亏损和接近亏损振动系统的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统的结构修改是一个重要的研究问题,在振动抑制以及系统的设计和控制等方面有着广泛的应用。在不同的设计和优化问题中,往往需要通过反复不断的改变结构设计以满足预定的需求。在结构动态优化过程中,反复的分析将会带来大规模的计算量。随着设计不断的复杂化,在现代结构设计中迫切需要有效并且准确的重分析技术。目前,结构振动重分析问题的研究主要集中在非亏损系统上。然而,在动态和对称结构中,系统对应的矩阵通常含有重频率。更特别的,当特征值的几何重数小于代数重数时,系统的特征向量系不完全即不能张满整个空间,此时称为亏损系统。亏损系统存在于实际工程问题中,例如飞机颤振、桥梁颤振和机轮的抖振等等,相应的系统都会出现亏损现象。
     在工程优化问题中,例如模型修正、故障诊断等都会涉及灵敏度分析。因此,关于系统参数变化的灵敏度分析研究已经成为一个重要的研究领域。由于变化的不确定性,例如失调的参数选取或者不规则的几何参数,都会使一个动态模型和初始的设计大相径庭。出于这些原因,灵敏度分析的理论研究意义深远,而且将会为工程实际问题提供指导性的方案。关于亏损和接近亏损系统的灵敏度分析研究有两个难点:第一,如何克服特征矩阵奇异的困难;第二,如何建立一种计算上述两种系统的快速、有效的灵敏度分析算法。
     本文结合2009年国家自然科学基金面上项目“基于重分析理论的简化车身多单元框架结构截面参数快速优化研究”(项目编号:50975121)、2009年教育部高等学校博士点基金项目“亏损振动系统快速自适应重分析算法研究”(项目编号:20090061110022)、2011年吉林大学研究生创新项目“基于组合近似法的亏损系统动力修改问题研究”(项目编号:20111056)、2012年吉林大学研究生创新项目“灵敏度分析的松弛移频组合近似方法研究”(项目编号:20121097)和2012年国家自然科学青年基金项目“概念车身框架结构有限元精细建模与截面几何形状优化设计”(项目编号:51205159),以亏损系统和接近亏损系统为研究对象,对结构设计修改后的系统进行了重分析和灵敏度分析研究。
     本文的主要研究内容可以概述为:
     针对亏损系统结构动力修改的重分析问题,本文提出RCA(Relaxation CombinedApproximations)重分析算法。该算法基于亏损振动系统特有的广义模态理论,针对N重亏损系统和一般重亏损系统,通过将松弛因子嵌入到CA方法中,并将初始方程化为等价方程的形式,从而克服了系数矩阵奇异性的困难。通过求解缩减的分析方程即可得到结构修改后的广义模态,同时,理论上证明了松弛组合近似方法的收敛性。通过经典的算例结合误差分析定义验证了本文提出的松弛组合近似方法的正确性和有效性。
     基于本文提出的RCA重分析算法,求解亏损振动系统修改后结构动力响应的重分析问题,利用密集频率系统可以和重频率系统相互转化的紧密关系,对状态矩阵分块,将密集特征值部分与孤立特征值部分剥离出来,通过特征移频,将接近亏损系统的结构修改重分析问题转化成亏损系统的重分析问题。提出了一种SRCA(Shift RelaxationCombined Approximations)重分析方法,当结构参数发生变化时,将特征移频产生的误差矩阵和摄动矩阵的和整体考虑为相对于亏损系统的摄动矩阵,数值算例分析中的松弛因子与误差的关系图表明该算法的准确性。
     在重分析算法研究的基础上,分别以亏损和接近亏损振动系统为研究对象,讨论了结构修改和结构优化过程中的灵敏度分析问题。基于RCA方法和SRCA方法,推导了灵敏度分析的计算公式,以亏损系统、密频系统和接近亏损系统中的典型算例,说明了基于RCA方法和SRCA方法的灵敏度算法不仅格式整齐而且精准、高效,适用于特殊系统更适用于普通系统。
Structural modification of systems is an important research issue and has a wide range ofapplications such as vibration suppression, system design and control. Changes of structuresare often necessary to satisfy predetermined demands in various design and optimizationproblems, the response of the numerous modified structures need to be evaluated repeatedly.In the structural dynamic optimization, the multiple repeated analyses are ones of the mostcostly computations. The need for efficient and accurate reanalysis technique in modernstructural design is crucial because the design becomes more complex and large. Until now,many researches of structural vibration reanalysis are concerned on non-defective systems. Inproblems such as those of dynamic and symmetric structures, however, the correspondingmatrices can have repeated eigenvalues. Very often indeed, the geometric multiplicity of theeigenvalues is less than the algebraic multiplicity, and so the system has an incomplete set ofeigenvectors, insufficient to form a base for the state space. Systems of this type are called thedefective systems. The defective systems can be encountered in actual engineering problems,such as flutters of airplane and missile wings or long blades of turbines which thecorresponding matrices are defective.
