基于差压原理的涡街流量计旋涡频率检测方法的数值仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在热工、化工、冶金等诸多工业过程检测中,流量检测占有很高的份额,也是过程检测的一大难点。本论文主要研究目前发展势头十分良好的涡街流量计中的关键技术问题——旋涡频率的检测。
     为了解决目前涡街流量计中存在的某些突出问题,使旋涡频率的检测更准确、抗干扰性更强,作者提出通过检测旋涡发生体后管壁处的差压信号的频率来检测涡街流量计旋涡频率的新方法。
     基于这一基本思想,本论文采用理论分析—数值仿真—实验验证相结合的方法,以基于差压原理的涡街流量计旋涡频率检测方法为主要研究对象,以计算流体力学软件FLUENT为辅助研究工具,最后通过实验实现了利用管壁差压法对涡街流量计旋涡频率的准确检测。主要完成了以下工作:
     1) 通过大量阅读国内外相关文献,对涡街流量计的发展历程、测量原理、组成结构、优缺点进行了概括,对国内外涡街流量计研究的现状和趋势进行了总结。
     2) 评述了涡街流量计旋涡频率各种常用检测方法的特点,针对现有方法存在的不足,提出通过检测尾流中贴近管壁处的差压周期变化的频率来检测旋涡频率的新方法,即管壁差压法。并且对该方法的可行性做了理论上的分析,对实现的技术难点提出了解决方案。
     3) 针对涡街流量计内旋涡产生和脱落的特点,建立了涡街流量计流场的数值仿真模型,应用FLUENT软件对涡街流量计流场进行了仿真,对流场中的几个特定点的静压波动情况进行了监测、分析和比较。
     4) 在数值仿真结果的基础上,使用空气和水两种不同流动介质进行了实验,结果表明:管壁差压法能够准确检测涡街流量计旋涡频率,测量误差均小于仪表的允许误差。并对管壁差压取压孔位置的选
    
    取做了比较,发现管壁差压取压孔选取在距旋涡发生体迎流面较近位
    置较好。
The flow measurement accounts for a large share of many process measurements in the industry, such as thermal engineering, chemical engineering and metallurgy. It is one of the greatest difficulties in process measurement technology. The dissertation is focusing on the detection of vortex frequency, which is the key technical problem of vortex flowmeter, a sort of promising and rapidly developing flowmeter.
    In order to solve some key problems of vortex flowmeter and to detect vortex frequency more accurately with stronger anti-disturbance, a new method for vortex frequency detection has been put forward by the author. By this method, the vortex frequency of vortex flowmeter is obtained by detecting frequency of differential pressure near duct wall downstream bluff body.
    Based on this idea, the combinative technique of theoretical analysis, numerical simulation and experimental verification is adopted. In the dissertation, detecting vortex frequency of vortex flowmeter based on differential principle is the main research object, Computational Fluid Dynamics(CFD) software FLUENT is used as auxiliary tool, and at last the method is realized by experiments. The main contribution and results are as follows:
    1) By reading home and foreign relevant literature extensively, the development process, measurement principle, configuration, merits and drawbacks of vortex flowmeter were summarized; its present status and progress tendency were generalized.
    2) The commonly used vortex frequency detection methods were commented. To overcome shortcomings of existing methods, a new
    
    
    
