固体氧化物燃料电池/微型燃气轮机混合发电系统的建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池/微型燃气轮机(SOFC/MGT)混合发电是一种高效、环保的新型发电技术,在未来的分布式发电领域具有广阔的应用前景。然而目前,该技术在国外处于示范电站阶段,国内的相应研究才刚刚起步,尚无实际的系统设备。
     因此,本文以仿真技术为研究手段,在参考国内外混合发电系统研究经验的基础上,对SOFC/MGT混合发电系统进行动态建模、性能分析、动态优化和综合控制,最终使所设计的系统在稳定、高效运行的同时良好满足负荷用电需求,为SOFC/MGT混合发电系统的实际开发和应用提供必要的技术准备和理论指导。主要研究工作包括以下三个方面:
     1.建立了SOFC/MGT混合发电系统的动态模型。首先,根据西门子-西屋动力公司建立的混合发电系统示范装置,结合现有的相关文献和实际操作经验,确定了阳极再循环SOFC/MGT混合发电系统的顶层循环式拓扑结构。然后,针对系统结构庞大、参数繁多和性能复杂等特点,采用了灵活的模块化建模思想,根据理想气体状态方程、质量平衡方程、能量平衡方程、热动力学公式和电功率的转换关系,在MATLAB/SIMULINK仿真环境里,逐级搭建构成混合系统的各个子系统模型,包含阳极再循环SOFC各部件模型、微型燃气轮机各部件模型和电管理系统各部件模型。最后,按照混合发电系统的拓扑结构连接各子系统模型,建立了完整的SOFC/MGT混合发电系统动态模型。经仿真验证,所建立的混合系统动态模型能够正确反映系统的稳态和动态特性,因此该系统模型可作为系统性能分析、动态优化和控制研究的有效工具。同时,该混合发电系统动态模型可方便修改系统的部分结构设计和参数设置,因此不仅适用于本文所设计的拓扑结构系统的仿真研究,而且通过简单修改也适用于其它类似混合发电系统的开发和研究,具有广泛的适用性。
     2.研究了SOFC/MGT混合发电系统运行参数的动态优化问题。目前混合发电系统大多处于试验探索阶段,研究者普遍着眼于过程设计优化,即在指定的目标函数下,通过特定的寻优方法确定最优混合结构,寻找最佳能量循环利用方式,而对最佳运行参数的研究却非常少。因此,本文首先针对混合发电系统的动态优化问题,将迭代思想与自适应免疫粒子群优化方法相结合,设计了改进的迭代粒子群优化算法。改进的迭代粒子群优化算法首先将变量离散化,用改进的粒子群优化算法搜索离散控制变量的最优值,然后在随后的迭代过程中将基准移到刚解得的最优值处,同时收缩控制变量的搜索域,使优化性能指标和控制轨迹在迭代过程中不断趋于最优解。通过大量实例验证了该优化算法的有效性。然后,利用该改进的迭代粒子群优化算法对SOFC/MGT混合系统动态优化模型进行优化,得到了不同负荷下的最优运行参数值。混合系统动态优化模型的建立是以系统输出功率跟随负荷要求及系统效率最大为优化的目标函数,以混合发电系统的动态模型及系统安全运行的具体要求为约束条件。最后,将运行参数的优化结果代入混合系统动态模型中,便得到了不同负荷下SOFC输出功率的最优运行轨迹,该优化轨迹作为系统功率控制的最优设定值,进行闭环优化控制。
     3.提出并验证了混合发电系统稳定运行的综合控制方法。目前文献对混合发电系统的控制研究主要针对单一子系统或单一变量,缺乏对整个系统的综合控制研究。由于系统的强非线性动态特性和多参数耦合的特点,只有通过综合控制使其运行时实现所有要求的性能指标才具有实际的应用意义。因此,本文以建立的SOFC/MGT混合发电系统动态模型为对象,结合系统性能分析结果及动态优化结果,完成了混合发电系统稳定运行的综合控制研究。针对混合发电系统的复杂性,采用分块处理再整合的控制方法。首先,对影响系统性能的各操作参数及电管理系统分别进行了独立的控制设计和仿真,其中包括:利用改进的神经网络预测控制方法对混合发电系统输出功率进行了跟踪控制;利用基于动态RBF神经网络的PID解耦控制方法对混合发电温度系统进行了解耦控制;利用改进的单神经元自适应PID控制方法将燃料利用率稳定在了理想水平;利用滑模变结构控制方法将SOFC输出电压转换成了理想幅值的交流电压。在对混合发电系统输出功率控制时,利用改进的迭代粒子群优化算法离线动态优化获取的运行轨迹数据,建立了基于最小二乘支持向量机的函数逼近层,实现了根据系统负荷情况实时给出SOFC输出功率的最优设定值。最后,将各独立控制环节连接起来进行了完整的综合控制研究。在阶跃负荷情况下,仿真结果显示所设计的控制方案使SOFC/MGT混合发电系统在实时稳定运行中满足了负荷的用电要求,并且具有高效的发电效率。
The solid oxide fuel cell/micro gas turbine(SOFC/MGT) hybrid power generation systemis an advanced efficiency and environmentally-friendly novel power generation technology,which has a wide application prospect in the field of future distributed generation. However,at present the demonstration hybrid power plant has been developed abroad. In China thehybrid system is still in the early research stage, and the practical equipment for the systemhas not been built.
