大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定和种子性状的QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子发育研究是植物生物学和育种研究工作中的一个重要组成部分。大豆种子发育是一个非常复杂的、由多基因协调控制的过程。在这一过程中,转录水平上的调控起着重要的作用。NAC和LFY同源蛋白是其中两类非常重要的植物特异转录因子。NAC蛋白编码基因参与包括植物生长发育、胁迫应答等在内的多种植物生理生化过程。而编码LFY同源转录因子的基因主要参与植物开花时间的调控、花发育等重要的生殖发育过程。
     本研究的主要内容是参与大豆种子发育过程中编码NAC和LFY同源蛋白基因的克隆和鉴定以及大豆主要种子性状的QTL分析,以期为大豆的种子发育机理研究和遗传改良打下基础。
     首先,从大豆中克隆了6个编码NAC同源蛋白的基因序列并描述其分子特征。序列分析表明6个GmNAC基因编码的蛋白序列均包括一个位于N-末端的同源性较高且十分保守的NAC结构域和一个位于C-末端的高度可变区域。其中NAC结构域由A-E5个亚结构域组成。GmNAC基因结构十分相似,均由3个外显子和2个内含子序列组成,前两个外显子编码保守的NAC结构域,两个内含子在基因中的存在位置具有明显的保守性。RT-PCR分析表明GmNAC4和GmNAC6为组织组成性表达,而其它4个基因的表达都具有特异的表达模式。在4轮花器官中GmNAC3,GmNAC4和GmNAC6呈组成性表达,其它3个基因的表达模式略有差异。GmNAC基因在不同发育时期大豆种子中的表达具有协同性:种子发育前期基因表达量较少,在开花后30-35天种子中的表达量均达到最大值,随后又有所降低,呈“钟形”表达模式。SA,NaCl和机械伤害处理后,GmNAC基因在叶片中表达模式不尽相同。这表明,GmNAC基因参与非生物胁迫应答过程,但是所起的作用可能有所不同。亚细胞定位研究表明GmNAC5蛋白可以定位到细胞核中。系统发育分析表明GmNACl-GmNAC6可以分为5个不同的亚组,GmNAC3和GmNAC4属于AtNAC3亚组,GmNAC1,GmNAC2,GmNAC5,GmNAC6分别属于NAP,ATAF,NAM和TERN亚组。GmNAC基因的克隆和鉴定为进一步阐明和探讨大豆NAC转录因子的功能奠定了基础。
     采用RACE的方法从大豆花芽cDNA中克隆了大豆LFY同源cDNA序列(GmLFY)。成功开发出GmLFY基因特异的CAPS标记,利用遗传作图群体NJ(SP)BN将此标记定位到后文构建的大豆分子连锁图谱的C2连锁群上,位于2个SSR标记Sat_213和Satt322之间,距离分别8.0和14.1cM。序列分析表明,GmLFY与拟南芥和豌豆等作物中LFY同源基因的同源性较高。GmLFY基因组序列和cDNA序列比较分析发现GmLFY基因由三个外显子和两个内含子组成,两个内含子在基因中存在的位置也具有明显的保守性。RT-PCR分析表明GmLFY基因主要表达于生殖器官,如花序,荚皮和正在发育的种子等。GmLFY主要在4轮花器官的第1轮和第4轮,即萼片和心皮中表达。GmLFY在不同发育时期大豆种子中的表达分析表明GmLFY在开花后15天表达水平较高,随后略有降低,后来又迅速升高,到开花后35-40天达最大值,随后又有所降低。原核表达结果表明GmLFY可以在大肠杆菌中正确表达并翻译。亚细胞定位研究表明在洋葱表皮细胞中GmLFY可以正确定位到细胞核中。系统发育分析表明GmLFY与豆科作物的LFY同源序列同源性较高,而且LFY同源蛋白的系统发育关系同物种的进化关系十分相似。
     利用遗传作图群体NJ(SP)BN,构建了一张基于SSR的大豆分子遗传图谱,图谱覆盖大豆基因组长度为2,854.9cM,包括24个连锁群,共有268个标记位点,标记间平均距离为10.65cM,连锁群上标记平均个数为11.17,平均每个连锁群长119.0cM。这张遗传图谱的构建为控制大豆重要农艺性状的基因定位打下基础。利用这张遗传图谱,结合2年的表型数据,用复合区间作图法(CIM)定位到10个大豆种子相关性状(蛋白质含量,油分含量和种子大小)的QTL,其中共有8个QTL的表型方差解释率在10%以上。在两年试验中重复检测到1个控制蛋白质含量和1个控制油分含量的QTL。大豆种子性状QTL定位对于大豆种子性状的遗传改良具有重要的理论和应用价值。
Seed development is one of the vital parts of plant biology and breeding project. Forsoybean it's an especially complexed process regulated and controlled by many diverse genes.During this process the regulation by transcription factors at the transcriptional level playsimportant roles. NAC-like and LFY-like proteins both are identified as two types of plant-specific transcription factors. Genes encoding NAC TFs are involved in many physiologicaland biochemical processes including plant growth and development, responsiveness to stress;while those encoding LFY-like TFs are implicated in the regulation of reproductivedevelopment, such as flowering time control and floral development et al.