    method has been put forward. By this method, the vortex frequency of vortex flowmeter is obtained by detecting frequency of differential pressure near duct wall downstream bluff body. Its feasibility was theoretically analyzed and some proposals were brought forward to solve its technical difficulties.
    3) According to the characteristics of vortex yielding and shedding, a numerical simulation model for flow field in vortex flowmeter was established. Flow in vortex flowmeter was simulated with FLUENT, and static pressure on some given points near duct wall was monitored, analyzed and compared.
    4) On the basis of numerical simulation results, experiments were separately carried out using two different types of fluid, air and water. The results show that vortex frequency can be properly detected by duct-wall differential pressure method, and the errors are all less than the permissible error of the vortex flowmeter. Some efforts were also made to compare the performances of static pressure at different sampling positions, and it reveals that the better result is achieved by the sampling position near the against-flow face of bluff body.
引文
[1] 杜维,张宏建,乐嘉华.过程检测技术及仪表.北京:化学工业出版社,1999.66~68
    [2] 张亮明,夏桂娟.工业锅炉热工检测与工程控制.天津:天津大学出版社,1992.1~12
    [3] 杨泽宽,王魁汉.热工测试技术.沈阳:东北工学院出版社,1987.204~208
    [4] 孙吉星,冯雅琴.热工测量及显示仪表.北京:电子工业出版社,1981.1~4
    [5] Krupa B. Measuring flow into the 90s. Automotive Engineering, 1989, 97(6): 76~81
    [6] 蔡武昌.回顾和展望中国流量检测仪表的发展.航空计测技术,2003,23(3):1~5
    [7] 杨根生,林辉渝.流量测量仪表.北京:机械工业出版社,1986.5~6
    [8] 张宝芬,张毅,曹丽.自动检测技术及仪表控制系统.北京:化学工业出版社,2000.84~86
    [9] 孔珑.工程流体力学.北京:水利电力出版社,1992.59~61
    [10] 梁国伟,蔡武昌.流量测量技术及仪表.北京:机械工业出版社,2002.5~13
    [11] 蔡武昌,孙淮清,纪纲,等.流量测量方法和仪表的选用.北京:化学工业出版社,2001.20~34
    [12] 纪纲.流量测量仪表应用技巧.北京:化学工业出版社,2003.17~81
    [13] 孙淮清,姜仲霞.“流量测量技术与仪表选用”讲座 第十八讲 涡街流量计(一).自动化仪表,1998,19(9):43~45
    [14] 孙淮清,姜仲霞.“流量测量技术与仪表选用”讲座 第二十讲 涡街流量计(二).自动化仪表,1998,19(10):42~46
    [15] 周庆,王磊,Haag R.实用流量仪表的原理及其应用.北京:国防工业出版社,2003.84~86
    [16] 蔡武昌.流量测量仪表现状和发展动向(待续).自动化仪表,1996,17(2):1~5
    [17] 蔡武昌.流量测量仪表现状和发展动向(续完).自动化仪表,1996,17(3):7~10
    
    
    [18] 王兴才.涡街流量计的原理及其应用.工业仪表与自动化装置,1994,24(5):38~40,54
    [19] 庞宣,邵朋诚.流量测量仪表第七讲漩涡涡流量计.工业仪表与自动化装置,1994,24(5):58~61
    [20] 朱德祥.流量仪表原理和应用.上海:华东化工学院出版社,1992.65~68
    [21] 张欣.涡街流量计简析.石油化工自动化,1999,36(4):73~75
    [22] Emilio R著,何杰译.智能质量涡街流量计.石化译文,1997,(2):31~33
    [23] 杨进行,王杰礼.涡街流量计的量程扩展.传感器技术,1997,16(6):77~29
    [24] Miau J J, Hu C C, Chou J H. Response of a vortex flowmeter to impulsive vibrations. Flow Measurement and Instrumentation, 2000, 11 (1): 41~49
    [25] 刘晖.涡街流量计抗振性能的研究.矿业研究与开发,1997,17(1):49~51
    [26] 谢宇怀.智能压电式涡街流量计及其抗干扰技术研究:[硕士学位论文].杭州:浙江大学,2001
    [27] Amadi-Eehendu J E, Zhu H G. Signal analysis applied to vortex flowmeters. IEEE Transactions on Instrumentation and Measurement, 1992, 41 (6): 1001~1004
    [28] Amadi-Echendu J E, Zhu H G, Higham E H. Analysis of signal from vortex flowmeter. Flow Measurement and Instrumentation, 1993, 4 (4): 225~231
    [29] 徐科军.涡街流量计输出信号谱分析方法比较.合肥工业大学学报(自然科学版),1994,17(6):6~11
    [30] 徐科军,汪枫.涡街流量计信号处理的软件方法.仪表技术与传感器,1995,32(4):22~25
    [31] 徐科军,汪安民.涡街流量计信号估计的自适应陷波方法.仪器仪表学报,2000,21(2):206~207,214
    [32] 徐科军,汪安民,吕迅竑,等.基于自适应陷波的涡街流量计信号处理系统.计量学报,2000,21(7):199~204
    [33] 徐科军,汪安民.基于小波变换的涡街流量计信号处理方法.仪器仪表学报,2001,22(6):636~639
    [34] 李永三,徐科军.涡街流量计信号处理方法研究与系统设计.合肥工业大学学报(自然科学版),2002,25(6):1130~1134
    