     Therefore, according to some experience on the hybrid power generation system in theworld, a dynamic model is established firstly, and then the performance simulation analysisand dynamic optimization are carried on, lastly the integral control strategy for theSOFC/MGT hybrid power generation system is researched in the dissertation. By simulationanalysis, the SOFC/MGT hybrid power generation system can operate steadily and meet theload power requirements with high efficiency. The dissertation can provide valuable theoryinstructions for developments and applications of real hybrid power generation system. Themain contributions and achievements of this dissertation are given below:
     1. Establish the dynamic model of a SOFC/MGT hybrid power generation system. Firstly,according to the demonstration device built by the Siemens Westinghouse Power, thepertinent literatures and practical operating experience, the topping cycle topologicalstructure is designed for an anode recirculation SOFC/MGT hybrid power generationsystem. And then, for the heavy structure, many performance parameters and complexcharacteristics, the dynamic model is established by modularization modelling method.According to the ideal gas equation, mass conservation law, energy conservation law,thermodynamics formula and electric power conversion, the components models of ananode recirculation SOFC, micro gas turbine and a power conditioning system are builtrespectively in MATLAB/SIMULINK environment. Lastly, according to the designedtopological structure, each submodular is connected to make up of the integrateddynamic model for the whole hybrid power generation system. The simulation results show that the model is able to reflect the steady and dynamic characteristics of the hybridsystem correctly, so it can be used in the performance analysis, dynamic optimizationand control design of the hybrid system. Moreover, owing to the part structures andparameters easily modified, the dynamic model of the hybrid system possesses thegeneral applicability. It can be used not only for the designed topological structure in thesimulation research, but also for the other researches of similar hybrid power generationsystems by simply changing.
     2. The dynamic optimization problem of operating parameters for the SOFC/MGT hybridpower is introduced in detail. At present, the researches mainly focus on the processdesign optimization. The optimal hybrid structure and circulation mode are determinedby special optimization method. However, research about the optimal operatingparameter is very little. For the dynamic optimization of the hybrid system, firstly, anovel iteration partial swarm optimization (PSO) algorithm is proposed, which is madeup of iteration dynamic programming and adaptive immune particle swarm optimization.For the algorithm, firstly the control variables are discretized and the improved particleswarm optimization is used to search for the best solution of the discretized controlvariables. And then the benchmark is moved to the acquired optimal values in thesubsequent iterations and the searching space contracts at the same time, hence theoptimization performance index and control profile could achieve the best valvegradually through iterations. The optimization algorithm is proved to be effective by alarge number of examples. According to the designed dynamic optimization model of thehybrid power generation system, the novel iteration PSO algorithm can calculate theoptimal operating parameters. Tracking the demanded load and obtaining the highestgenerating efficiency are the goal function, and the dynamic model and safe operationrequest are the constraints of the dynamic optimization model for the hybrid system.Lastly, substituting the optimal parameters into the established dynamic model of thehybrid system, the optimal SOFC output power trajectory can be obtained, which acts asthe SOFC output power setpoints in order to closed loop optimized control.
     3. The integral control design is proposed and tested for the SOFC/MGT hybrid powergeneration system. At present, documents focus on controlling the specific performancesof hybrid system, and the integrated control research is lack. But for the close nonlineardynamic characteristics and some parameters couplings of the system, it is significant forreal applications that the system is controlled to operate steadily with all idealperformances.Therefore, according to the performance analysis and dynamicoptimization results, the integrated control design is proposed and tested for the hybridsystem based on the dynamic model.In this dissertation, for the complex characteristics of the hybrid system, the system control is separated to some processes. An improvedneural network predictive controller is designed for tracking the system output power. APID decoupling controller based on a dynamic RBF neural network is put forward forsystem temperature decoupling control. An improved single-neural unit adaptive PIDcontroller is utilized for steady fuel utilization.The SOFC output voltage is transformed toan ideal amplitude alternate current voltage by sliding mode variable structure controlmethod. During the power control, the optimal operation trajectory results obtained fromthe improved iteration PSO algorithm are successfully modeled and predicted by meansof the least squares support vector machine. This facilitates the optimal SOFC outputpower setpoints under various loads. And then, these above controlled processes areintegrated to realize the integral control research of the SOFC/MGT hybrid powergeneration system. Under the step power loads, the simulation results show that the mainoperation parameters are kept in the ideal steady state, and the hybrid system can track thedesired power with high system efficiency.
