R.Cloude, K.P. Papathanassiou. Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications[J]. IEEE Transon Geoscience and Remote Sensing, 2003, 41(10): 2254~2263.
    [70] J.S.Lee, S.R.Cloude and K.P. Papathanassiou. Speckle filtering of polarimetric SAR interferometry data[C]. In Proc. of IGARSS 2002, Canada: 832~834.
    [71] J.S.Lee. Refined filtering of image noise using local statistics[J].Comput. Graph .Image Process, 1982, 15:.380~389.
    [72] J.S.Lee. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transon Geoscience and Remote Sensing, 1999, 37(5): 2363~2373.
    [73] J.S.Lee. Coherence estimation and speckle filtering based on scattering properties[J]. In proceedings of IGARSS 2003, France: 705~707.
    [74] J.S.Lee, K.P. Papathanassiou. A new technique for noise filtering of SAR interferometric phase images[J],IEEE Trans on Geoscience and Remote Sensing, 1998,36(5): 1456~1465.
    [75] J.S.Lee, M.R.Grunes, D.L. Schuler, et al. Scattering-model-based speckle filtering of polarimetric SAR data [J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(1): 176~187.
    [76] R. Gordon and R. M. Rangayyan. Feature enhancement of film mammograms using fixed and adaptive neighbor-hoods[J],Appl. Opt., 1984,23(4): 560~564.
    [77] R. B. Paranjape, T. F. Rabie, and R. M. Rangayyan. Image restoration by adaptive-neighborhood noise substraction[J],Appl.Opt, 1994,33(14): 1861~1869.
    [78] M. Ciuc, R. M. Rangayyan, T. Zaharia, et al. Adaptive neighborhood filters for color image filtering[C], in Proc. SPIE Nonlinear Image Process., 1998 vol. 3304: 277~286.
    [79] M. Ciuc, R. M. Rangayyan, T. Zaharia, et al.Filtering noise in color images using adaptive-neighborhood statistics[J],J. Electron.Imaging, 2000 vol. 9: 484~494,.
    [80] M. Ciuc, Ph. Bolon, E. Trouvé, et al.Adaptive neighborhood speckle removal in bitemporal synthetic aperture radar images[J],Appl.Opt.,2001,40(6): 5954~5966.
    [81] G Vasile, E Trouv′e, M Ciuc, et al.Intensity-Driven-Adaptive-Neighborhood Technique for POLSAR Parameters Estimation[C]. In Proceedings of IGARSS 2005, Seoul, Korea: 5509~5512.
    [82] G Vasile, E Trouve, J S lee, et al. Intensity-Driven Adaptive-Neighborhood Technique for Polarimetric and Interferometric SAR Parameters Estimation[J], IEEE Trans on Geoscience and Remote Sensing, 2006,44(6): 1609~1621.
    [83] R.Bamler, P.Hartl. Synthetic aperture radar interferometry [J]. Inverse Problem, 1998, 14: R1~R54.
    [84] P. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic aperture radar interferometry [J]. Proc. IEEE, 2000, 88(3): 333~382.
    [85] C L Martínez, X Fàbregas. Modeling and Reduction of SAR Interferometric Phase Noise in the Wavelet Domain [J]. IEEE Trans. Geosci. Remote Sensing, 2002, 40(12): 2553~2566.
    [86]邹博,梁甸农,董臻.旋滤波降噪在干涉SAR相位解缠中的应用研究[J],现代雷达,2006,12: 58~61.
    [87]朱岱寅,朱兆达.利用线性相位模型提高干涉SAR图像相干性及改进相干性估计[J].电子学报,2005,33(9): 1594~1598.
    [88] Bin Cai, Diannong Liang, Zhen Dong. A New Adaptive Biresolution Noise Filtering Approach for SAR Interferometric Phase Images[J]. IEEE Geosci. Remote Sens. Letters, 2008, 5(2): 266~270.
    [89] Zhenfang Li, Zheng Bao, Hai Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection[J], IEEE Trans. on GRS, 2006,44(2): 288~297.
    [90] Carlos Lopez-Martinez, X Fabregas. Modeling and reduction of SAR interfero-metric phase noise in the wavelet domain[J]. IEEE Trans on Geoscience and Remote Sensing, 2002, 40(12): 2553~2566.