    
    [35] 陈荣保,费敏锐,徐科军,等.涡街流量计的系列研制和信号处理技术.仪器仪表学报,2002,23(3):513~514
    [36] 黄云志,徐科军.涡街流量计信号处理方法与系统的研究现状.自动化仪表,2003,24(8):1~5
    [37] 黄咏梅,张宏建,胡赤鹰,等.新DFT递推算法在涡街流量信号处理中的应用.浙江大学学报(工学版),2003,37(1):51~55
    [38] 黄咏梅,张宏建,胡赤鹰,等.用简单整系数滤波器处理涡街信号的方法.化工自动化及仪表,2002,9(6):55~57
    [39] Menz B. Vortex flowmeter with enhanced accuracy and reliability by means of sensor fusionand self-validation. Measurement, 1997, 22 (3—4): 123~128
    [40] Pusayatanont M, Higham E H, Unsworth P J. Analysis of the sensor signal from a vortex flowmeter to recover information regarding the flow regimes. In: Proceedings of the 11th FLOMEKO Conference. Groningen: FLOMEKO Conference, 2003. Paper 130
    [41] Laneville A, Strzelecki A, Gajan P, et al. Signal quality of a vortex flowmeter exposed to swirling flows. Flow Measurement and Instrumentation, 1993, 4 (3): 151~154
    [42] Clarke D W, Ghaoud T. A dual phase-locked loop for vortex flow metering. Flow Measurement and Instrumentation, 2003, 14 (1): 1~11
    [43] Bera S C, Ray J K. A modified inductive pick-up technique of measurement in a vortex flowmeter. Measurement, 2004, 35 (1): 19~24
    [44] Miau J J, Wu C W, Hu C C, et al. A study on signal quality of a vortex flowmeter downstream of two elbows out-of-plane. Flow Measurement and Instrumentation, 2002, 13 (3): 75~85
    [45] Ghaoud T, Clarke D W. Modelling and tracking a vortex flowmeter signal. Flow Measurement and Instrumentation, 2002, 13 (3): 103~117
    [46] Lavante E V, Perpeet S, Hans V, et al. Optimization of acoustic signals in a vortex-shedding flowmeter using numerical simulation. International Journal of Heat and Fluid Flow, 1999, 20 (3): 402~404
    [47] Itoh I, Ohki S. Mass flowmeter detecting fluctuation in lift generated by vortex shedding. Flow Measurement and Instrumentation, 1993, 4 (4): 215~223
    [48] Ohki S著,薛水发译.涡街质量流量计的流动特性及其应用.军用航油——国外部分,1992(4):17~19
    [49] 姜仲霞,刘玉萍,刘桂芳,等.涡街差压质量流量计的研究,自动化
    
    与仪器仪表,1995,15(6):35~40
    [50] Huang Y M, Zhang H J, Sun Z Q. Measurement of mass flow rate using a vortex flowmeter. In: Wiener T F, Sarro P M, eds. Proceedings of the Second IEEE International Conference on Sensors. Toronto: IEEE Sensors Council, 2003. 344~347
    [51] Yamasaki H. Progress in hydrodynamic oscillator type flowmeters. Flow Measurement and Instrumentation, 1993, 4 (4): 241~247
    [52] Miau J J, Yang C C, Chou J H, et al. A T-shaped vortex shedder for a vortex flowmeter. Flow Measurement and Instrumentation, 1993, 4 (4): 259~267
    [53] Wei C Y, Chang J R. Wake and base-bleed flow downstream of bluff bodies with different geometry. Experimental Thermal and Fluid Science, 2002, 26 (1): 39~52
    [54] Luo S C, Yazdani M G, Chew Y T, et al. Effects of incidence and afterbody shape on flow past bluff cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53 (3): 375~399
    [55] Buresti G, Fedeli R, Ferrafesi A. Influence of afterbody rounding on the pressure drag of an axisymmetrical bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69~71: 179~188
    [56] Nakamura Y. Vortex shedding from bluff bodied with splitter plates. Journal of Fluids and Structures, 1996, 10: 147~158
    [57] Miau J J, Liu T W. Vortex flowmeter designed with wall pressure measurement. Reviews of Scientific Instrumentation, 1990, 61 (10): 2676~2681
    [58] Mian J J, Chiu E G, Chou J H. A proposal of a ring-type vortex flow meter. Reviews of Scientific Instrumentation, 1992, 63 (9): 4213~4221
    [59] Igarashi T. Performance of new type vortex shedder for vortex flowmeter. In: Proceedings of the Sixth Triennial International Symposium on Fluid Control, Measurement & Visualization. Sherbrooke, Canada: FLOCOME, 2000. 176~183
    [60] 李远香.应力式双旋涡发生体的研究.矿业研究与开发,1996,16(4):32~36
    [61] 李远香.双旋涡发生体涡街流量计用于蒸汽流量测量的对策研究.冶金自动化,1999,(2):41~44
    [62] 龚振起,唐飞,龚海涛,等.智能式双涡体涡街流量计的研究.哈尔滨工业大学学报,1997,29(1):67~70
    