引文
[1]王林山,燃料电池(第二版)[M],北京:冶金工业出版社,2005
    [2] A.Abbasi, Z.H.Jiang, Design and analysis of a fuel cell/gas turbine hybrid power system[C],IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energyin the21st Century,2008:1-6
    [3] J.R.Ferguson, J.M.Fiard, R.Herbin, Three-dimensional numerical simulation for various geomet-ries of solid oxide fuel cells[J], Journal of Power Sources,1996,58(2):109-122
    [4] P.W.Li, M.K.Chyu, Simulation of the chemical/electrochemical reactions and heat/mass transferfor a tubular SOFC in a stack[J], Journal of Power Sources,2003,124(2):487-498
    [5] M.D.Lukas, K.Y.Lee, H.G.Ayagh, An explicit dynamic model for direct reforming carbonate fuelcell stack[J], IEEE Transaction on Energy Conversion,2001,16(3):289-295
    [6] M.W.Ellis, M.R.Vonspakovsky, D.J.Nelson, Fuel cell systems:efficient, flexible energy conver-sion for the21st century[J], Proceedings of the IEEE,2001,89(12):1808-1818
    [7] J.Abel, A.A.Kornyshev, W.Lehnert, Correlated resistor network study of porous solid oxide fuelcell anodes[J], Journal of the Electrochemical Society,1997,144(12):4253-4259
    [8] Z.T.Xia, S.H.Chan, K.A.Khor, An improved anode micro model of SOFC[J], Electrochemical andsolid-state letters,2004,7(3):63-65
    [9] S.H.Chan, X.J.Chen, KA.Khor, Cathode micromodel of solid oxide fuel cell[J], Journal of theElectrochemical Society,2004,151(1):164-172
    [10] R.J.Cooper, J.Billingham, A.C.King, Flow and reaction in solid oxide fuel cells[J], Journal offluid mechanics,2000,411:233-262
    [11] S.H.Chan, KA.Khor, Z.T.Xia, A complete polarization model of a solid oxide fuel cell and itssensitivity to the change of cell component thickness[J], Journal of Power Sources,2001,93(1-2):130-140
    [12] K.Sudaprasert, R.P.Travis, R.F.Martinez-Botas, A computational fluid dynamics model of a solidoxide fuel cell [C], Proceedings of the institution of mechanical engineers, Part A:Journal ofPower and Energy, United Kingdom:Professional Engineering Publishing,2005,219(3):159-167
    [13] Y.T.Qi, B.Huang, K.T.Chuang, Dynamic modeling of solid oxide fuel cell:the effect of diffusionand inherent impedance[J], Journal of Power Sources,2005,150(1-2):32-47
    [14] D.J.Hall, R.G.Colclaser, Transient modeling and simulation of a tubular solid oxide fuel cell[J],IEEE Transactions on Energy Conversion,1999,14(3):749-753
    [15] J.Padulles, G.W.Ault, J.R.McDonald, An integrated SOFC plant dynamic model for power sys-tems simulation[J], Journal of Power Sources,2000,86(1-2):495-500
    [16] K.Sedghisigarchi, A Feliachi, Dynamic and transient analysis of power distribution systems withfuel cells-Part I: Fuel-cell dynamic model[J], IEEE Transactions on Energy Conversion,2004,19(2):423-428
    [17] P.Aguiar,C.S.Adjiman,N.P.Brandon, Anode-supported intermediate temperature direct internalreforming solid oxide fuel cell. I: model-based steady-state performance[J], Journal of PowerSources,2004,138(1-2):120-136
    [18] F.Jurado, Modeling SOFC plants on the distribution system using identification algorithms[J],Journal of Power Sources,2004,129(2):205-215
    [19] F.Jurado, Nonlinear model identification of fuel cell power plant [C], IEEE Africon Conference,7th Africon Conference in Africa: Technology Innovation. United States: Institute of Electricaland Electronics Engineers Inc,2004,2:769-774
    [20] K.Dolman, B.Peters, The signification of micro-turbines as CHP(combined heat power system)[C], Proceedings of the9th international scientific and practical conference on modern techniq-ues and technologies,2003:20-22
    [21]翁一武,苏明,翁史烈,先进微型燃气轮机的特点与应用前景[J],热能动力工程,2003,3:111-115
    [22]陈启梅, MCFC-GT混合动力系统非线特征及其协调控制研究[D],上海交通大学博士学位论文,上海交通大学,2007
    [23] S.E.Veyo, L.A.Shockling, J.T.Dederer, etc., Tubular solid oxide fuel cell/gas turbine hybrid cyclepower systems: status[J], Journal of Engineering for Gas Turbines and Power,2002,124(4):845-849
    [24] R.A.George, Status of tubular SOFC field unit demonstrations[J], Journal of Power Sources,2000,86(1-2):134-139