     In this study, we focus on the cloning and identification of genes encoding NAC andLFY-like TFs involved in seed development, and mapping QTLs controlling seed characters insoybean.
     Firstly, six NAC-like genes from soybean, designated as GmNAC1 to GmNAC6, werecloned and characterized. Sequence analysis showed that six GmNAC proteins uniformlycontained a conserved NAC domain at N-terminus with high homology and a diverged C-terminus. Also, NAC domains in GmNAC protein were found to contain five differentsubdomains A-E. They shared conservative structures of genomic organization: each containedtwo introns and three exons and the first two exons encoded NAC domain. Moreover, insertionsites of introns were much conserved among six proteins. RT-PCR analysis indicated that eachGmNAC gene exhibited a specific expression pattern in tissues examined, revealing thedifferent roles for GmNAC genes in soybean development. GmNAC2, 3, 4, and 6 were detectedto express in most tested tissues while GmNAC1 and GmNAC5 were limited to few tissues. Infloral organs, except for GmNAC3, GmNAC4, and GmNAC6, which were expressedconstitutively, other three GmNAC genes showed unique expression patterns. Furthermore,expression patterns of GmNAC genes were characterized during seed filling and coordinatedexpression was observed between GmNAC genes. Most of them were expressed at a low levelat the early stages of seed development and reached a maximum level between 30-35DAF thendecreased afterward. After treatment of SA, NaCI and wounding, GmNAC genes were regulated differently. Subcellular localization of GmNAC5 in onion epidermic cells suggested GmNAC5was targeted to the nucleus. Based on phylogenetic analysis, six GmNAC proteins were classedinto five subgroups. GmNAC1, GmNAC2, GmNAC5, and GmNAC6 belonged to the NAP,ATAF, NAM, and TERN subgroup, respectively; while GmNAC3 and GmNAC4 wereclassified into the AtNAC3 subgroup.These results provide potent basis for futureinvestigations of NAC-like genes' roles in seed development and other physiological processesin soybean.
     Secondly, a LEAFY homologue in soybean, GmLFY, was cloned from cDNA preparedfrom young inflorescences by rapid amplification of cDNA ends (RACE) method. A GmLFY-specific CAPS marker was developed and then was mapped on molecular linkage group C2 in amapping population NJ(SP)BN. The marker was located between two SSR markers Sat_213and Satt322 with the distance of 8.0 and 14.1cM, respectively. Comparative analysis of GmLFYgenomic and cDNA sequences showed that GmLFY gene had three exons and two introns withthe similar spliced sites as other LFY-like genes. RT-PCR analysis indicated that GmLFY waspredominantly expressed in reproductive organs such as inflorescences, pods without seeds, anddeveloping seeds. Moreover, GmLFY was mainly expressed in whorl 1 and whorl 4, the sepalsand pistils, of the floral organs. Expression pattern of GmLFY in developing seeds was alsoinvestigated. GmLFY was expressed at a middle level in seeds at 15 days after flowering (DAF)and decreased in 20 DAF seeds. Thereafter, it increased, reaching its maximum expression levelbetween 35 and 40 DAF and decreased gradually after that time. Result of expression in E.colishowed that GmLFY could be expressd and translated in prokaryote; Subcellular localization ofGmLFY in onion epidermic cells suggested GmLFY was targeted to the nucleus. Phylogeneticanalysis showed that GmLFY belonged to the family of legume together with LjLFY of Lotusjaponicus, MtUNI of Medicago truncatula and UNI of Pisum sativum.
     In soybean seed traits such as protein content, oil content, and seed size are the majortargets in breeding programs. Using a mapping population NJ(SP)BN derived from Bogao xNG94-156, an SSR-based molecular genetic map with 268 loci was developed. This linkagemap contained 24 molecular linkage groups and spaned 2,854.9cM of the soybean genome withan average interval distance of 10.65cM, the average markers per group of 11.17cM and theaverage length of the LGs of 119.0cM. Using CIM method, QTLs for each seed trait wereanalyzed. A total of 10 QTLs controlling protein content, oil content, and seed size in soybeanwere identified in the years of 2004 and 2005. Analysis and comparison of detected QTLsshowed that one QTL for protein content (qpcD1a_1) and one for oil content (qocC2_1) were stable across two years. Our results will be contributing for genetic improvement for seed traitswith marker-assisted selection in soybean.