    
    [63] 张平,彭杰刚,傅新,等.双钝体涡街流量计流体振动特性研究.机电工程,2001,18(5):63~64,70
    [64] 彭杰纲,傅新,陈鹰.双钝体涡街流量计流体振动特性的试验研究.机械工程学报,2002,38(8):23~26
    [65] 徐国梁,杨军,宋开臣.双钝体涡街流量计的研究.仪表技术与传感器,2002,39(7):49~51
    [66] Bentley J P, Benson R A, Shanks A J. The development of dual bluff body vortex flowmeters. Flow Measurement and Instrumentation, 1997, 7 (2): 85~90
    [67] Zhou W, Xuan Z Q, Yu J G. Some new developments of precision frequency measurement technique. In: Proceedings of IEEE International Frequency Control Symposium, 1995. 354~359
    [68] Poremba A, Blischke F. Robust vortex flowmeter based on a parametric frequency estimator. In: Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, 1992. 1541~1544
    [69] 董春利.电容式涡街流量计的特点与技术经济分析.炼油化工自动化,1994,34(4):49~53
    [70] 池兆明,黄锡群.电容式涡街流量计结构与抗振性能.化工自动化及仪表,1994,21(5):31~34
    [71] 池兆明,邓泽友.关于电容式涡街流量计的结构问题.电子仪器仪表用户,1997,4(1):41~42
    [72] 池兆明,黄锡群.电容式涡街流量计的结构与抗振动性能.自动化仪表,1997,18(1):41~42
    [73] 池兆明,吴伟波.再谈两类电容式涡街流量计的结构.石油化工自动化,1998,38(3):57~59
    [74] 张桦.智能型差动电容式涡衍流量计的设计.自动化与仪器仪表,2000,20(6):17~19
    [75] 陈彦萼.差动开关电容式涡街流量计性能及其应用.自动化仪表,2000,21(6):17~19
    [76] 高普云.应力式涡街流量计.机械工程师,1990,21(2):21~21,25
    [77] 夏顺新.应力式涡街流量计测量原理及应用.电子技术应用,1991,17(12):19~21,15
    [78] 周家光,李承恩.PNC型压电式高温涡街流量传感器.上海化工,1995,
    
    20(5):19~22
    [79] 汪林进.应力式涡街流量计使用须解决的问题.炼油化工自动化,1995,35(4):42~46
    [80] 武胜林.压电式涡街流量计设计失误追踪.炼油化工自动化,1996,36(5):57~60
    [81] 吴国玢,金开有.新型压电陶瓷涡街流量计.上海理工大学学报,1998,20(3):277~280
    [82] 谢宇怀,黄显元,张宏建,等.压电式涡街流量计噪声处理方法研究.机电工程,1999,16(5):194~195
    [83] 王铁山.应力式涡街流量计检测方法.石油化工自动化,2000,40(1):76~81
    [84] 屈敏.应力式涡街流量计在使用中的问题及其对策.自动化与仪表,2002,17(6):68~70
    [85] Hans V, Poppen G, von Lavante E, et al. Vortex shedding flowmeters and ultrasound detection-signal processing and influence of bluff body geometry. Flow Measurement and Instrumentation, 1998, 9: 79~82
    [86] Hans V, Windorfer H. Comparison of pressure and ultrasound measurements in vortex flow meters. Measurement, 2003, 33 (2): 121~133
    [87] 曹王剑,朱晓青.超声波涡街流量计及其应用.化工自动化及仪表,1994,21(3):46~49
    [88] 薛志斌.超声波涡街流量计及其应用.青海电力,1997,16(3):42~45
    [89] 谭述芝.超声涡街流量计两种检测方式的探讨.自动化与仪器仪表,1999,19(6):24~27
    [90] 曹王剑,张锋.磁敏式涡街流量计与调试.工业仪表与自动化装置,1997,27(5):41~43
    [91] 王继元.磁敏式涡街流量计在氧气计量中的应用.自动化仪表,1994,15(3):25~28
    [92] 莫德举,李立平,郭红晓.电磁法检测漩涡频率的涡街流量计.北京化工大学学报(自然科学版),2001,28(1):70~72
    [93] 刘鹏民,莫德举.电磁式涡街流量传感器的研究.测控技术,1999,18(11):35~37
    [94] Barton J S, Saoudi M. A fiber optic vortex flowmeter. Joumal of Physics E: Scientific Instrumentation, 1986, 19 (1): 64~66
    