    [25] J.Palsson, A.Selimovic, L.Sjunnesson, Combined solid oxide fuel cell and gas turbine systems forefficient power and heat generation[J], Journal of Power Sources,2000,86(1-2):442-448
    [26] F.Calise, M.D.Accadia, A.Palombo, etc., Simulation and exergy analysis of a hybrid SOFC-Gasturbine system Part I: description of the model[J], Energy,2006,31(15):3278-3299
    [27] F.Calise, A.Palombo, L.Vanoli, Design and partial load exergy analysis of hybrid SOFC-GTpower plant[J], Journal of Power Sources,2006,158(1):225-244
    [28] S.H.Chan, H.K.Ho, Y.Tian, Modeling for part-load operation of solid oxide fuel cell-Gas turbinehybrid power plant[J], Journal of Power Sources,2003,114(2):213-227
    [29] S.H.Chan, H.K.Ho, Y.Tian, Modelling of simple hybrid solid oxide fuel cell and gas turbinepower plant[J], Journal of Power Sources,2002,109(1):111-120
    [30] S.H.Chan, H.K.Ho, Y.Tian, Multi-level modeling of SOFC-Gas turbine hybrid system[J],International Gournal of Hydrogen Energy,2003,28(8):889-900
    [31] S.Campanari, Full load and part-load performance prediction for integrated SOFC and micro-turbine system[J], Journal of Engineering for Gas Turbines and Power,2000,122(2):239-246
    [32] Y.Zhu, K.Tomsovic, Development of models for analyzing the load following performance ofmicroturbines and fuel cells[J], Electric Power Systems Research,2002,62(1):1-11
    [33] W.J.Yang, S.K.Park, T.S.Kim, etc., Design performance analysis of pressurized solid oxide fuelcell/gas turbine hybrid systems considering temperature constraints[J], Journal of Power Sources,2006,160(1):462-473
    [34] H.Uechi, S.Kimijima, N.Kasagi, Cycle analysis of gas turbine-fuel cell cycle hybrid microgeneration system[J], Journal of engineering for Gas Turbines and Power,2004,126(4):755-762
    [35] S.Kimijima, N.Kasagi, Performance evaluation of gas turbine-fuel cell hybrid micro generationsystem[C], Proceedings of ASME Turbo expo, Amsterdam, the Netherlands,2002
    [36] S.K.Park, K.S.Oh, T.S.Kim, Analysis of the design of a pressurized SOFC hybrid system using afixed gas turbine design[J], Journal of Power Sources,2007,170(1):130-139
    [37] P.Costamagna, Design and part-load performance of a hybrid system based on a solid oxide fuelcell reactor and a microgas turbine[J], Journal of Power Sources,2001,96(2):352-368
    [38] L.Magistri, P.Costamagna, A.F.Massardo, etc., A hybrid system based on a personal turbine(5kW) and a solid oxide fuel cell stack: a flexible and high efficiency energy concept for thedistributed power market[J], Journal of Engineering for Gas Turbines and Power,2002,124(4):850-857
    [39] S.R.Guda, Modeling and power management of a hybrid system wind-microturbine powergeneration system[D], Montana State University,2005
    [40] K.Rambabu, L.Imsland, C.Stiller, etc., Control-relevant modeling and simulation of a SOFC-GThybrid system[J], Modeling, Identification and Control,2006,27(3):143-156
    [41] A.V.Akkaya, B.Sahin, H.H.Erdem, An analysis of SOFC/GT CHP system based on exergeticperformance criteria[J], International Journal of Hydrogen Energy,2008,33(10):2566-2577
    [42] P.G.Bavarsad, Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbinehybrid system[J], International Journal of Hydrogen Energy,2007,32(17):4591-4599
    [43] Y.Haseli, I.Dincer, G.F.Naterer, Thermodynamic modeling of a gas turbine cycle combined with asolid oxide fuel cell[J], International Journal of Hydrogen Energy,2008,33(20):5811-5822
    [44] T.W.Song, J.L.Sohn, J.H.Kim, etc., Performance analysis of a tubular solid oxide fuel cell/microgas turbine hybrid power system based on a quasi-two dimensional model[J], Journal of PowerSources,2005,142(1-2):30-42
    [45] A.F.Massardo, F.Lubelli, Internal reforming solid oxide fuel cell-gas turbine combined cycles(IRSOFC-GT):Part A-cell model and cycle thermodynamic analysis[J], Journal of Engineering forGas Turbines and Power,2000,122(1):27-35
    [46] X.W.Zhang, J.Li, G.J.Li, etc., Dynamic modeling of a hybrid system of the solid oxide fuel celland recuperative gas turbine[J], Journal of Power Sources,2006,163(1):523-531
