深海浮式结构物与其系泊缆索的耦合动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋蕴藏着丰富的资源,对海洋油气资源的开发和利用逐渐向深水甚至超深水区发展。为了保证海洋平台等长期在海上作业的浮式结构物在大多数海洋环境作用下可以正常工作并抵御各种海洋环境荷载,准确模拟系泊系统的运动时间历程和可靠性分析显得非常重要。本文应用边界元方法和Morison公式对浮式结构物进行水动力分析,应用几何非线性有限元方法计算系泊缆索张力,并在时域内对浮式结构物及其系泊缆索进行了耦合分析。无论浅水域还是深水域都会产生波群,其对海工结构物尤其是系泊浮体具有较强的破坏力,会在结构物自身频率附近产生共振,对结构物造成严重的威肋、或破坏。本文数值模拟了具有不同群性的波浪历程,并对波群作用下浮式结构物与其系泊系统进行了耦合动力分析。
     本文基于势流理论,应用三维分布源法求解边界积分方程,采用满足自由水面条件和海底条件的Green函数,只需在物体表面划分网格;同时利用对称性减少了计算量,缩短了计算时间;采用扩展的边界积分方程法消除了频域计算中的不规则频率问题;根据Cummins的理论,通过快速傅立叶变换,将频域计算结果变换到时域,得到浮体在波浪中的时域运动方程。
     在深水或超深水环境下,系泊缆索的惯性和阻尼会对上部结构产生很大影响,同时系泊缆索在大变形、大预张力条件下,缆索变形的非线性效应不能忽略,本文基于全量的拉格朗日表述和两节点的等参索单元,应用几何非线性有限元方法和Newmark方法建立了缆索动力分析的数值模型。应用该模型系统地考察了缆索材料、水深、顶端激励幅值、顶端激励频率、初张力和顶角等因素对缆索动张力的影响。
     建立了联合应用边界元方法/莫里森公式和几何非线性有限元方法等对风、浪、流联合作用下深海系泊系统进行耦合动力响应分析的计算模式。针对不同海洋环境作用下的深海系泊系统,深入研究了水深、波高、周期、谱峰因子、流速、风速以及不同风、浪、流入射方向等对浮式结构物运动响应及其系泊缆索张力的影响。
     首次研究了波浪群性对深海浮式系泊系统的影响。天然海浪经常出现一连串波高超过某一临界值的波构成,即所谓“群”,海浪群性是海浪场的一种重要特性。要判明海浪群性的大小,仅以海浪频谱为依据是不够的,波包线是描述海浪群性的重要工具,海浪群性的大小和波包谱的形状是密不可分的。实测的波面资料可通过Hilbert变换得波包线,进而可得波包谱。给定波浪要素,群高参数GFH和群长参数GLF后即可结合频谱和波包谱准确的模拟出具有不同群性的海浪。本文对不同群性的海浪作用下浮式结构物与其系泊系统进行了耦合动力分析,研究了群性参数的不同取值对波面、浮式结构物的运动响应以及系泊缆索张力的影响。
Ocean is rich in resources, and exploration of offshore oil and gas is boosted into deep water and even ultra-deep water. In order to ensure that offshore operations and other long-term floating structures can withstand the loads of the marine environment and work normally, accurate simulations of the time history of the mooring system and reliability analysis are very important. Boundary element method and Morison formulation are applied in this paper for hydrodynamic analysis, and a geometrically nonlinear finite element method is developed to solve the mooring line dynamics. The coupled dynamic analysis of floating structure and its mooring lines is executed in time domain. Wave groups occur in both deep and shallow water, and can cause severe loading on floating structures, especially at or close to natural motion frequencies. Hence, its influence has become an important factor considered in the design of the ocean structures. Wave elevations with different groupiness are simulated numerically, and the influence of wave grouping on the coupled analysis of the mooring system is studied here.