     Many engineering optimization problems, for example, model updating or structuraldamage detections, lead to a sensitivity analysis of eigenproblems. As a result, the study ofthe sensitivity of eigensolutions due to variations in the system parameters has been animportant research area. A dynamic model can be far from the assumed prototype. Since thereis usually a variation, such as a mistuned parameter or a irregularity geometrical. For thesereasons, sensitivity analysis is meaningful to perform a theoretical study and give a guide for engineering practice. There are two main difficulties in computing the eigenvectorsderivatives. One of the main difficulties is how to change the irreversible state ofcharacteristic matrix. The other difficulty is how to establish a uniform efficient method forcomputing the eigenvectors derivatives.
     The grant of the projects from the National Natural Science Foundation of China “FastOptimization of Cross-Sectional Parameters for Simplified Car Body Multi-Elements FrameStructure Based on Reanalysis Theory”(No.50975121) and Doctoral Program of HigherEducation “The Research of Adaptive Reanalysis Algorithm of the Defective VibrationSystem”(No.20090061110022) and2011Graduate Innovation Fund of Jilin University“Research on Dynamic Modification for Defective Systems Based on CombinedApproximations Method”(No.20111056) and2012Graduate Innovation Fund of JilinUniversity “Research on Relaxation Combined Approximations Method for SensitivityAnalysis”(No.20121097) is gratefully acknowledged for the financial support.
     The main contents of this paper can be summarized as follows:
     The Relaxation Combined Approximations (RCA) method is proposed which aims tosolve reanalysis problems of defective systems. A relaxation factor is introduced into the CAmethod based on the general mode theory, and it changes the characteristic matrix from beingsingular to non-singular. For N repeated eigenvalues and general defective systems, thismodification makes possible to the solution of generalized eigenvectors. An additionaladvantage of the method is that the generalized eigenvectors are expressed by a series ofbasic vectors and the dimension of basic vectors is usually much less than the dimension ofeigenvectors, so the computational cost is also reduced. Numerical examples show that theRCA method can lead to exact generalized eigenvectors, and is very easy to be used for thesame kind of these problems.
     The RCA method gives a solution to the problem of defective vibration systems basedon the advantage of relaxation factor. During system optimization, some originally separatedfrequencies can approach closer and closer. In these cases, if the associated eigenvectors make groups of nearly parallel vectors the system can be classified as near defective. Fromthe view point of mathematics, the close eigenvalues of near defective systems are distinct,but the dynamic characteristic is still defective. By the frequency shift (Shift RelaxationCombined Approximations method), the reanalysis problems of near defective systems withclose eigenvalues can be transformed into one of the defective systems with repeated ones,which is equal to the average of the close ones. The relationship between the relaxation factorand error shows that the accuracy of the algorithm.
     As the research basis of the reanalysis algorithms, the sensitivity analysis problems ofthe structural modification and structure optimization are discussed for the defective and neardefective systems. The formulae for calculating the sensitivity analysis are derived from theRCA and SRCA approach. Sensitivity algorithms are not only neat format but also accurate,efficient and more applicable to the particular system applicable to an ordinary system.
引文
[1] Chen S.H. Matrix perturbation theory in structural dynamics[M]. Beijing: Science Press,2007.