    [91] C. Lopez-Martinez and X. Fabregas. Polarimetric SAR speckle noise model[J], IEEE Trans. Geosci. Remote Sensing, 2003, 41(10): 2232~2242.
    [92] Carlos Lopez Martinez.multi-dimensional speckle noise, modeling and filtering related to SAR data [D].Barcelona, June, 2003.
    [93] Carlos Lopez-Martinez, Xavier Fabregas. Model based PolSAR and Pol-InSAR speckle noise reduction[C]. In proceedings of IGARSS 2003,France: 1645~1647.
    [94] C. Lopez-Martinez, X. Fabregas and E Pottier.Multidimensional speckle noise model[J].EURASIP Joural on applied signal processing 2005,20: 3259~3271.
    [95] Carlos Lopez Martinez.Multi-dimensional SAR data models[R].In Proceedings of IGARSS 2007, Barcelona, Spain.
    [96] Carlos Lopez Martinez and E Pottier.Coherence estimation in synthetic aperture radar data based on speckle noise modeling[J].Applied optics, 2007,46(4): 544~557.
    [97] Carlos Lopez-Martinez, E Pottier. On the Extension of multidimensional Speckle Noise Model From Single-Look to Bilook SAR Imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(2): 305~320.
    [98] Carlos Lopez-Martinez.Models and information estimation in multichannel radar remote sensing imagery[R].In proceedings of IGARSS 2008, Boston, USA.
    [99] E. Trouve, J.M. Nicolas, H. Ma?tre. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Trans. Geosci. Remote Sensing, 1998, 36(6): 1963~1972.
    [100] Touzi R, A Lopes, J Bruniquel, et al. Coherence Estimation for SAR Imagery[J], IEEE Transactions Geoscience and Remote Sensing, 1999,Vol. 37: 135~149.
    [101] E. Luneburg and S. R. Cloude. Contractions, Hadamard products and their application to polarimetric radar interferometry[J]. In Proceedings of IGARSS 1999, Hamburg: 2224~2226.
    [102] Sagues L., J.M.L Sanchez et al. Indoor Experiments on Polarimetric SAR Interferometry[J],IEEE Trans.Geosci.Remote Sensing[J],2000,38(2): 671~684.
    [103] C. Pascual, E. Gimeno, and J. M. N. Lopez-Sanchez. The equivalence between the polarization subspace method (PSM) and the coherence optimization in polarimetric radar interferometry[C], In Proceeding of EUSAR 2002, Munich, Germany.
    [104] M. Qong. Coherence optimization using the polarization state conformation in Pol-InSAR[J], IEEE Geosci. Remote Sens. Lett., 2005, 2(3): 301~305.
    [105] E. Colin, C. Titin-Schnaider, W. Tabbara. Investigation on different IFPOL coherence optimization methods[C], presented at the POL-INSAR, Jan. 2003.[Online]. Available: http://earth.esa.int/.
    [106] E. Colin, C. Titin-Schnaider, and W. Tabbara. An Interferometric Coherence Optimization Method in Radar Polarimetry for High-Resolution Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 167~175.
    [107] J. L. Gomez-Dans and S. Quegan. Constraining coherence optimization in polarimetric interferometry of layered targets[C], presented at the POL-INSAR, Jan. 2005. Available: http://earth.esa.int/workshops/Pol-InSAR2005/participants/264/.
    [108] M Tabb, J.Orrey,T.Flynn, et al.Phase diversity: an optimal decomposition for vegetation parameter estimation using polarimetric SAR interferometry [C],In Proceeding of EUSAR 2002,Munich,Germany.
    [109] T.Flynn, M Tabb, R. Carande.Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry[C], In proceedings of IGARSS 2002, Canada: 2596~2598.
    [110] M Tabb, T.Flynn, R. Carande.Estimation and removal of SNR and scattering degeneracy effects from the Pol-InSAR coherence region[C], In proceedings of IGARSS 2003, France: 1651~1653.
    [111] M. Neumann, A. Reigber, L. Ferro-Famil. Data Classification Based on Pol-InSAR Coherence Shapes[C]. In Proceedings of IGARSS 2005, Seoul, Korea: 4852~4855.
    [112] M. Neumann, A. Reigber, L. Ferro-Famil. Pol-InSAR Coherence Set Theory and Application[C]. In Proceedings of EUSAR2006, Dresden, Germany.