     Based on potential flow theory, the boundary integral equations are solved using the three-dimensional distributed source method in this paper. Green function satisfying both the free surface condition and the seabed condition is used, hence, only the body surface needs to be partitioned by meshes. At the same time, symmetry is adopted to reduce the amount and time cost in computation. The extended boundary integral equation method is adopted to remove the irregular frequency effect in frequency domain. According to Cummins's theory, the results in frequency domain can be transformed into the time domain through the Fast Fourier Transform (FFT), then the motion equations of floating structure in time domain can be obtained.
     In deep water or ultra deep water, the inertia and damping of the mooring lines will have a significant impact on the upper structure, meanwhile, under the conditions of large deformation and large pretension, the nonlinear effects of deformation of the mooring lines cannot be ignored. Based on the total Lagrangian formulation, a geometrically nonlinear finite element method using isoparametric cable element is developed to solve the mooring line dynamics. The Newmark method is used for dynamic nonlinear analysis of mooring lines. Then, the numerical model above is applied to investigate the effects of some key factors, such as material, water depth, amplitude and frequency of the external excitation, pretension and apex angle, on mooring line tension.
     Using boundary element method/Morrision equation and geometrically nonlinear finite element method, a computing model is established for coupled dynamics of the deepwater mooring system in the action of wave, wind and current. The effects on the motion responses of floating structure and the mooring line tensions of water depth, wave height, wave period, overshoot parameter, velocity of current and wind, incidence direction of wind, wave and current are intensively researched.
     The influence of wave groupiness on the deepwater mooring system is studied for the first time. Ocean waves often appear in sequences of high wave elevations, which are known as wave groups. Groupiness is an important characteristic of wave field. It is not enough to ascertain the intention of wave groupiness merely by wave spectrum. The wave envelope is an important tool to describe the wave groupiness, the intension of which is inextricably linked to the shape of wave envelope spectrum. The Hilbert transform is used to calculate the wave envelope of measured data, and the wave envelope spectrum density is computed from the wave envelope by the usual Fourier transform. Given wave parameters, group height factor (GFH) and group length factor (GLF), wave elevations with different groupiness can be simulated accurately using wave spectrum combined with wave envelope spectrum. In the present study, coupled dynamics of the platform and the attached mooring lines under the action of wave groups are executed, and the effects of groupiness parameters on wave surface, motion responses and mooring line tensions are investigated.
引文
[1]段铁军,张抗.中国海域深水区油气勘探方向与领域[J].当代石油石化.2006,14(8):23-25.
    [2]马延德.浮式生产储油船(FPSO)设计建造研究[D].大连:大连理工大学船舶工程学院,2008.
    [3]郭彬.浅水大型FPSO运动及甲板上浪特性研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2010.
    [4]廖谟圣.国外超深水钻采平台的发展给我们的启迪[J].中国海洋平台.2003,18(5):1-5.
    [5]张帆,杨建民,李润培.一种新型Spar平台概念的试验研究[J].中国造船.2005,46(B11):293-298.
    [6]陈矗立.深海浮式结构物及其锚泊系统的动力特性研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2007.
    [7]Ying W, Jian Min Y, Zhi Qiang H, et al. Theoretical research on hydrodynamics of a geometric spar in frequency-and time-domains[J]. Journal of Hydrodynamics.2008, 20(1):30-38.
    [8]Fan Z, Jian Min Y, Run Per L, et al. Numerical and Experimental Research on the Global Performances of Cell-Truss Spar Platform[J]. China Ocean Engineering.2007,21(04): 561-576.
    [9]张帆,杨建民,李润培.新型多柱桁架式Spar平台水动力性能研究[J].海洋工程.2007,25(2):1-8.
    [10]Fan Z, Jian Min Y, Run Pei L, et al. Coupling effects for cell-truss spar platform: comparison of frequency- and time- domain analyses with model tests[J]. Journal of Hydrodynamics.2008,20(4):424-432.
    [11]房茂鹏,杨建民,王颖.多柱桁架式平台在不同方向来流下绕流流场的特性研究[J].中国海洋平台.2009,24(3):6-11.
    [12]Li B, Ou J. Numerical Simulation on the Hydrodynamic and Kinetic Performance of a New Deep Draft Platform[C]. Osaka, Japan:Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference,2009.