    [2]唐炜.飞机颤振模态参数识别方法研究[D].西北工业大学博士论文,2006.
    [3] Kehoe W.M. Overview of flight flutter testing[R]. NARA-TM-4720,1995.
    [4] Welters A. On explicit recursive formulas in the spectral perturbation analysis of a Jordan block[J].SIAM Journal Matrix Analysis Application,2011,32:1-22.
    [5] Strang, Gilbert. Linear Algebra and Its Applications[M]. San Diego: Harcourt,1988.
    [6]陈振蕃.拟内积概念与线性振动系统的特征值亏损[J].南京航空学院学报,1985,4:11-22.
    [7]陈振蕃.线性振动系统的特征值亏损问题[J].南京航空学院学报,1986,7(5),499-503.
    [8]陈振蕃.两自由度和三自由度线性振动系统的特征亏损[J].振动工程学报,1988,4:92-96.
    [9] Zhu D.C., Shi G.Q. The determination of defectiveness of linear structural dynamic systems[J].Computers and Structures,1988,30(4):897-899.
    [10]时国勤,诸德超.线性振动亏损系统的广义模态理论[J].力学学报,1989,21(2):183-192.
    [11]时国勤,诸德超,王俊奎.线性振动亏损系统广义模态参数的识别方法[J].固体力学学报,1991,12(3):235-243.
    [12]时国勤,诸德超,王俊奎.线性振动亏损系统的实验模态分析[J].振动工程学报,6(1):20-27.
    [13]时国勤.线性结构振动亏损系统的动力分析理论与实验[D].北京航空学院博士论文,1987.
    [14] Chen S.H.,Xu T.,Han W.Z. Matrix perturbation for linear vibration defective systems[J]. ACTAMECHANICA SINICA,1992,24(6):747-753.
    [15] Chen S.H.,Xu T.,Liu Z.S. Nonlinear frequency spectrum in nonlinear structural analysis[J].Computers and Structures,1992,45(3):553-556.
    [16] Chen S.H.,Liu Z.S., Xu T. A new method for solving non-linear eigenproblems of vibrations[J].Computers and Structures,1993,46(2):339-342.
    [17] Xu T., Chen S.H., Liu Z.S. Perturbation sensitivity of generalized modes of defective systems[J].Computers and Structures,1994,52(2):179-185.
    [18]徐涛,陈塑寰,张旭莉.广义亏损系统的矩阵摄动[J].吉林工业大学自然科学学报,2000,2:56-61.
    [19] Luongo A. Free vibration and sensitivity analysis of a defective two degree of freedom system[J].AIAA Journal,1995,33(1):120-127.
    [20] Prelis U., Friswell, M.I. A relationship between defective systems and unit-rank modification ofclassical damping[J]. Journal of Vibration and Acoustics,2000,122:180-182.
    [21] Friswell M.I., Prells U. Non-proportional damping and defective systems[C]. ISMA25, Leuven,Belgium, September2000:309-315.
    [22] Prells U., Friswell M.I., Garvey S.D. Application of geometric algebra: Modified classical dampingand defective systems[C].19th International Modal Analysis Conference, Orlando, Florida, USA,February2001,665-671.
    [23] Friswell M.I., Champneys A.R. Defective systems and pseudospectra[C], Fifth InternationalConference on Modern Practice in Stress and Vibration Analysis, Glasgow, September2003:287–294.
    [24] Friswell M.I. Defective systems and uncertainty quantification[R]. Workshop on Pseudospectra andStructural Dynamics, Bristol, December2004:13-15.
    [25]陈宇东,陈塑寰,连华东.亏损系统模态优化控制Riccati方程的求解方法[J].力学学报,2001,33(5):714-720.
    [26]陈宇东,陈塑寰,吴伟.亏损系统振动模态的可控可观性[J].计算力学学报,2003,20(6):697-701.
    [27]陈宇东.亏损系统模态控制设计及其在机翼颤振控制中的应用[J].吉林大学学报(工学版),2006,36:4-7.