引文
Ahearn KP, Johnson HA, Weigel D, Wagner DR. (2001) NFL1, a Nicotiana tabacum LEAFY-like gone, controls meristem initiation and floral structure. Plant Cell Physiol. 42:1130~1139
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. (1997) Genes involved in organ separation in Arabidopsis, An analysis of the cup-shaped cotyledon mutant. Plant Cell. 9: 841~857
    Aida M, Vernoux T, Furutani M, Traas J, Tasaka M. (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development. 129: 3965~3974
    Aida M. Aida M, Ishida T, Tasaka M. (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUPSHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development. 126: 1563~1570
    Albani D, MCU. Hammond-Kosack, C. Smith, S. Conlan, V.Colot (1997)Protein That Recognizes the GCN4-like Motif in the Bifactorial Endosperm Box of Prolamin Genes. Plant Cell. 9: 171-184
    Alliotte T, Tire C, Engler G, Peleman J, Caplan A, Vanmontagu M, Inze D. (1989) An auxin-regulated gone of Arabidopsis thaliana encodes a DNA-binding protein. Plant Physiol. 89: 743~752
    Anthony R G, James P E, Jordan B R. (1993) Cloning and sequence analysis of a flo/lfy homologue isolated from cauliflower (Brassica oleracea L. var. botrytis). Plant Mol Biol. 22:1163~1166
    Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. (1988) Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max L. (Merri). Theor Appl Genet. 75: 889~901
    Ashfield T, Danzer J R, Held D, Clayton K, Keim P, Saghai-Maroof M A, Webb P M, limes R W. (1998) Rpgl, a soybean gone effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes. Theor Appl Genet. 96: 1013~1021
    Aukerman M J, Schmidt R J, Burr B, Burr F A. (1991) An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev. 5(2): 310-320
    Bailey TL, Elkan C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology AAAI Press, Menlo Park, Calif, p28~36
    Barrel B, Barttel D. (2003) MicroRNA: at the root of plant development. Plant Physiol. 132:709~717
    Bartel D P. (2004) Micrornas: genomics, biogenesis, mechanism, and function. Cell. 116: 281~297
    Baum D A, Yoon H-S, Oldham R L. (2005) Molecular evolution of the transcription factor LEAFY in Brassicaceae. Mol Phylogenetics Evol. 37(1): 1~14
    Becerra C, Puigdomenech P, Vicient C M. (2006) Computational and experimental analysis identifies Arabidopsis genes specifically expressed during early seed development. BMC Genomics. 7: 38
    Beilinson V, Moskalenko O V, Ritchie R D, Nielsen N C. (2005) Differentially expressed genes during seed development in soybean. Physiologia Plantarum. 123: 321~330
    Blazquez M A, Weigel D. (2000) Integration of floral inductive signals in Arabidopsis. Nature. 404: 889~892
    Blazquez MA, Soowal LN, Lee I, Weigel D. (1997) LEAFY expression and flower initiation in Arabidopsis. Development. 124: 3835~3844
    Bobb AJ, MS Chern, MM Bustos: (1997) Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucl. Acids Res. 25: 641-647
    Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science. 275:80~83
    Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. (1997) Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations. Crop Sci. 37:370~378
    Busch A, Gleissberg S. (2003) EcFLO, a FLORICAULA-Iike gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot. Planta. 217:841~848
    Burton JW (1987) Quantitative genetics: results relevant to soybean breeding, p211-247. In Wilcox J R (ed.) Soybeans: Improvement, production and uses. Second ed. ASA, Madison, WI.
    Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. (2000) ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 408:967~971
    Carmona MJ, Cubas P, Martinez-Zapater JM. (2002) VFL, the Grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol. 130:68~77
    Chandrasekharan MB, Bishop KJ, Hall TC. (2003) Module-specific regulation of the beta-phaseolin promoter during embryogenesis. Plant J. 33(5): 853-866
    Che P, Gingerich D J, Sonia L, Howell S H. (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell. 14:2771~2785
    Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. (2003) The Seed Protein, Oil, and Yield QTL on Soybean Linkage Group I. Crop Sci. 43:1053~1067
    Clark S E, Running M P, Meyerowitz E M. (1993) CLAVATA1, a regulator of meristem and flower development inArabidopsis. Development 119:397~418
    Class S, Michoel B. (1998) The regulation of transcription factor activity in plants. Trends Plant Sci. 3(10):378~383
    Clemente T, LaValle B J, Howe A R, Ward D C, Rozman R J, Hunter P E. et al. (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci. 40:797~803
    Coen E S, Romero J M, Doyle S, Elliot R, Murphy G, Carpenter R. (1990)floricaula: A homeotic gene required for flower development in Antirrhinum majus. Cell. 63:1311~1322
    Collinge M, Boiler T. (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol. 46:521~529
    Concibido V C, Denny R L, Lange D A, Orf J H, Young N D. (1996) RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci. 36:1643~1650
    Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, Van Toai TT, Lohnaes DG, Chung T, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci. 39:1464~1490
    Csanaidi G, Vollmann J, Stift G, Lelley T. (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet. 103:912~919
    Cubas P, Lauter N, Doebley J, Coen E. (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18:215~222
    Daimon Y, Takabe K, Tasaka M. (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44:113~121
    Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferns R. (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43: 745~757
    Dempsey D A, Pathirana M S, Wobbe K K, Klessig D F. (1997) Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. Plant J. 11: 301~311
    Diers B W, Keim P, Fehr W R, Shoemaker R C, Fehr W R. (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet. 83: 608~612
    Diets, B W, Beilinson V, Nelson N C, Shoemaker R C. (1994) Genetic mapping of the Gy4 and Gy5 glycinin genes in soybean and the analysis of a variant of Gy4. Theor Appl Genet. 89: 297~304
    Dornelas M C, Amaral WAN, Rodriguez A P M. (2004) EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues. Braz J Plant Physiol. 16(2): 105~114
    Dornelas M C, Rodriguez A P M. (2005) The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems. J Exp Bot. 56: 1965~1974
    Dornelas M C, Rodriguez A P M. (2005) The tropical cedar tree (Cedrela fissilis Vell, Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants. Planta. 25: 1-9
    Domelas MC, Rodriguez APM. (2005) A FLORICAULA/LEAFYgene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var. Caribaea. Genet Mol Biol. 28(2): 299~307
    Dural M, Hsieh T F, Kim S Y, Thomas T L. (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol. 50: 237~248
    Ernst H A, Nina O A, Skriver K, Larsen S, Lo L L. (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5: 297~303
    Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO J. 5: 1~7
    Esurni Tomoya, Tao Ryutaro, Yonemori Keizo. (2005) Isolation of LEAFY and TERMINAL FLOWER1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod. 17: 277~287
    Eulgem T, Rushton PJ, Robatzek S, Somssich IE. (2000) The WRKY superfamilyof plant transcriptional factors. Trends Plant Sci. 5: 199~206
    Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L P, Yamaguchi-Shinozaki K, Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863~876
    Fujiwara T et al. Storage Proteins. In: Somerville CR et al. (eds.) (2002) The Asabidopsis Book, American Society of Plant Biologists
    Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M. (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development. 131:5021~5030
    Damien Garcia, Jonathan N. Fitz Gerald, Frederic Berger: (2005) Maternal Control of Integument Cell Elongation and Zygotic Control of Endosperm Growth Are Coordinated to Determine Seed Size in Arabidopsis. Plant Cell. 17: 52-60
    Gechev TS, Gadjev IZ, Hille J. (2004)An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants.Cell Mol Life Sci. 61(10):1185-97.
    Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124:1570-1581
    Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D. (2001) Evolution of floral meristem identity genes: analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125:1788~1801
    Greve K, La Cour T, Jensen M K, Poulsen F M, Skriver K. (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/1/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J. 371:97~108
    Grob G B J, Gravendeel B, Eurlings M C M. (2004) Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Mol Phyl Evol. 30:13~23
    Guo HS, Fei JF, Chua NH. (2003) A chemical-regulated inducible RNAi system in plants. Plant J. 34:383~392
    Guo H-S, Xie Q, Fei J-F, Chuad N-H. (2005) MicroRNA directs mRNA cleavage of the transcription factor NACI to downregulate auxin signals forArabidopsis lateral root development. Plant Cell. 17:1376~1386
    Gurley W B, Hepburn A G, Key J L. (1979) Sequence organization of the soybean genome. Biochem Biophys Acta. 561:167~183
    Gutierrez RA, Green P J, Keegstra K, Ohlrogge JB. (2004) Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms? Genome Biol. 5:R53 (http://genomebiology. com/)
    Hajduch M, Ganapathy A, Stein J W, Thelen J J. (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol. 137:1397~1419
    Haughn G W, Somerville R. (1988) Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9:73~89
    He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb C (2001) Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res. 9:223~227
    Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol. 53:383~397
    Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development. 124:3845~3853
    Hennig L, Gruissem W, Grossniklaus U, Kohler C. (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 135:1765~1775
    Hibara K, Takada S, Tasaka M. (2003) CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 36:687~696
    Himi S, Sano R, Nishiyama T i, Tanahashi T, Kato M, Ueda K, Hasebe M. (2001) Evolution of MADS-box gene induction by FLO/LFY genes. J Mol Evol. 53:387~393
    Hoeck J A, Fehr Walter R, Shoemaker R C; Welke G A. (2003) Molecular marker analysis of seed size in soybean. Crop Sci. 43:68~74
    Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N. (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol. 7: 581~587
    Hoth S, Morgante M, Sanchez J-P, Hanafey MK, Tingey SV, Chua N-H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abil-1 mutant. Cell Sci. 115: 4891~4900
    Hu W, Wang Y, Bowers C, Ma H. (2003) Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol. 53: 545~563
    Huala E, Sussex IM. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell. 4: 901~913
    Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet. 109: 552~561
    Ishida T, Aida M, Takada S, Tasaka M. (2000) Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41: 60~67
    Jiao Y, Yang H, Ma L, Sun N, Yu H, Liu T, Gao Y, Gu H, Chen Z, Wada M, Gerstein M, Zhao H, Qu L-J, Deng XW. (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 133: 1480~1493
    Jin W, Palmer R G, Morner H T, Shoemaker R C. (1998) Molecular mapping of a male-sterile gene soybean. Crop Sci. 38(6): 1681~1685
    John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D. (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol. 33: 641~651
    Kamo M, Kawakami T, Miyatake N, Tsugita A. (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis, 16: 423-430
    Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell. 4:205~217
    Keim P, Diets B W, Olson T C, Shoemaker R C. (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 126: 735~742
    Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L, Ferreira A, Webb D M. (1997) A high-density soybean genetic map based on AFLP markers. Crop Sci. 37: 537~543
    Kelly AJ, Bonnlander MB, Meeks-Wagner DR. (1995) NFL, the tobacco homolog of FLORICULA and LEAFY is transcriptionally expressed in both vegetative and floral meristems. Plant Cell. 7: 225~234
    Kikuchi K, Ueguchi-Tanaka M, Yoshida K T, Nagato Y, Matsusoka M, Hirano H-Y. (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet. 262:1047~1051
    Kranz H D, Denekamp M, Greco R, Jin H, Levya A, Meissner R C, Petroni K, Urzainqui A, Bevan, M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 16: 263~276
    Kurup S, Jones HD, Holdsworth MJ. (2000) Interactions of the developmental regulator AB13 with proteins identified from developing Arabidopsis seeds. Plant J. 21: 143-155.