    [47] J.Milewski, A.Miller, J.Sa acinski, Off-design analysis of SOFC hybrid system[J], InternationalJournal of Hydrogen Energy,2007,32(6):687-698
    [48] S.Motahar, A.A.Alemrajabi, Exergy based performance analysis of a solid oxide fuel cell andsteam injected gas turbine hybrid power system[J], International Journal of Hydrogen Energy,2009,34(5):2396-2407
    [49] S.P.Harvey, H.J.Richter, Improved gas turbine power plant efficiency by use of recycled exhaustgases and fuel cell technology[C], Proceedings of the ASME winter annual meeting, Neworleans,LA,1993,30:199-207
    [50] S.P.Harvey, H.J.Richter, A detailed study of a gas turbine cycle with an integrated internalreforming solid oxide fuel cell[C], Proceedings of29th intersociety energy conversionengineering conference, Monterey,CA,1994,2:961-973
    [51] S.P.Harvey, H.J.Richter, Gas turbine cycles with solid oxide fuel cells Part II: a detailed study ofa gas turbine cycle with an integrated internal reforming solid oxide fuel cell[J], Journal ofEnergy Resources Technology,1994,116(4):312-318
    [52] S.P.Harvey, H.J.Richter, Gas turbine cycles with solid oxide fuel cells Part I: improved gas turb-ine power plant efficiency by use of recycled exhaust gases and fuel cell technology[J], Journalof Energy Resources Technology,1994,116(4):305-311
    [53]卢立宁,李素芬,沈胜强,等,固体氧化物燃料电池与燃气轮机联合发电系统模拟研究[J],热能动力工程,2004,19(4):358-362
    [54]张会生,刘永文,苏明,等,高温燃料电池-燃气轮机混合发电系统性能分析[J],热能动力工程,2002,17(98):118-121
    [55]史翊翔,蔡宁生,李振山, SOFC/Micro-GT混合循环系统性能分析[J],清华大学学报(自然科学版),2005,45(8):1142-1145
    [56]黎晓麟,刘志强,彭望明,影响SOFC-GT系统热电比的参数模拟分析[J],建筑热能通风空调,2008,27(1):41-44
    [57]包成,蔡宁生,固体氧化物燃料电-燃气轮机混合发电系统建模与控制的研究现与进展[J],机械工程学报,2008,44(2):1-7
    [58] C.Stiller, B.Thornd, O.Bolland, Safe dynamic operation of a simple SOFC/GT hybrid system[J],Journal of Engineering for Gas Turbines and Power,2006,128(3):551-559
    [59] K.Rambabu, L.Imsland, B.A.Foss, etc., Modeling and control of a SOFC-GT-based autonomouspower system[J], Energy,2007,32(4):406-417
    [60] R.Roberts, J.Brouwer, F.Jabbari, etc., Control design of an atmospheric solid oxide fuel cell/gasturbine hybrid system: Variable versus fixed speed gas turbine operation[J], Journal of PowerSources,2006,161(1):484-491
    [61] T.Kaneko, J.Brouwer, G.S.Samuelsen, Power and temperature control of fluctuating biomass gasfueled solid oxide fuel cell and micro gas turbine hybrid system[J], Journal of Power Sources,2006,160(1):316-325
    [62] A.D.Rao, G.S.Samuelsen, Analysis strategies for tubular solid oxide fuel cell based hybridsystems[J], Journal of Engineering for Gas Turbines and Power,2002,124(3):503-509
    [63]贾俊曦,固体氧化物燃料电池传热传质模型研究[D],大连理工大学博士毕业论文,大连理工大学,2005
    [64]刘彬,卢荣,物理化学[M],华中科技大学出版社,2008
    [65] E.Fontell, T.Kivisaari, N.Christiansen, etc., Conceptual study of a250kW planar SOFC systemfor CHP application[J], Journal of Power Sources,2004,131(1-2):49-56
    [66] Y.X.Lu, L.Schaefer, A solid oxide fuel cell system fed with hydrogen sulfide and natural gas[J],Journal of Power Sources,2004,135(1-2):184-191
    [67] U.G.Bossel, Final Report on SOFC data facts and figures, Swiss federal office of energy, Berne,CH,1992
    [68] S.Campanari, P.Iora, Definition and sensitivity analysis of a finite volume SOFC model for atubular cell geometry[J], Journal of Power Sources,2004,132(1-2):113-126
    [69] R.Bove, P.Lunghi, N.M.Sammes, SOFC mathematicmodel for systems simulations Part one:from a micro-detailed to macro-black-box model[J], International Journal of Hydrogen Energy,2005,30(2):181-187
    [70] N.F.Bessette, Modeling and simulation for solid oxide fuel cell power system[D], Georgiainstitute of technology, Atlanta, GA,1994
    [71] P.Costamagna, K.Honnegger, Modeling of solid oxide heat exchanger integrated stacks andsimulation at high fuel utilization[J], Journal of the Electrochemical Society,1998,145(2):3995-4007
    [72]陈文威,李沪萍,热力学分析与节能[M],北京:科学出版社,1999