    [28] Zhang Z.Y., Zhang, H.S. Eigensensitivity analysis of a defective matrix[J]. AIAA Journal,2001,39(3):473–479.
    [29] Zhang Z.Y., Zhang H.S. Higher-order eigensensitivity analysis of a defective matrix[J], AIAA Journal,2002,40(4):751-757.
    [30]张振宇.数值线性代数中的若干问题[D].复旦大学博士论文,2002.
    [31] Zhang Z.Y., Zhang H.S. Eigensensitivity analysis of a defective matrix with zero first-order eigenvaluederivatives[J], AIAA Journal,2004,42(1):114-123.
    [32] Zhang Z.Y., Zhang H.S. Calculation of eigenvalue and eigenvector derivatives of a defective matrix[J].Applied Mathematics and Computation,2006,176(1):7-26.
    [33] Zhang Z.Y. A development of modal expansion method for eigensensitivity analysis of a defectivematrix[J]. Applied Mathematics and Computation,2007,188(2):1995-2019.
    [34] Zhang Z.Y. Approximate method for eigensensitivity analysis of a defective matrix[J]. Journal ofComputational and Applied Mathematics,2011,235:2913-2937.
    [35]徐涛,于澜,鞠伟,等.计算亏损系统模态灵敏度的逐层递推演算方法[J].力学学报,2008,40(2):281-289.
    [36]杨荣,王乐,徐涛,等.具有不完全特征向量系的状态向量摄动的快速算法[J].吉林大学学报(工学版),2008,38(5):1101-1104.
    [37]徐涛,徐天爽,吉野辰萌,等.亏损振动系统状态空间导数的近似求解[OL].中国科技论文在线,2010.
    [38] Xu T., Xu T.S., Zuo W.J., et al. Fast sensitivity analysis of defective system[J]. Applied Mathematicsand Computation,2010,217(7):3248-3256.
    [39]陈塑寰.结构动态设计的矩阵摄动理论[M].北京:科学出版社,1999.
    [40] Pierre C. Mode localization and eigenvalue loci veering phenomena in disordered structures[J].Journal of Sound and Vibration,1988,126:485-502.
    [41] Trlantafyllou M. S., Trianfyllou G. S. Frequency coalescence and mode localization phenomena ageometric theory[J]. Journal of Sound and Vibration,1991,150:485-500.
    [42] Luongo A. Free vibration and sensitivity analysis of a defective two degree-of-freedom system[J].AIAA Journal,1995,33:120–127.
    [43]徐涛,陈塑寰,赵建华.接近亏损系统的矩阵摄动法[J],力学学报,1998,30(4):503-507.
    [44]徐涛,陈塑寰,杨光.接近亏损系统的摄动灵敏度[J],吉林工业大学自然科学学报,2000,30(3):65-67.
    [45] Chen Y.D., Chen S.H., Liu Z.S. Modal optimal control procedure for near defective systems[J],Journal of Sound and Vibration,2001,245(1):113-132.
    [46] Chen Y.D., Chen S.H., Liu Z.S. Quantitative measurements of modal controllability and observabilityin vibration control of defective and near defective system[J], Journal of Sound and Vibration,2001,248(3):413-426.
    [47] Chen Y.D., Chen S.H. Design procedure for modal controllers for defective and nearly defectivesystems[J]. Structural Engineering and Mechanics,2003,15(5):551-562.
    [48]陈宇东.接近亏损系统的多输入模态控制器的递推设计方法[J].吉林大学学报(工学版),2008,38:137-140.
    [49] Balas M.J. Trends in large space structures, control theory, fondest hopes, widest dreams[J]. IEEETransactions on Automate Control,1982, AC-27:522-535.
    [50] Rao S.S., Pan T.S., Vekayya V.B. Modeling control and design of flexible structures: a survey[J].Applied Mechanics Reviews,1990,43:99-117.
    [51] Gregory C.Z.Jr. Reduction of large flexible space models using internal balancing theory[J]. Journalof Guidance Control and Dynamics.,1984,7(6):725-732.
    [52]王文亮,刘玉民.特征值组的摄动法[J].机械强度,1995,3:44-47.