    [113] M. Neumann, L. Ferro-Famil, A. Reigber. Bibaseline Pol-InSAR Coherence Modelling and Optimization[C]. In Proceedings of IGARSS 2007, Barcelona, Spain: 2624~2627.
    [114] M. Neumann, L. Ferro-Famil, A. Reigber. Multibaseline Polarimetric SAR Interferometry Coherence Optimization[J]. IEEE Geosci. Remote Sensing Lett., 2008,5(1): 93~97.
    [115] M. Neumann, L. Ferro-Famil, A. Reigber. Polarimetric Coherence Optimization for Bibaseline SAR Data[C]. In Proceedings of the International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (Pol-InSAR), Frascati, Italy, January 2007.
    [116] A. Moreira et al.: TanDEM-X: TerraSAR-X Add-On for Digital Terrain Elevation Measurements, Mission Description Do 2003-3472739, Issue 1.2, 21 June 2005.
    [117] G. Krieger, A. Moreira, H. Fiedler, et al.TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing,2007,45(11): 3317~3341.
    [118] G. Krieger, K. Papathanassiou, S. Cloude, Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts, EURASIP Journal onApplied Signal Processing, 2005 Vol. 20: 3272~3292.
    [119] A. Moreira, I. Hajnsek, G. Krieger, K. Papathanassiou, et al.Tandem-L: Monitoring the Earth's Dynamics with InSAR and Pol-InSAR, Pol-InSAR 2009, Frascati, Italy, January 2009.
    [120] G. Krieger1, I. Hajnsek1, K. Papathanassiou1,et al.The Tandem-L Mission Proposal: Monitoring Earth’s Dynamics with High Resolution SAR Interferometry.In proceedings of 2009 radar conference,Bordeaux,France: 1~6.
    [121] A. Reigber, M. Neumann, E. Erten, et al. multibaseline polarimetrically optimised phases and scattering mechanisms for InSAR applications[C], in Proceedings of IGARSS 2007. Barcelona, Spain: 144~147.
    [122] Stebler O., Meier E., Nuesch D. Multi-baseline airborne Pol-InSAR measurements for the analysis and inversion of scattering processes within vegetation media[C], Proc. of the 3rd International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data, ESASP, 2001, Sheffield: 301~306.
    [123] Stebler O., Meier E., Nuesch D. Multi-baseline polarimetric SAR interferometry first experimental spaceborne and airborne results[J], ISPRS Journal of Photogrammetry and Remote Sensing, 2002,56(3): 149~166.
    [124] L. Thirion, E.Colin, C.Dahon. Capabilities of a Forest Coherent Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band[J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 44(4): 849~862.
    [125] J. Richards, G. Sun, R. Simonett. L-band radar backscatter modeling of forest stands[J], IEEE Trans. Geosci. Remote Sens.1987, 25(4): 487~498.
    [126] M. A. Karam, A. K. Fung, Y. M. M. Antar. Electromagnetic wave scattering from some vegetation samples[J], IEEE Trans. Geosci. Remote Sens.,1988, 26(6): 799~807.
    [127] S. L. Durden, J. J. V. Zyl, H. A. Zebker. Modeling and observation of the radar polarization signature of forested areas[J], IEEE Trans.Geosci. Remote Sens, 1989, 27(3): 290~301.
    [128] G. Sun, K. J. Ranson. A three-dimensionnal radar backscatter model of forest canopies[J], IEEE Trans. Geosci. Remote Sens.,1995, 33(2): 372~382.
    [129] S. H. Yueh, J. Kong, J. K. Jao, et al. Branching model for vegetation[J], IEEE Trans. Geosci. Remote Sens., 1992, 30(2): 390~402.
    [130] S. S. Saatchi, K. C. McDonald, Coherent effects in microwave backscattering models for forest canopies[J], IEEE Trans. Geosci. Remote Sens., 1997, 35(4): 1032~1044.
    [131] Y.-C. Lin, K. Sarabandi, A Monte-carlo coherent scattering model for forest canopies using fractal-generated trees[J], IEEE Trans. Geosci. Remote Sens., 1999, 37(1): 440~451.
    [132] E. Mougin, C. Proisy, G. Marty, et al. multifrequency and multipolarizationradar backscattering from mangrove forests[J], IEEE Trans. Geosci. Remote Sens., 1999, 37(1): 94~102.