    Kusano H, Asano T, Shimada H, Kadowaki K. (2005) Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice. Mol Gen Genomics. 272: 616~626
    Kushalappa KM, Mattoo AK, Vijayraghavan U. (2000) A spectrum of genes expressed during early stages of rice panicle and flower development. J Genet. 79: 25~32
    Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. (1998) Down-regulation of RFL the FLO/LFY homolog of rice accompanied with panicle branch initiation. Proc Natl Acad Sci USA. 95:1979~1982
    Laufs P, Peaucelle A, Morin H, Traas J. (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development. 131:4311~4322
    Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I. (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive Protein Phosphatase 2C mutant. Plant Cell. 16:596~615
    Li Y, Lee K K, Smith C, Walsh S, Hadingham S, Sorefan K, Cawley G, Bevan M W. (2006) Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome Research. 16:414~427
    Li Z, Thomas TL. (1998) PEI1, an embryo-specific zinc finger protein gene requiredfor heart-stage formation in Arabidopsis. Plant Cell. 10:383-398.
    Lin J F, Wu S H. (2004) Molecular events in senescingArabidopsis leaves. Plant L 39:612~628
    Liu L, White M J, MacRae TH. (1999) Transcription factors and their genes in higher plants. Functional domains, evolution and regulation. Eur J Biochem. 262:247~257
    Long JA, Moan EI, Medford JI, Barton MK. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 379:66~69
    Maizel A, Busch M A, Tanahashi T o, Perkovic J, Kato M, Hasebe M, Weigel D. (2005) The floral regulator LEAFY by substitutions in the DNA binding domain. Science. 308:260~263
    Malamy J E, Benfey P N. (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2:390~396
    Mallory A C, Dugas D V, Bartel D B, Barrel B. (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curt Biol. 14:1035~1046
    Mandel MA, Yanofsky MF. (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell. 7:1763~1771
    Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci. 36:1327~1336
    Mansur L M, Orf J H, Lark K G. (1993) Determining the linkage of qualitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max L. Merr.). Theor Appl Genet. 86:914~918
    Mansur LM, Lark KG, Kross H, Oliveira A. (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed trait of soybean (Glycine max L.). Theor Appl Genet. 86:907~913
    Martin C, Paz-ares J. (1997) Myb transcription factors in plants. Trends Genet. 13:67~73
    Maughan P J, Saghi M A, Maroof M A, Buss G R. (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol Breeding. 6:105~111
    Maughan PJ, Saghai-Maroof MA, Buss GR. (1996) Molecularmarker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet. 93:574~579
    Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C. (1998) PRFLL: a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordial. Planta. 206:619~629
    Mian M A R, Bailey MA, Tamuionis J P, Shipe E R, Carter T E, Jr. Parrott WA, Ashley D A, Hussey R S, Boerma H R. (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet. 93: 1011~1016
    Mian MAR, Shipe ER, Alvernaz J, Mueller JD, Ashley DA, Boerma HR. (1997) RFLP analysis of chlorimurnn ethyl sensitivity in soybean. J Hered. 88:38~41
    Milioni D, Sado PE, Stacey NJ, Roberts K, McCann MC. (2002) Early Gene Expression Associated with the Commitment and Differentiation of a Plant Tracheary Element Is Revealed by cDNA- Amplified Fragment Length Polymorphism Analysis. Plant Cell. 14(11): 2813~2824
    Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R. (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20:685~693
    Montieri S, Gaudio L, Aceto S. (2004) Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids. Gene. 333: 1101~109
    Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Maria S, Teasdale RD. (1998) NEEDLY, a Pings radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA. 95: 6537~6542
    Mudge J, Cegan P B, Kenworthy J P, Kenworthy W J, Orf J H, Yong N D. (1997) Two microsateUite markers that flank the major soybean cyst nematode resistance locus. Crop Sci. 37(5):1611~1615
    Neuteboom L W, Veth-TeUo L M, Clijdesdale O R, Hooykaas P J, van der Zaal B J. (1999) A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res. 6: 13~19
    Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T. (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J. 44(6): 972~84
    Nogueira F T S, Jr V E D R, Menossi M, Ulian E C, Arruda P. (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol. 132: 1811~1824
    Ohto M A, Fischer R L, Goldberg R B, Nakamura K. Harada J J. (2005) Control of seed mass by APETELA2. Proc Natl Acad Sci. 102: 3123-3128
    Olsen A N, Ernst H A, Lo Leggio L, Skriver K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10: 1360~1385
    Olsen AN, Ernst HA, Lo Leggio L, Johansson E, Larsen S, Skriver K. (2004) Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallogr D. 60: 112~115
    Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239~247
    Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34: 868~887
    Orf J H, Mansur L M, Lark L G.(1998) A Recombinant inbred populations from the crosses Minsory Archer and Noir I Archer. Soybean Genet. Newsl. (25): 154~156
    Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG. (1999) Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Sci. 39:1642~1651
    Ori N, Eshed Y, Chuck G, Bowman J, Hake S. (2000) Mechanisms that control knox gene expression in the Arabidopsis shoot. Development. 127:5523~5532
    Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 45:2015~2022
    Parenicova L, de Folter S, Kieffer M, Homer D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell. 15:1538~1551
    Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. (1987)The regulatory Cl locus of Zea mays encodes a protein with homology to myb protooncogene products and with structural similarities to transcriptional activators. EMBO J. 6:3553~3558
    Pena L, Martin-TriUo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol. 19:263~267
    Perry S E, Lehti M, Fernandez D E. The MADS-domain protein AGAMOUS-Iike 15 accumulates in embryonic tissues with diverse origins. Plant Physiol, 1999, 120:121-129.