    [53]陈德成,杨靖波,白浩,等.密频子空间的可控度与可观度[J].应用力学学报,2001,2:15-19.
    [54]谢发祥,孙利民.受控结构频率密集度的判别及其对控制效果的影响[J].山东大学学报(工学版),2009,39(5):101-105.
    [55] Arora J.S. Survey of structural reanalysis techniques[J]. Journal of the Structural Division ASCE,1976,102:783-802.
    [56] Abu Kasim A.M., Topping B.H.V. Static reanalysis: a review[J]. Journal of the Structural DivisionASCE,1987,113:1029-1045.
    [57] Barthelemy J.F.M., Haftka R.T. Approximation concepts for optimum structural design-a review[J].Structural and Multidisciplinary Optimization,1993,5:129-144.
    [58] Muscolino G., Cacciola P. Re-analysis techniques in structural dynamics In Topping B.H.V., MotoSoares C.A[R]. Progress in Computational Structures Technology. Saxe-Coburg Publications,2004,31-58.
    [59] Bendsoe M.P. Methods for the optimization of structural topology[M]. Berlin: Springer-Verlag,1994.
    [60] Sherman J., Morrison W.J. Adjustment of an inverse matrix corresponding to changes in the elementsof a given column or a given row of the original matrix[J]. Annals of Mathematical Statistics,1949,20:621.
    [61] Woodbury M. Inverting modified matrices[R]. Memorandum Report42, Statistical Research Group,Princeton University, Princeton, NJ,1950.
    [62] Hager W.W. Updating the inverse of a matrix[J]. SIAM Review,1989,31:221-239.
    [63] Akgun M.A., Garcelon J.H., Haftka R.T. Fast exact linear and nonlinear structural reanalysis and theSherman-Morrison-Woodbury formulas[J]. International Journal for Numerical Methods in Engineering,2001,50:1587-1606.
    [64] Holnicki-Szulc J. Structural analysis design and control by the virtual distortion method[M]. Wiley,England,1995.
    [65] Makode P.V., Ramirez M.R., Corotis R.B. Reanalysis of rigid frame structures by the virtual distortionmethod[J]. Structural and Multidisciplinary Optimization,1996,11:71-79.
    [66] Majid K.I. Optimum design of structures[M]. Newnes-Butterworths, London,1974.
    [67] Majid K.I., Saka M.P., Celik T. The theorem of structural variation generalized for rigidly jointedframes[J]. Proceedings-Institution of Civil Engineers,1978,65:839-856.
    [68] Topping B.H.V. The application of the theorems of structural variation to finite element problems[J].International Journal for Numerical Methods in Engineering,1983,19:141-151.
    [69] Atrek E. Theorems of structural variation: a simplification[J]. International Journal for NumericalMethods in Engineering,1985,21:481-485.
    [70] Topping B.H.V., Kassim A.M.A. The use and the efficiency of the theorems of structural variation tofinite element analysis[J]. International Journal for Numerical Methods in Engineering,1987,24:1901-1920.
    [71] Saka M.P. Finite element applications of the theorems of structural variation[J]. Computers andStructures,1991,41:519-530.
    [72] Schmit L.A., Farshi B. Some approximation concepts for structural synthesis[J]. AIAA Journal,1974,11:489-494.
    [73] Fuchs M.B. Linearized homogeneous constraints in structural design[J]. The International Journal ofMechanical Sciences,1980,22:333-400.
    [74] Starnes, J. H. Jr., Haftka, R. T. Preliminary design of composite wings for buckling stress anddisplacement constraints[J]. Journal of Aircraft,1979,16:564-570.
    [75] Fleury C., Braibant V. Structural optimization: a new dual method using mixed variables[J].International Journal for Numerical Methods in Engineering,1986,23:409-428.
    [76] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J].International Journal for Numerical Methods in Engineering,1987,24:359-373.
    [77] Fleury C. Efficient approximation concepts using second-order information[J]. International Journalfor Numerical Methods in Engineering,1989,28:2041-2058.