    [133] C. Proisy, E. Mougin, F. Fromard, et al. Interpretation of polarimetric radar signatures of mangroves forests[J], Remote Sensing. Environ, 2000,71(1): 56~66.
    [134] C. Proisy, E.Mougin, F. Fromard,et al. On the influence of canopy structure on the radar backscattering of mangrove forests[J],Int. J. Remote Sens, 2002, 23(20): 4197~4210.
    [135] M. A. Karam, A. K. Fung. Leaf-shape effects in electromagnetic wave scattering from vegetation[J], IEEE Trans. Geosci. Remote Sens, 1989, 27(6): 687~697.
    [136] T. Chiu, K. Sarabandi. Electromagnetic scattering from short branching vegetation[J], IEEE Trans. Geosci. Remote Sens., 2000, 38(2): 911~915.
    [137] L. Tsang, K.-H. Ding, G. Zhang, et al. Backscattering enhancement and clustering effects of randomly distributed dielectric cylinders overlying a dielectric half space based on Monte Carlo simulations[J], IEEE Trans. Antennas Propagat.,1995,43(5): 488~499.
    [138] Yi-Cheng Lin. A fractal-based coherent scattering and propagation model for forest canopies[D]. Ph.D. dissertation. University of Michigan, 1997.
    [139] B.P.Ablitt.Characterisation of Particles and their Scattering Effects on the Polarized Light[D]. PhD thesis, University of Nottingham,UK,March 2000.
    [140] J D Ballester-Berman, J M Lopez-Sanchez.Coherence Loci for a Homogeneous Volume Over a Double-Bounce Ground Return[J].IEEE on geosciences and remote sensing letters,2007,4(2): 317~321.
    [141] M Neumann. Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry: theoretical modeling and physical parameter retrieval[D]. The Thesis submitted in partial fulfillment of the requirements for the degree of the doctor of the Technical university Rennes, 2009.
    [142] M Neumann, L Ferro-Famil, A Reigber. Improvement of vegetation parameter retrieval from polarimetric SAR interferometry using a simple polarimetric scattering model[C]. Pol-InSAR 2009, Frascati, Italy Jan 26-30, 2009.
    [143] M Neumann, L Ferro-Famil and E Pottier.A general model-based polarimetric decomposition scheme for vegetated areas[C]. Pol-InSAR 2009, Frascati, 2009.
    [144] J. D. B-Berman, J. M. L-Sanchez, J. Fortuny-Guasch. Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry[J], IEEE Trans. Geosci. Remote Sensing, 2005, 43(4): 683~694.
    [145] S R Cloude, K P Papathanssiou, A Reigber. Polarimetric SAR Interferometry at P Band for Vegetation Structure Extraction[C], In the Proceedings of EUSAR 2000, Munich, Germany: 249~252.
    [146] Gabriel, J., Schmullius, C., Papathanassiou, Konstantinos et al.Tree heightextraction using polarimetric SAR interferometry[C].In proceedings of IGARSS 1999, Hamburg, Germany: 2131~2133.
    [147] Q Zhang, J.B.Mercer, S.R.Cloude. Forest height estimation from INDERX-ⅡL-band polarimetric INSAR data[C]. Beijing, The international archives of the photogrammetry, Remote sensing and spatial information science, 2008: 343~348.
    [148]李新武.极化干涉SAR信息提取方法及其应用研究[D],北京,中国科学院研究生院,2002: 65~98.
    [149] B Zou,L M Zhang,W Wang et al. Forest Parameters Inversion Using Pol-InSAR Data Based on Genetic Algorithm[C].In proceedings of IGARSS 2006, Colorado, USA: 2651~2654.
    [150] E. Angiuli, F. Del Frate, A. Della Vecchia, et al.Inversion Algorithms Comparison Using L-band Simulated Polarimetric Interferometric Data for Forest Parameters Estimation[C]. In proceedings of IGARSS 2007, Barcelona, Spain: 2477~2480.
    [151] E. Angiuli, F. D Frate, A. D Vecchia, et al. Complex-valued Neural Network Algorithms for Forest Parameters Retrieval from Polarimetric SAR Data[C]. In proceedings of IGARSS 2008, Boston, USA: 641~644.