    Pnueli L, Carmelgoren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E. (1998) The self-pruning gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 125:1979~1989
    Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. (1997) The induction and maintenance of flower-, ing in impatiens. Development. 124:3343~3351
    Qiu B X, Arelli P R, Sleper D A. (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a 'Peking'×'Essex' population. Theor Appl Genet. 98:356~364
    Qiu Y, Jing S, Fu J, Li L, Yu D. (2004) Cloning and analysis of expression profile of 13 WRKY genes in rice. Chin Sci Bull. 49:2159~2168
    Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E. (1999) Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. Genetics. 153:427~444
    Rao M S S, Mullinix B G, Rangappa M, Cebert E, Bhagsari A S, Sapra V T, Joshi J M, Dadson R B. (2002) Genotype×environment interactions and yield stability of food-grade soybean genotypes. Agron J. 94(1):72~80
    Ren T, Qu F, Morris T J. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell. 12:1917~1925
    Rhoades MW, Reinhart B J, Lira LP, Burge CB, Bartel B, Bartel DP. (2002) Prediction of plant microRNA targets. Cell. 110:513~520
    Riechmann J L, Ratcliffe O J. (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol. 3:423~434
    Riechmann J L. (2002) Transcriptional regulation: a genomic overview. In: Meyerowitz CsaE (Ed.), Amerian Society of Plant Biologists, Rockville
    Rottmann W H, Meilan R, Sheppard L A, Brunner A M, Skinner J S, Ma C, Cheng S, Jouanin L, Pilate G, Strauss S H. (2000) Diverse effects of over-expression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICA ULA, in transgenic poplar and Arabidopsis. Plant J. 22:235~245
    Ruiz-Medrano R, Xoconostle-Cazares B, Lucas W J. (1999) Phloem long-distance transport of CmNACP mRNA: Implications for supracellular regulation in plants. Development. 126:4405~4419
    Sablowski R W M, Meyerowitz E M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 92:93~103
    Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C, Manners J M. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA. 97:11655~11660
    Schmidt RJ, Ketudat M, Aukerman MJ, Hoschek G. (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell. 4(6):689-700
    Seki M, Narusaka M, Abe H, Kasuga M, Yamagnchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31:279~292
    Selth L A, Dogra S C, Rasheed M S, Healy H, Randles J W, Rezaiana M A. (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell. 17:311~325
    Selth L A, Randles J W, Rezaian M A. (2004) Host responses to transient expression of individual genes encoded by Tomato leaf curl virus. Mol Plant Microbe Interact. 17:27~33
    Sharyn E P, Nichols K W, Fernandez D E. (1996) The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell. 8: 1977~1989
    Shitsukawa N, Takagishi A, Ikari C, Takumi S, Murai K. (2006) WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet Syst. 81:13~20
    Shoemaker R C, Poizin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tanmulonis JP, Kochert G, Boerma HR. (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics. 144:329~338
    Shoemaker R C, Specht J E. (1995) Integration of the soybean molecular and classical genetic linkage groups. Crop Sci. 35:436~446
    Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton S W, Waterston R, et al. (2002) A compilation of soybean ESTs: generation and analysis. Genome. 45:329-338
    Shu G, Amaral W, Hileman LC, Baum DA. (2000) LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule Brassicaceae). Am J Bot. 87:634~641
    Shuai B, Reynaga-Pena C G, Springer P S. (2002) The LATERAL ORGAN BOUNDARIES Gene Defines a Novel, Plant-Specific Gene Family. Plant Physiol. 129:747~761
    Silva C, Garcia-Mas J, Sanchez A. M, Arus P, Oliveira M M. (2005) Looking into flowering time in almond (Prunus dulcis(Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet. 110:959~968
    Somerville C, Somerville S. (1999) Plant functional genomics. Science. 285:380~383
    Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. (2004) A new integrated genetic linkage map of the soybean, Theor Appl Genet. 109(1):122~128
    Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development. 125:733~742
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. (1996) The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 85:159~170
    Southerton S G, Strauss S H, Olive M R, Harcourt R L, Decroocq V, Zhu X, Llewellyn D J, Peacock W J, Dennis E S. (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gone LEAFY. Plant Mol Biol. 37:897~910
    Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L, Goldberg R B, Harada J J. (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA. 98:11806~11811