    
    [95] Jones J D C. Monomode fiber optic vortex shedding flowmeter. Electron Letters, 1984, 20 (16): 664~665
    [96] Lyle J H, Pitt C W. Vortex shedding fluid flowmeter using optic fiber sensor. Electron Letters, 1981, 17 (1): 44~45
    [97] 张振东,文东旭.光纤卡门涡街智能流量计.工业控制计算机,1994,7(4):30~31
    [98] 王学仁,周赤.光纤涡街流量计的研究.哈尔滨科学技术大学学报,1989,13(4):84~88
    [99] 周晓军,刘文达.光纤涡街流量计的研究.传感器技术,1994,13(2):23~25
    [100] 王波.光纤涡街流量计的研究.光纤光缆传输技术,2003,16(2):31~34
    [101] 劳力云,陈珙,张宏建,等.引压管路对动态差压检测影响的分析.计量学报,1999,20(4):286~291
    [102] 劳力云,郑之初,吴应湘,等.动态差压检测系统的共模误差研究.流体力学实验与测量,2001,15(4):59~63,69
    [103] 戴昌辉.流体流动测量.北京:航空工业出版社,1991.27~34
    [104] 瞿秀贞,谢纪绩,王自和,等.差压型流量计.北京:中国计量出版社,1995.1~7
    [105] 刘欣荣.流量计.北京:水利电力出版社,1990.408~413
    [106] 川田裕郎,小宫勤一,山崎弘郎著,罗秦,王金玉,谢纪绩,等译.流量测量手册.北京:计量出版社,1982.303~312
    [107] 章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998.3~10
    [108] 吴望一.流体力学(上册).北京:北京大学出版社,1982.221~231
    [109] 吴望一.流体力学(下册).北京:北京大学出版社,1983.42~51
    [110] 童秉纲,张炳暄,崔尔杰.非定常流与涡运动.北京:国防工业出版社,1993.281~303
    [111] Zdravkovich M M. Different modes of vortex shedding: an over-view. Journal of Fluids and Structures, 1996, 10: 427~437
    [112] Matsumoto M. Vortex shedding of bluff body - a review. Journal of Fluids and Structures, 1999, 13: 791~811
    [113] Tamura T, Itoh Y. Three-dimensional vertical flows around a bluff cylinder in unstable oscillations. Journal of Wind Engineering and Industrial Aerodynamics,
    
    1997, 67—68 (1): 141~154
    [114] Williamson C H K. Advances in our understanding of vortex dynamics in bluff body wakes. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69—71 (1): 3~32
    [115] Nakamura Y. Vortex shedding from bluff bodies and a universal Strouhal number. Journal of Fluids and Structures, 1996, 10 (2): 159~171
    [116] 葛景信.湍流与润滑.上海:上海科学技术文献出版社,1983.1~12
    [117] 李士豪.流体力学.北京:高等教育出版社,1990.160~172
    [118] 林宗虎,李永光,卢家才,等.气液两相流旋涡脱落特性及工程应用.北京:化学工业出版社,2001.3~37
    [119] 白莱文斯R D著,吴恕三,王觉译.流体诱发振动.北京:机械工业出版社,1983.9~30
    [120] 夏雪湔,邓学莶.工程分离流动力学.北京:北京航空航天大学出版社,1991.
    [121] Ahmed N A, Wagner D J. Vortex shedding and transition frequencies associated with flow around a circular cylinder. AIAA Journal, 2003, 41 (3): 542~544
    [122] Bergstrom D J, Wang J. Discrete vortex model of flow over a square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67—68 (1): 37~49
    [123] Castro I, Vosper S, Paisley M, et al. Vortex shedding behind tapered obstacles in neutral and stratified flow. Dynamics of Atmospheres and Oceans, 2001, 34 (2—4): 145~163
    [124] 祁德庆.工程流体力学.上海:同济大学出版社,1995.158~161
    [125] Pankanin G L, Berlinski J, Chmielewski R. Numerical modeling of vortices development in tapered duct. In: Proceedings of the 11th FLOMEKO Conference. Groningen: FLOMEKO Conference, 2003. Paper 124
    [126] 罗奇P J著,钟锡昌,刘学宗译.计算流体动力学.北京:科学出版社,1983.1~11
    [127] 朱家鲲.计算流体力学.北京:科学出版社,1985.15~31
    [128] 陶文铨.数值传热学.西安:西安交通大学出版社,2001.14~15
    [129] 帕坦卡S V著,张政译.传热与流体流动的数值计算.北京:科学出版社,1984.27~30
    