    [73] J.Kurzke, Compressor and turbine maps for gas turbine performance computer programs-component map collection2, Joachim Kurzke, Dachau, Germany,2004
    [74]陈跃华,基于智能方法的熔融碳酸盐燃料电池-微型燃气轮机联合发电系统的建模与控制研究[D],上海交通大学博士学位论文,上海交通大学,2007
    [75]曾丹苓,工程热力学(第三版)[M],北京:高等教育出版社,2002
    [76]陈启梅,翁一武,翁史烈,等,燃料电池-燃气轮机混合发电系统性能研究[J],中国电机工程学报,2006,26(4):31-35
    [77]王建飞,2.6kW微型燃气发电机与燃料电池混合装置的建模与动态仿真研究[D],上海交通大学硕士学位论文,上海交通大学,2003
    [78] B.Thorud, Dynamic Modelling and Characterisation of a solid oxide fuel cell integrated in a gasturbine cycle[D], Norwegian university of science and technology,2005
    [79] F.Blaabjerg, Z.Chen, S.B.Kjaer, Power electronics as efficient interface in dispersed powergeneration systems[J], IEEE Transactions on Power Electronics,2004,19(5):1184-1194
    [80] J.Wang, F.Z.Peng, J.Anderson, etc., Low cost fuel cell converter system for residential powergeneration[J], IEEE Transactions on Power Electronics,2004,19(5):1315-1322
    [81] S.K.Park, T.S.Kim, Comparison between pressurized design and ambient pressure design ofhybrid solid oxide fuel cell-gas turbine systems[J], Journal of Power Sources,2006,163(1):490-499
    [82] O.Grillo, Design and part load performance of a hybrid system based on a molten carbonate fuelcell-MCFC and a micro gas turbine[D], University of Genoa, in Italian, June2001
    [83] Y.H.Li, S.S.Choi, S.Rajakaruna, An analysis of the control and operation of a solid oxide fuel cellpower plant in an isolated system[J], IEEE Transactions on Energy Conversion,2005,20(2):381-387
    [84] V.Pontryagin, V.Boltyanski, R.Gamkrelidze, etc.,The mathematical theoy of optimal processes[M], New York:Interscience Publishers Inc,1962
    [85] B.SrinivaSan, S.Palanki, D.Bonvin, Dynamic optimization of batch processes-I characterizationof the nominal solution[J], Computers and Chemical Engineering,2003,27(1):1-26
    [86] A.Cervantes, L.T.Biegler, Optimization strategies for dynamic systems[M], P.Pardalos(Eds.),Encyclopedia of Optimization, Kluwer,2000.
    [87] R.E.Bellman, Dynamic programming[M], Princeton University Press,1957
    [88] J.Kennedy, R.C.Eberhart, Particle swarm optimization[C], Proceedings of IEEE InternationalConference on Neural Networks, Perth,1995:1942-1948
    [89] D.W.Boeringer, D.H.Werner, Particle swarm optimization versus genetic algorithms for phasedarray synthesis[J], IEEE Transaction on Antennas and Propagation,2004,52(3):771-779
    [90] J.G.Vlachogiannis, K.Y.Lee, A Comparative study on particle swarm optimization for optimalsteady-state performance of power systems[J], IEEE Transaction on Power Systems,2006,21(4):1718-1728
    [91] K.W.Chau, Application of a PSO-based neural network in analysis of outcomes of constructionclaims[J], Automation in Construction,2007,16(5):642-646
    [92] N.Franken, A.P.Engelbrecht, Particle swarm optimization approaches to coevolve strategies forthe iterated prisoner's dilemma[J], IEEE Transaction on Evolutionary Computation,2005,9(6):562-579
    [93] Y.H.Shi, R.C.Eberhart, Parameter selection in particle swarm optimization, Evolutionaryprogramming Vll[C],1998,1447:591-600
    [94]谢晓峰,张文俊,杨之廉,微粒群算法综述[J],控制与决策,2003,18(2):129-134
    [95] H.Ge, Z.Y.Mao, Immune algorithm[C], Proceedings of the4th congress on intelligent controland automation,2002:l784-l788
    [96] T.Gon, S.Xi, Z.X.Cai, An immune model and its application to a mobile robot simulator[C],IEEE International Conference on Robotics and Biomimetics,2005:30-34
    [97] Y.J.Zhang, H.W.Leng, An Investigation of immune match, immune memory and complementoperator in immune detection algorithm[C], Proceedings of the6th World Congress onIntelligent Control and Automation, Dalian,China,2006:3618-3622
    [98]薛文涛,基于免疫的智能优化算法理论及应用研究[D],南京理工大学博士学位论文,2008
    [99]丁永生,计算智能-理论、技术与应用[M],北京:科学出版社,2004
    [100] D.X.Zhang, Z.H.Guan, X.Z.Liu, An adaptive particle swarm optimization algorithm andsimulation[C], Proceedings of the IEEE International Conference on Automation and Logistics,Jinan, China, August,2007:2399-2402