    Takada S, Hibara K, Ishida T, Tasaka M. (2001) The CUPSHAPED COTYLEDON1 gone of Arabidopsis regulates shoot apical meristem formation. Development. 128:1127~1135
    Taoka K, Yanagimoto Y, Daimon Y, Hibara K, Aida M, Tasaka M. (2004) The NAC domain mediates functional specificity of CUP-SHAPED COTYLEDON proteins. Plant J. 40:462~473
    Tran L P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamagnchi-Shinozaki K. (2004) Isolation and functional analysis of Arabidops/s stress-inducible NAC transcription factors that bind to a drought-responsive c/s-element in the early responsive to dehydration stress I promoter. Plant Cell. 16:2481~2497
    Ulker B, Somssich IE. (2004) WRKY transcription factors: from DNA binding towards biological function. Current Opin Plant Biol. 7:491~498
    Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley E J, Schafer E, Nagy F. (2004) Genome-wide analysis of gone expression reveals function of the bZIP transcription factor HY5 in the UV-B response ofArabidopsis. Proc Natl Acad Sci USA. 101:1397~1402
    Vicente-Carbajosa J., Onate L., Lara P., Diaz I. Carbonero P. (1998) Barley BLZ1: A bZIP transcriptional activator that interacts with endosperm-specific gone promoters. Plant J. 13:629-640
    Veit J, Wagner E, Albrechtova J T P. (2004) Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction. Plant Physiol Biochem. 42:573~578
    Vroemen C W, Mordhorst A P, Albrecht C, Kwaaitaal M A, de Vries S C. (2003) The CUP-SHAPED COTYLEDON3 gone is required for boundary and shoot meristem formation in Arabidops/s. Plant Cell. 15:1563~1577
    Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. (2002) Apple has two ortholognes of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol. 49:567~577
    Wagner D, Sablowski RWM, Meyerowitz EM. (1999) Transcriptional activation of APETALA1 by LEAFY. Science. 285:582~584
    Wang H, Tang W, Zhu C, Perry SE. (2002) A chromatin immuno-precipitation (CHIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J 32:831-843
    Webb DM, Baltazar BM, Rao-Arelli AP, Schupp J, Keim P, Clayton K, Ferreira AR, Owens T, Beavis WD. (1995) QTL affecting soybean cyst-nematode resistance. Theor Appl Goner. 91:574~581
    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. (1992) LEAFY controls floral meristem identity in Arabidops/s. Cell. 69:843~859
    Weigel D, Meyerowitz E M. (1993) Activation of floral homeotic genes in Arabidopsis. Science. 261:1723~1726
    Weigel D, Nilsson O. (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature. 377: 495~500
    Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B. (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development. 131: 915~922
    Wellmer F, Riechmann J L, Alves-Ferreira M, Meyerowitz E M. (2004) Genome-Wide Analysis of Spatial Gene Expression in Arabidopsis Flowers. Plant Cell. 16: 1314~1326
    Wilson R F. (1987) Seed composition. In Boerma H R and Specht J E. (ed.). Soybeans: Improvement, production and uses. 3nd ed. ASA, Madison, WI
    Xie Q, Frugis G, Colgan D, Chua N H. (2000)Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14: 3024~3036
    Xie Q, Guo H, Dallmann G, Chua N-H. (2002) SINAT5, a RING E3 ubiquitin protein ligase, promotes post-translational degradation of NAC1 to attenuate auxin signals. Nature. 419: 167~170
    Xie O, Sanz-Burgos A P, Guo H, Garcia J A, Gutierrez C. (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a Geminivirus protein. Plant Mol Biol. 39:647~656
    Xing L, Ge C, Zeltser R, Maskevitch G, Mayer B J, Alexandropoulos K. (2000) c-Src signaling induced by the adapters Sin and Cas is mediated by Rapl GTPase. Mol Cell Biol. 20(19): 7363~7377
    Xiong Y, Liu T, Tian C, Sun S, Li J, Cben M. (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol. 59: 191~203
    Yamagnehi S K, Shinozaki K. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress. Plant Cell. 6:251~264
    Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. (2001) An informative linkage map of soybean reveals OTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res. 8: 61~72
    Yanagisawa S. (1995) A novel DNA binding domain that may form a single zinc finger motif. Nucleic Acid Res. 23: 3403~3410
    Yanagisawa S. (1996) Dof DNA binding proteins contain a novel zinc finger motif. Trends Plant Sci. 1: 213~214
    Yano M, Sasaki T. (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol. 35: 145~153
    Yanofsky M. (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol Plant Mol Biot 46: 167~188
    Yu O, Shi J, Hession A. (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean. Phytochemistry. 63(7): 753~763.