    [152] L L Tan, R L Yang. Investigation on tree height retrieval with polarimetric SAR interferometry[C].In proceedings of IGARSS 2008, Boston, U.S.A: 546~549.
    [153] T Xiong, G Y Zhou, J Yang et al. Volume coherence estimation for random forest height retrieval based on Pol-InSAR data[C]. In proceedings of IGARSS 2008, Boston, U.S.A: 217~220.
    [154] X W Li, H D Guo, Z Li, et al. Inversion of vegetation height using SIR-C dual frequency polarimetric SAR interferometry data[C]. In proceedings of IGARSS 2004, Beijing, China: 3132~3135.
    [155] K P. Papathanassiou, S R Cloude. The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data[C] In proceedings of IGARSS 2003,France: 1429~1431.
    [156] Y S Zhou, W Hong, F Cao, et al. Analysis of temporal decorrelation in dual-baseline Pol-InSAR vegetation parameter estimation[C]. In proceedings of IGARSS 2008, Boston, U.S.A: 473~476.
    [157] S R.Cloude. Pol-InSAR Regularisation using Dual Frequency Interfero- metry[C]. Cuper, UK, In proceedings of the international radar conference, 2003: 92~97.
    [158] T Mette, F Kugler, K P Papathanassiou et al. Forest and the random volume over ground nature and effect of 3 possible error types[C]. Germany, EUSAR 2006.
    [159] X W Li,H D Guo,Z Li, et al.A hybrid vegetation height estimation method using SIR-C polarimetric SAR interferometry data[J]. In proceedings of IGARSS2005, Seoul, Korea: 5505~5508.
    [160] M Tabb, T Flynn, R carande. Full maximum likelihood inversion of Pol-InSAR scattering models[C]. In proceedings of IGARSS 2004, Beijing, China: 1232~1235.
    [161] T Flynn, M Tabb, R carande. Direct estimation of vegetation parameters from covariance data in polarimetric SAR interferometry[C]. In Proceedings of IGARSS’2002, Toronto: 1908~1910.
    [162] L F Famil, M Neumann.Recent advances in the derivation of Pol-InSAR Statistics: study and applications[C].in Proceedings of .EUSAR 2008.
    [163] Y C Liu. A Fractal-based Coherent Scattering and Propagation Model for Forest Canopies[D]. The dissertation submitted in partial fulfillment of the requirements for the degree of the doctor of Philosophy in the University of Michigan, 1997: 67~121.
    [164] Lang, R.H. Electromagnetic backscattering from a sparse distribution of lossy dielectric scatters[J], Radio Sci., 1981,Vol.16: 15~30.
    [165] E Pottier, L F-Famil, S Cloude, et al. PolSARpro v2.0: The versatile Polarimetric and Interferometric SAR Data Processing Toolbox[C]. http//earth.esa.int/PolSARpro/download/dl.html.
    [166] E Pottier, L F-Famil, S Allain,et al, Overview of the PolSARpro v4.0 software the Open Source Toolbox for Polarimetric and Interferometric Polarimetric SAR Data Processing. http//earth.esa.int/PolSARpro/download/dl.html.
    [167] M. L.Williams, A Coherent, Polarimetric SAR Simulation of Forests for PolSARPro[EB/OL]. http://earth.esa.int/polsarpro /default.html,2007.
    [168] V Alberga, M Chandra. Combined Application of Target Decomposition Methods and Polarimetric SAR Interferometry: some preliminary results[J]. SAR Image Analysis, Modeling and Techniques IV, Francesco Posa, Editor, In Proceedings of SPIE, 2002, Vol.4543: 100~104.
    [169] E.Angiuli, F.Del Frate, A.Della Vecchia et al. Inversion Algorithms Comparison Using L-band Simulated Polarimetric Interferometric Data for Forest Parameters Estimation[J]. In proceedings of IGARSS 2007, Barcelona,Spain: 23~27.
    [170] Y Yamaguchi, T Moriyama, Motoi Ishido, et al. Four-Component Scattering Model for Polarimetric SAR Image Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699~1706.
    [171] Mark L Williams. Polarimetric Decompositions in Tutorial of the PolSARpro software [EB/OL]. http://earth.esa.int/polsarpro /default.html,2007.