    
    [130] Anderson J D. Computational Fluid Dynamics. McGraw-Hill Company, Inc, 1995. 3~13
    [131] 吴子牛.计算流体力学基本原理.北京:科学出版社,2001.1~13
    [132] 程心一.计算流体动力学——偏微分方程的数值解法.北京:科学出版社,1984. 6~9
    [133] 吴江航,韩庆书.计算流体力学的理论、方法及应用.北京:科学出版社,1988.50~64
    [134] Adams J A, Rogers D F. Computer-Aided Heat Transfer Analysis. U S A.: McGraw-Hill Company Inc, 1973. 119~123
    [135] 马铁犹.计算流体动力学.北京:北京航空航天大学出版社,1986.9~22
    [136] 任安禄.计算计流体力学.杭州:浙江大学力学系,2001.11~29
    [137] 谭维炎.计算浅水动力学.北京:清华大学出版社,1998.5~8
    [138] Mompean G, Devile M. Unsteady finite volume simulation of fluid through a three-dimensional planar contraction. Journal of Non-Newtonian Fluid Mechanics, 1997, 72 (2—3): 253~279
    [139] 陈成军,秦世伦.二阶椭圆型方程的有限体积解法.四川大学学报(工程科学版),2001,33(5):1~4
    [140] 李荫藩,宋松和,周铁.双曲型守恒律的高阶、高分辨有限体积法.力学进展,2002,31(2):245~263
    [141] 杨永.高阶有限体积法研究.西北工业大学学报,2001,19(3):327~331
    [142] Shin T M. Numerical Heat Transfer. U S A... Hemisphere Publishing Corporation, 1984. 14~39
    [143] Chung T J著,张二骏,龚崇准,王木兰,等译.流体动力学的有限元分析.北京:电力工业出版社,1980.1~3
    [144] 章本照.流体力学中的有限元方法.北京:机械工业出版社,1986.135~138
    [145] 斯特朗G,费克斯G J著,崔俊芝,宫著铭译.有限元法分析.北京:科学出版社,1983.1~26
    [146] 陶文铨.计算流体力学与传热学.北京:中国建筑工业出版社,1991.210~213
    [147] 陶文铨.计算传热学的近代进展.北京:科学出版社,2000.359~400
    
    
    [148] 李炜.黏性流体的混合有限分析解法.北京:科学出版社,2000.10~21
    [149] 郭宽良.计算传热学.合肥:中国科学技术大学出版社,1988.125~130
    [150] 张有天,王镭,陈平.边界元方法及其在工程中的应用.北京:水利电力出版社,1986.1~7
    [151] 傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002.1~3
    [152] 李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent.水动力学研究与进展,2001,16(2):254~258
    [153] 陈义良.湍流力学模型.合肥:中国科学技术大学出版社,1991.1~7
    [154] Nagano Y, Itazu Y. Renorrnalization group theory for turbulence—Assessment of the Yakhot-Orszag-Smith theory. Fluid Dynamics Research, 1997, 20(6): 157~172.
    [155] 李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动.水科学进展,2000,11(4):357~361
    [156] Hinze J O. Turbulence. U S A. : McGraw-Hill Company Inc, 1975. 586~771
    [157] Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flow. International Journal of Engineering Science, 1992, 30(10): 1379~1388
    [158] Kahawita R, Wang P. Numerical simulation of the wake flow behind trapezoidal bluff bodies. Computers & Fluids, 2002, 31(1): 99~112
    [159] Hilgenstock A, Ernst R. Analysis of installation effects by means of computational fluid dynamics—CFD vs experiments. Flow measurement and Instrumentation, 1996, 7(3—4): 161~171
    [160] Iaccarino G, Ooi A, Durbin PA, et al. Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 2003, 24(2): 147~156
    [161] Kim S E, Boysan F. Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 81(1—3): 145~158
    [162] Rodi W. Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69
    
    —71(1): 55~75
    [163] Iaccarino G. Predictions of a turbulence separated flow using commercial CFD codes. Journal of Fluids Engineering, 2001, 123(4): 819~827
    [164] Yu D H, Kareem A. Numerical simulation of flow around rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67—68(1):195~208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700