    Yu Q, Moore P H, Albert H H, Roader A H K, Ming R. (2005) Cloning and characterization of a FLORICA ULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Res. 15(8): 576~584
    Zhang H, Yu L, Mao N, Fu O, Tu O, Gao J, Zhao S. (1999) Cloning, characterization, and chromosome mapping of RPS6KC1, a novel putative member of the ribosome protein S6 kinase family, to chromosome 12q12~q13.1. Genomics. 61(3): 314~318
    Zhang W-K, Wang Y-J, Luo G-Z, Zhang J-S, He C-Y, Wu X-L, Gai J-Y, Chen S-Y. (2004)QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet. 108: 1131~1139
    包方,胡玉欣,李家洋,等.通过cDNA阵列技术鉴定拟南芥生长素应答基因.科学通报.(2001) 23:1988~1992
    陈金军,张学文.植物胚胎发生基因调控的研究进展西北植物学报.(2004)24(11):2183~2187
    陈俊,王宗阳.植物MYB类转录因子研究进展.植物生理与分子生物学学报.(2002)28(2):81~88
    陈丽.植物转录因子的结构与功能.植物生理学通讯.(1999)33:401~409
    陈庆山,张忠臣,刘春燕,王伟权,李文滨.应用Charleston重组自交系群体构建大豆遗传图谱.中国农业科学.(2005) 38(7):1312~1316
    崔永兰,张露,黄敏仁.植物MADS盒基因研究进展.中国生物工程杂志.(2003)23(9):50-54
    刁丰秋 黄美娟 吴乃虎.高等植物胚胎发生的分子调控植物学报.(2000)42:331-340
    段远霖,李维明,吴为人,刘华清.植物MADS-box基因的研究进展.福建农林大学学报.(自然科学版.(2003)32(1):104~109
    高国庆,储成才,刘小强,李杨瑞.植物WRKY转录因子家族研究进展.植物学通报.(2005)22(1):11~18
    高新起 种子贮藏蛋白的运输、积累和基因表达调控.细胞生物学杂志.(2005)27:35-38
    郭晓芳,严海燕.植物中的Dof蛋白和Dof转录因子家族.植物生理学通讯.(2005)41(4):419~423
    赫林,徐听.植物转录因子WRKY家族的结构及功能.植物生理学通讯.(2004)40(2):260~265
    黄方.大豆株型性状的遗传分析和RAPD标记研究.(2002)硕士论文.南京农业大学
    黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构和功能.遗传.(2004)26(3):414~418
    黄荣峰,黄大昉.植物转录因子功能分析方法农业生物技术学报.(2002)10(3):295~300
    黄泽军,黄荣峰,黄大防.ERF转录因子及其在植物防卫反应中的作用.植物病理学报.(2004)34(3):193~198
    李援亚,张云孙,杜娟,高志勇,张永彪,王璐.应用寡核苷酸芯片分析水稻花序相关基因在花序发育中的表达谱.(2003)25(6):695~699
    刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析.遗传学报.(2000)27(11):1018~1026
    刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报.(2000)45(14):1465~1474
    卢为国.黄淮地区大豆胞囊线虫生理小种和大豆抗性遗传与基因的研究.(2005)博士学位论文.南京农业大学
    路子显,常团结,刘翔,朱祯.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一)棗结构、分类、分布和同源性分析.遗传.(2001)23:564~570
    马月萍,戴思兰.植物花芽分化机理研究进展.分子植物育种.(2003)1:539~545
    马月萍,方晓华,申业,陈凡,戴思兰.植物开花基因新资源:甘菊中花分生组织决定基因DFL.分子植物育种.(2004)2:597~599
    欧阳文石.植物WRKY转录因子.生命的化学.(2001)2(3):27~28
    邵寒霜,李继红,郑学勤,陈守方.拟南芥LFY cDNA的克隆及转化菊花的研究.植物学报.(1999)41:268~271
    沈文飚.植物HD-Zip转录因子.生命的化学.(2003)23(5):387~389
    史莹华,许梓荣.GATA转录因子研究进展.生物学通报.(2005)40(3):1~2
    田淑兰,陈敏,白书农.LEY/FLO基因与高等植物成花诱导分子机理的研究进展.生物学通报.(1999)34(9):5~7
    宛煜嵩,王珍,肖英华,吕蓓,方宣钧.一张含有227个SSR标记的大豆遗传连锁图.分子植物育种.(2005)3(1):15~20
    万小荣,李玲.植物的MYB蛋白植物生理学通讯.(2002)38(2):165-170
    王利琳,梁海曼,庞基良,朱睦元.拟南芥LEAFY基因在花发育中的网络调控及生物学功能.遗传. (2004)26(1):137~142
    王平荣,邓晓建,高晓玲,陈静,万佳,姜华,徐正君.DREB转录因子研究进展.遗传.(2006) 28(3):369~374
    王希庆,陈伯君,印莉萍.植物中MYB转录因子.生物技术通报.(2003)(2):22~25
    吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒.大豆遗传图谱的构建和分析.遗传学报.(2001)28(11):1051~1061
    吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析.遗传学报.(2001)28(10):947~955
    谢迎秋 孟蒙 朱祯.植物反式作用因子研究进展.(2000)高技术通讯.2:97-106
    杨喆 关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟.大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报.(2004)5(4):309~314
    曾英,胡金勇,李志坚.植物MADS盒基因与花器官的进化发育.植物生理学通讯.(2001) 37(4):281~287
    张德水,董伟,惠东威,陈受宜,庄炳昌.用栽培大豆与野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图.科学通报.(1997)42(12):1326~1330.
    张忠臣,战秀玲,陈庆山,滕卫丽,杨庆凯,李文滨.大豆油分和蛋白性状的基因定位.大豆科学.(2004)23(2):81~85
    郑蕊.大豆种子蛋白积累与调控的蛋白质组研究.硕士学位论文.(2005)南京农业大学
    庄炳昌.中国野生大豆的遗传多样性及品质性状QTL定位.博士学位论文.(2002)中国农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700