    [172] Lulu Tan, Ruliang Yang. Investigation on tree height retrieval with polarimetric SAR interferometry[C]. In proceedings of IGARSS 2008.Boston, U.S.A: 546~549.
    [173]杨凤凤.星载雷达GMTI系统与信号处理研究[D].长沙:国防科技大学研究生院,2007,3: 35~78
    [174] H.R.Park, J.Li, H. Wang. Polarization-space-time domain generalized likelihood ratio detection of radar target[J].Signal Processing(Elsevier),1995, 41(6): 153~164.
    [175] H.R.Park, J.Li , H. Wang.An efficient adaptive polarimetric processor with an embedded CFAR[J].ETRI Journal,2003,25(3): 171~178.
    [176] Friedlander, B. Porat, B. VSAR: a high resolution radar system for detection of moving targets[J]. IEE Radar, Sonar and Navigation.1997, 144(4): 205~218.
    [177] Friedlander, B. Porat, B. VSAR: a high resolution radar system for detection of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 755~776.
    [178] Liu Z X, Dai D H, Li D,et al.Optimal polarimetric interferometry coherence analysis in detection and location of moving target with SAR[C].In the proceedings of APSAR 2007,Huangshan,China: 184~169.
    [179]刘忠训,代大海,王雪松等.极化SAR动目标定位中的残差图像干涉相干性分析[J].电子与信息学报, 2009,31(3): 606~609.
    [180]郑明洁.合成孔径雷达动目标检测与成像研究[D].北京:中科院研究生文.2003,6.: 15~58
    [181] M.Yeremy, C.Livingstone, K.Mattar. Polarimetric Interferometric Experiment Trials for 2001 and 2002: Experiment Design, Ground Truthing, data quality and analysis[R]. Defence Research and Development Canada Ottawa, Sep.2003.
    [182] K E.Mattar, M L.Yeremy. Polarimetric Interferometric SAR Literature Review and an Assessment of its Utility for DND TIF Project Memorandum[R].Defense R&D Canada–Ottawa technical report 2003: 19~22.
    [183] K E.Mattar, Chen Liu, R Sabry. Polarimetric SAR Interferometry Investigations using EC CV-580 SAR Data[R].Defense R&D Canada–Ottawa technical report 2005-165. 2005.
    [184] M robson. The Convair 580 Along-Track InSAR processor[R].Technical memo. Defence Research Establishment Ottawa, Aug.2001.
    [185] B Zou, T Wei, L M Zhang. Moving targets detection and analysis on bi-look polarimetric SAR images using PWF method[C]. In proceedings of Igarss2008, Boston, U.S.A: 1190~1193.
    [186]杜湘瑜.基于极化特征差异和多维干涉优化的SAR运动目标探测方法研究[R],2009年国家自然科学基金报告,基金编号:60902092,国防科技大学.
    [187]庄钊文,肖顺平,王雪松.雷达极化信息处理[M].北京,国防工业出版社,1999: 15~78
    [188]王超,张红,刘智等.星载合成孔径雷达干涉测量[M].科学出版社,北京,2002,9: 10~78.
    [189] L M. Novak, M B.Sechtin,M J.Cardullo. Studies of target detection Algorithms That Use Polarimetric Radar Data[J]. IEEE Trans. On Aerospace and Electronic Systems, 1989, 25(2): 150~165.
    [190] Luca Pipia X F. Generation of PolSAR and Pol-InSAR Data for homogeneous Distributed targets Simulation[C].Pol-InSAR 2005, Frascati Italy, January 2005.
    [191]陈兵,张平.基于散射体模型的Pol-InSAR数据模拟反演研究[J].系统仿真学报,2008,20(8): 2200~2202.
    [192] F T.Ulaby, M.C. Dobson.Handbook of radar scattering statistics for terrain[M].the University of Michigan,1988: 15~128.
    [193]袁曾任.人工神经元网络及其应用[M].清华大学出版社,1999年10月: 5~18.
    [194] A Freeman, S L Durden. A Three-Component Scattering Model for Polaimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963~973.
    [195]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2003年4月. pp:115~138.
    [196]杨万海.雷达系统建模与仿真[M].西安电子科技大学出版社,陕西,西安,2007年1月: 15~18.
    [197]齐向阳.极化合成孔径雷达的模拟研究[D].北京:中科院研究生院,2001: 45~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700