    [78] Fleury C. First-and second-order convex approximation strategies in structural optimization[J].Structural Optimization,1989,1:3-10.
    [79] Haftka R.T, Nachlas J.A, Watson L.T., et.al. Two-point constraint approximation in structuraloptimization[J]. Computer Methods in Applied Mechanics and Engineering,1989,60:289-301.
    [80] Unal R., Lepsch R., Engelund W., et.al. Approximation model building and multidisciplinary designoptimization using response surface methods[R]. Proceeding6th AIAA/NASA/ISSMO Symposium onmultidisciplinary analysis and optimization. Bellevue, WA,1996.
    [81] Sobieszczanski-Sobieski J., Haftka R.T. Multidisciplinary aerospace design optimization: survey andrecent developments[J]. Structural and Multidisciplinary Optimization,1997,14:1-23.
    [82] Fox R.L., Miura H. An approximate analysis technique for design calculations[J]. AIAA Journal,1971,9:177-179.
    [83] Noor A.K.(1994) Recent advances and applications of reduction methods[J]. Applied MechanicsReviews,1994,47:125-146.
    [84] Kirsch U. Approximate behavior models for optimum structural design[M]. New York: John Wiley&Sons,1984.
    [85] Kirsch U., Toledano G. Approximate reanalysis for modifications of structural geometry[J].Computers and Structures,1983,16:269-279.
    [86] Kirsch U. Reduced basis approximations of structural displacements for optimal design[J]. AIAAJournal,1991,29:1751-1758.
    [87] Kirsch U. Eisenberger M. Approximate interactive design of large Structures[J]. Computer System inEngineering,1991,2:67-74.
    [88] Kirsch, U. Approximate reanalysis methods. In: Kamat PM (ed) Structural optimization: status andpromise. AIAA Journal,1993,39.
    [89] Kirsch U. Improved stiffness-based first-order approximations for structural optimization[J]. AIAAJournal,1995,33:143-150.
    [90] Kirsch U. Efficient reanalysis for topological optimization[J]. Structural and MultidisciplinaryOptimization,1993,6:143-150.
    [91] Kirsch U., Liu S. Exact structural reanalysis by a first-order reduced basis approach[J]. Structural andMultidisciplinary Optimization,1995,10:153-158.
    [92] Kirsch U., Liu S. Structural reanalysis for general layout modifications[J]. AIAA Journal,1997,35:382-388.
    [93] Chen S.H., Huang C., Liu Z.S. Structural approximate reanalysis for topological modifications byfinite element systems[J]. AIAA Journal,1998,36:1760-1762.
    [94] Kirsch U., Moses F. An improved reanalysis method for grillage-type structures[J]. Computers andStructures,1998,68:79-88.
    [95] Kirsch U., Moses F. Effective reanalysis for damaged structures[R]. In: Frangopol DM (ed) Casestudies in optimal design. ASCE,1999.
    [96] Kirsch U., Papalambros P.Y. Structural reanalysis for topological modifications[J]. Structural andMultidisciplinary Optimization,2001,21:333-344.
    [97] Kirsch U., Papalambros P.Y. Exact and accurate reanalysis of structures for geometrical changes[J].Computer Engineering,2001,17:363-372.
    [98] Kirsch U., Kocvara M., Zowe J. Accurate reanalysis of structures by a preconditioned conjugategradient method[J]. International Journal for Numerical Methods in Engineering,2002,55:233-251.
    [99] Wu B.S., Li Z.G. Approximate reanalysis for modifications of structural layout[J]. EngineeringStructures,2001,23:1590-1596.
    [100] Chen S.H., Yang Z.J. A universal method for structural static reanalysis of topologicalmodifications[J]. International Journal for Numerical Methods in Engineering,2004,61:673–686.
    [101] Wu B.S., Lim C.W., Li Z.G. A finite element algorithm for reanalysis of structures with added degreesof freedom[J]. Finite Elements in Analysis and Design,2004,40:1791-1801.
    [102] Wu B.S., Li Z.G. Static reanalysis of structures with added degrees of freedom[J]. Communications inNumerical Methods in Engineering,2006,22:269-281.