    [101] Z.X.Hou, Wiener model identification based on adaptive particle swarm optimization[C],Proceedings of the Seventh International Conference on Machine Learning and Cybernetics,Kunming,12-15July2008:1041-1045
    [102] N.Iwasaki, K.Yasuda, G.Ueno, dynamic parameter tuning of particle swarm optimization[J],Transaction on Electrical and Electronic Engineering,2006,1(4):353-363
    [103]张兵,化工动态优化方法的研究与应用[D],浙江大学博士学位论文,2004
    [104]李赣平,基于智能计算的过程控制与优化若干研究[D],上海交通大学博士学位论文,2007
    [105] J.Rajesh, K.Gupta, H.S.Kusumakar, etc., Dynamic optimization of chemical processes using antcolony framework[J], Computers and Chemistry,2001,25(6):583-595
    [106] D.Tieu, W.R.Cluett, A.Penlidis, A comparison of collocation methods for solving dynamicoptimizat ion problems[J], Computers and Chemical Engineering,1995,19(4),375-381
    [107] N.Mohan, T.M.Undeland, W.P.Robbins, Power electronics:Converters, applications, and design(2nd Ed.)[M], New York:John Wiley and Sons,1995
    [108] J.Rechalet, A.Rault, J.L.Testud, etc., Model predictive heuristic control:application to industrialprocesses[J], Automatica,1978,14:413-428
    [109] F.S.Mjalli, Neural network model-based predictive control of liquid-liquid extraction contactors[J], Chemical Engineering Science,2005,60(1):239-253
    [110] P.Cortes, M.P.Kazmierkowski, R.M.Kennel, etc., Predictive control in power electronics anddrives [J], IEEE Transactions on Industrial Electronics,2008,55(12):4312-4324
    [111] A.Flores, D.Saez, J.Araya,etc., Fuzzy predictive control of a solar power plant[J], IEEETransactions on Fuzzy Systems,2004,13(1):58-68
    [112] D.DeHaan, M.Guay, A new real-time perspective on non-linear model predictive control[J],Journal of Process Control,2006,16(6):615-624
    [113] D.Dougherty, D.Cooper, A practical multiple model adaptive strategy for multivariable modelpredictive control[J], Control Engineering Practice,2003,11(6):649-664
    [114] C.He, Y.F.Zheng, S.C.Ahalt, Object tracking using the gabor wavelet transform and the goldensection algorithm[J], IEEE Transactions on Multimedia,2002,4(4):528-538
    [115]王世虎,沈炯,李益国,基于逆模型区间优化的神经网络预测控制[J],中国电机工程学报,2007,27(26):115-120
    [116] J.A.K.Suykens, G.T.Van, B.J.De, etc.,Least squares support vector machines[M],World scientificpublishing, Singapore,2002
    [117] H.Wang, E.Y.Li, G.Y.Li, The least square support vector regression coupled with parallel samplingscheme metamodeling technique and application in sheet forming optimization[J], Materials&Design,2009,30(5):1468-1479
    [118] D.Hanbay, An expert system based on least square support vector machines for diagnosis of thevalvular heart disease[J], Expert Systems with Applications,2009,36(3):4232-4238
    [119] D.Hanbay, A.Baylar, M.Batan, Prediction of aeration efficiency on stepped cascades by usingleast square support vector machines[J], Expert Systems with Applications,2009,36(3):4248-4252
    [120] A.Sengur, Multiclass least-squares support vector machines for analog modulation classification[J], Expert Systems with Applications,2009,36(3):6681-6685
    [121] X.Li, G.Y.Cao, X.J.Zhu, Modeling and control of PEMFC based on least squares support vectormachines[J], Energy Conversion and Management,2006,47(7-8):1032-1050
    [122] V.N.Vapnik, The nature of statistical learning theory[M], New York: Springer-Verlag,1999,Second edition
    [123] C.H.Wu,G.H.Tzeng, R.H.Lin, A novel hybrid genetic algorithm for kernel function and parameteroptimization in support vector regression[J], Expert Systems with Application,2009,36(3):4725-4735
    [124] C.W.Hsu, C.C.Chang, C.J.Lin, A practical guide to support vector classification [DB/OL], http://w.csie.org/~cjlin/papers/guide/guide.pdf,2008
    [125] K.Pelckmans, J.A.K.Suykens, J.V.Gestel, etc., LS-SVMlab:a MATLAB/C toolbox for leastsquares support vector machines,2003,Available at http://www.Esat.kuleuven.ac.be/sista/lssvml-ab
    [126] J.Sjoberg, H.Q.Zhang, L.Ljung, etc., Nonlinear black-box modeling in system identification:aunified overview[J], Automatica,1995,31(12):1691-1724