    [103] Aktas A., Moses F. Reduced basis eigenvalue solutions for damaged structures[J]. Mechanics ofStructures and Machines,1998,26:63-79.
    [104] Leu L.J., Huang C.W. A reduced basis method for geometric nonlinear analysis of structures[J].IASS Journal,1998,39:71-75.
    [105] Kirsch U. Efficient-accurate reanalysis for structural optimization[J]. AIAA Journal,1999,37:1663-1669.
    [106] Kirsch U., Papalambros P.Y. Exact and accurate solutions in the approximate reanalysis ofstructures[J]. AIAA Journal,2001,39:2198-2205.
    [107] Kirsch U., Bogomolni M. Error evaluation in approximate reanalysis of structures[J]. Structural andMultidisciplinary Optimization,2004,28:77-86.
    [108]曹文钢,曲令晋,白迎春.基于灵敏度分析的客车车身质量优化研究[J].汽车工程,2009,31(03):278-281.
    [109]张武,陈剑,夏海.基于灵敏度分析的发动机悬置系统稳健优化设计[J].汽车工程,2009,31(08):728-732.
    [110]张代胜,张林涛,谭继锦, et al.基于刚度灵敏度分析的客车车身轻量化研究[J].汽车工程,2008,30(08):718-720.
    [111] D'Vari. R., Baker. M. Aeroelastic loads and sensitivity analysis for structural loads optimization[J].Journal of Aircraft,1999,36(1):156-166.
    [112]唐明裴,阎贵平.结构灵敏度分析及计算方法概述[J].中国铁道科学,2003,24(1):74-79.
    [113]韩林山,李向阳,严大考.浅析灵敏度分析的几种数学方法[J].中国水运,2008,08(4):177-178.
    [114] Chang C.O., Nikavesh P.E. Optimal design of mechanical systems with constraint violationstabilization method[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1985,107(4):493-498.
    [115] Dias J.M.P., Pereira M.S. Sensitivity analysis of rigid-flexible multibody systems[J]. MultibodySystem Dynamics,1997,1(3):303-322.
    [116] Hang E.J., Mani N.K., Krishnaswami P. Design sensitivity analysis and optimization of dynamicallydriven systems[R]. Proceedings of Computer Aided Analysis and Optimization of Mechanical SystemDynamics. Berlin: Springer-Verlag,1984.
    [117] Bestle D., Eberhard P. Analyzing and Optimizing Multibody Systems[J]. Mechanics of Structuresand Machines,1992,20(1):67-92.
    [118] Bestle D, Seybold J. Sensitivity analysis of constrained multibody systems[J]. Archive of AppliedMechanics,1992,62(3):181-190.
    [119] Cao Y., Li S., Petzold L. Adjoint sensitivity analysis for differential-algebraic equations: algorithmsand software[J]. Journal of Computational and Applied Mathematics,2002,149(1):171-191.
    [120] Li S., Petzold L., Zhu W. Sensitivity analysis of differential-algebraic equations: A comparison ofmethods on a special problem[J]. Applied Numerical Mathematics,2000,32(2):161-174.
    [121] Liu X. Sensitivity analysis of constrained flexible multibody systems with stability considerations[J].Mechanism and Machine Theory,1996,31(7):859-863.
    [122] Hsu Y. Anderson K.S. Recursive sensitivity analysis for constrained multi-rigid-body dynamicsystems design optimization[J]. Structural and Multidisciplinary Optimization,2002,24(4):312-324.
    [123] Maria Augusta Neto J A C A. Sensitivity analysis of flexible mutibody systems using compositematerials components[J]. International Journal for Numerical Methods in Engineering,2009,77:386-413.
    [124] Mukherjee R., Bhalerao K., Anderson K. A divide-and-conquer direct differentiation approach formultibody system sensitivity analysis[J]. Structural and Multidisciplinary Optimization,2008,35(5):413-429.
    [125] Wang X., Haug E.J., Pan W. Implicit Numerical Integration for Design Sensitivity Analysis of RigidMultibody Systems[J]. Mechanics Based Design of Structures and Machines: An International Journal,2005,33(1):1-30.