    [127] C.J.Yang, P.Wu, Neural networks based predictive control for TRT[C], International Conferenceon Neural Networks and Brain,2005:1041-1044
    [128] B.Bandyopadhyay, J.V.Desai, C.D.Kane, Neural network based predictive controller(NNPC):aninvestigation into its application in Textiles[C], Proceedings of the International Conference onComputational Intelligence for Modelling, Control and Automation,2005,1:963-967
    [129] H.Peng, T.Ozaki, V.Haggan-Ozaki, etc., A Parameter optimization method for radial basisfunction type models[J], IEEE Transaction on Neural Network,2003,2(14):377-389
    [130] H.Y.Chen, S.H.He, Identification of the hydraulic AGC system of cold rolling mill using RBFneural network[C], Intelligent Control and Automation,2006,1:1383-1387
    [131] C.M.Huang, F.L.Wang, An RBF Network with OLS and EPSO algorithms for real-time powerdispatch[J], IEEE Transaction on Power Systems,2007,22(1):96-104
    [132] R.Kumar, R.A.Gupta, B.Singh, Intelligent tuned PID controllers for PMSM drive a criticalanalysis [C], IEEE International Conference on Industrial Technology,2006:2055-2060
    [133] C.G.Xu, D.M.Lue, J.Hao, Design method for the magnetic bearing control system with fuzzy-PID approach[J], Journal of Beijing Institute of Technology,2008,17(3):270-273
    [134] S.Gang, S.X.Yang, Y.X.Jing, etc., Design of adaptive fuzzy PID altitude control system forunmanned aerial vehicle[J], Journal of Beijing Institute of Technology,2008,17(1):58-61
    [135] K.H.Ang, G.Chong, Y.Li, PID control system analysis, design,and technology[J], IEEETransactions on Control Systems Technology,2005,13(4):559-576
    [136] J.Gonzalez, I.Rojas, H.Pomares, etc., A New Clustering technique for function approximation[J],IEEE Transaction on Neural Network,2002,13(1):132-142
    [137] S.Cheng, G.Y.Cao, X.J.,Zhu, Nonlinear modeling of MCFC stack based on RBF neuralnetworks identification[J], Simulation Modeling Practice and Theory,2002,10(1,2):109-119
    [138] J.Robert, J.Schilling, J.Carroll, Approximation of nonlinear systems with radial basis functionneural networks[J], IEEE Transtion on Neural Networks,2001,12(1):21-28
    [139] Z.Yang, X.Y.Liang, W.M.Qiao, etc., A model to predict property of additives modified carbonmaterial high temperature binder with RBF neural Networks[C], Proceedings of the7th WorldCongress on Intelligent Control and Automation, Chongqing, China, June25-27,2008:4522-4526
    [140] S.V.Joshi, A.G.Sreenatha, J.Chandrasekhar, Suppression of wing rock of slender delta wingsusing a single neuron controller[J], IEEE Transactions on Control Systems Technology,1998,(5):671-677
    [141] M.H.Zhang, C.L.Xia, Y.Tian,etc., Speed control of brushless DC motor based on single neuronPID and wavelet neural network[C], IEEE International Conference on Control and Automation,2007:617-620
    [142] X.G.Wang, B.Xu, L.Ding, Simulation study on a single neuron PID control system of DC/DCconverters[J], Power Electronics and Intelligent Transportation System,2008:127-130
    [143] L.Hao, C.L.Ma, F.Li, Study of adaptive PID controller based on single neuron and geneticoptimization[C], The Eighth International Conference on Electronic Measurement andInstrument,2007:240-243
    [144]刘金琨,先进PID控制MATLAB仿真(第二版)[M],北京:电子工业出版社,2005
    [145]姚琼荟,黄继起,吴汉松,变结构控制系统[M],重庆:重庆大学出版社,1997
    [146] F.Pourboghrat, F.Farid, C.J.Hatziadoniu, etc., Local sliding control for damping interarea poweroscillations[J], IEEE Transactions on Power System,2004,19(2):1123-1134
    [147] C.K.Lin, Nonsingular terminal sliding mode control of robot manipulators using fuzzy waveletnet works[J], IEEE Transactions on Fuzzy Systems,2006,14(6):849-859
    [148] X.Y.Yu, J.W.Tian, Y.X.Huang, etc., Adaptive double immune sliding modecontrol for a class ofuncertain nonlinear systems[C], IEEE International Conference on Fuzzy System,June2008:1199-1203
    [149] Z.Y.Xi, T.Hesketh, A new higher order sliding control for continuous linear systems[C],16thMediterranean Conference on Control and Automation, June2008:647-651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700