    [126] Haftka R.T. Raphael T. Semi-analytical static nonlinear structural sensitivity analysis[J]. AIAAJournal,1993,31(7):1307-1312.
    [127] Haftka R.T., Adelman H.M. Recent developments in structural sensitivity analysis[J]. StructuralOptimization,1989,1(3):137-151.
    [128] Barthelemy B., Chon C.T., Haftka R.T. Accuracy problems associted with semi-analytical derivativesof static response[J]. Finite Elements in Analysis and Design,1988,4(3):249-265.
    [129] Iott J., Haftka R.T., Adelman H.M. On a procedure for selecting step sizes in sensitivity analysis byfinite differences[J]. NASA-TM-86382,1985.
    [130] Iott J., Haftka R.T. Selecting step size in sensitivity analysis by finite differences[J].NASA-TM-86383,1986.
    [131] Bogomolni M., Kirsch U., Sheinman I. Efficient design-sensitivities of structures subjected to dynamicloading[J]. The International Journal of Solids and Structures,2006,43:5485-5500.
    [132] Bogomolni M., Kirsch U., Sheinman I. Nonlinear-dynamic sensitivities of structures using combinedapproximations[J]. AIAA Journal,2006,44:2675-2772.
    [133] Kirsch U. Effective sensitivity analysis for structural optimization[J]. Computer Methods in AppliedMechanics and Engineering,1994,117:143-156.
    [134] Kirsch U., Papalambros P.Y. Accurate displacement derivatives for structural optimization usingapproximate reanalysis[J]. Computer Methods in Applied Mechanics and Engineering,2001,190:3945-3956.
    [135] Kirsch U., Bogomolni M., Keulen F. van. Efficient finite-difference design-sensitivities[J]. AIAAJournal,2005,43:399-405.
    [136] Kirsch U., Bogomolni M., Sheinman I. Efficient procedures for repeated calculations of structuralsensitivities[J]. Optical Engineering,2007,39:307-325.
    [137] Kirsch U., Bogomolni M., Sheinman I. Efficient structural optimization using reanalysis andsensitivity reanalysis[J]. Engineering with Computers,2007,23:229-239.
    [138] Keulen F. van, Vervenne K., Cerulli C. Improved combined approach for shape modifications[C]. Inproceeding10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NewYork,2004, AIAA2004-4378.
    [139] Kirsch U., Papalambros P.Y. Exact and accurate Solutions in the approximate reanalysis ofstructures[J]. AIAA Journal,2001,39:2198-2205.
    [140] Kirsch U., Kocvara M., Zowe J.(2002) Accurate reanalysis of structures by a preconditionedconjugate gradient method[J]. International Journal for Numerical Methods in Engineering,2002,55:233-251.
    [141]左文杰.简化车身框架结构建模与快速优化研究[D].吉林大学博士论文,2010.
    [142]杨志军,陈塑寰,吴晓明.结构静态拓扑重分析的迭代组合近似方法[J].力学学报,2004,36(5):611-616.
    [143] Fox R.L., Miura H. An approximate analysis technique for design calculations[J]. AIAA J ournal,1971,90(1):171-179.
    [144]陈塑寰.随机参数结构的振动理论[M].长春:吉林科学技术出版社,1992.
    [145] Zhu D.C., Shi G.Q. The defectiveness of linear structural dynamic systems[J]. Computers andStructures,1988,30(4):897-899.
    [146] M. Abe. Vibration control of structures with closely spaced frequencies by a single actuator[J]. Journalof Vibration and Acoustics,120(1998),117-124.
    [147]孙红灵.振动主动控制若干问题的研究[M].中国科学技术大学博士论文,2007.
    [148] Curran.R., Castagne.S., Rothwell.A., et al. Uncertainty and sensitivity analysis in aircraft operatingcosts in structural design optimization[J]. Journal of Aircraft,2009,46(6):2145-2155.
    [149] Kibsgaard S. Sensitivity analysis-the basis for optimization[J]. International Journal for NumericalMethods in Engineering,1992,34(3):901-932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700