    [13]Qiao D, Zheng C, Li B, et al. Comparative Analysis on Fatigue Damage of Deepwater Hybrid Mooring Line[C]. Shanghai, China:Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering,2010.
    [14]Li B, Ou J, Bin T. Fully Coupled Effects of Hull, Mooring and Risers Model in Time Domain Based on An Innovative Deep Draft Multi-Spar[J]. China Ocean Engineering. 2010,24(2):219-233.
    [15]Li B, Ou J. Concept Design of a New Deep Draft Platform [J]. Journal of Marine Science and Application.2010,9(3):241-249.
    [16]Heurtier J M, Le B P, Fontaine E, et al. Coupled dynamic response of moored FPSO with risers[C]. Stavanger, Norway:International Society Offshore& Polar Engineers,2001.
    [17]Kim Y B, Kim M H. Hull/Mooring/Riser Coupled Dynamic Analysis of a Tanker-Based Turret-moored FPSO in Deep Water[C]. Kitakyushu, Japan:Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference,2002.
    [18]Tahar A, Kim M H. Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tanker-based FPSO[J]. Applied Ocean Research.2003,25(6):367-382.
    [19]Kim M H, Koo B, Mercier R M, et al. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment [J]. Ocean Engineering.2005, 32(14-15):1780-1802.
    [20]Srinivasan N, Chakrabarti S, Sundaravadivelu R, et al. Hydrodynamics of a SPAR-type FPSO concept for application as a production platform[C]. Berlin, Germany: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2008.
    [21]张海彬.FPSO储汕轮与半潜式平台波浪载荷三维计算方法研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2004.
    [22]张火明,杨建民,肖龙飞.内转塔式系泊FPSO模型试验研究[J].华东船舶工业学院学报(自然科学版).2005,19(03):6-11.
    [23]张火明,杨建民,肖龙飞.等效水深截断的深海平台混合模型试验方法研究[J].海洋工程.2006,24(04):1-7.
    [24]张火明,杨建民,肖龙飞.基于混合模型试验技术的中等水深FPSO系统水动力性能研究[J].船舶力学.2006,10(5):1-10.
    [25]肖越.系泊系统时域非线性计算分析[D].大连:大连理工大学船舶工程学院,2006.
    [26]邵启会.海洋工程柔性构件分析方法研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2008.
    [27]张健.平台与柔性构件的频域耦合动力分析[D].哈尔滨:哈尔滨工程大学船舶工程学院,2008.
    [28]陈小红,黄祥鹿.单点系泊海洋资料浮标的动力分析[J].中国造船.1995(03):1-8.
    [29]范菊,黄祥鹿.锚泊线的动力分析[J].中国造船.1999(01):13-20.
    [30]范菊,陈小红,黄祥鹿.锚泊线一阶运动响应对二阶锚链阻尼的影响(英文)[J].船舶力学.2000,4(06):20-27.
    [31]朱新颖,黄祥鹿.深海锚泊浮标的二阶动力分析[J].海洋工程.2000,18(02):74-78.
    [32]黄祥鹿,陈小红,范菊.锚泊浮式结构波浪上运动的频域算法[J].上海交通大学学报.2001,35(10):1470-1476.
    [33]徐兴平.单点系泊系统动力响应分析[J].中国海洋平台.1994,18(5):299-302.
    [34]徐福敏.单点系泊系统低频纵荡二阶力的频域计算[J].河海大学学报(自然科学版).1997,25(01):103-106.
    [35]刘建成,李润培,顾永宁,等.一种简易单点系泊系统的可行性研究[J].上海交通大学学报.2000,34(01):132-136.
    [36]李玉龙,于定勇,李翠琳,等.防风单点系泊系统系泊力试验研究[J].海岸工程.2008,27(2): 17-25.
    [37]刘应中,缪国平,李谊乐,等.系泊系统动力分析的时域方法[J].上海交通大学学报.1997,31(11):7-12.
    [38]聂孟喜,王旭升,工晓明.防风水鼓系泊系统系泊力的计算方法[J].水运工程.2003(05):5-8.
    [39]聂孟喜,王旭升,王晓明,等.风、浪、流联合作用下系统系泊力的时域计算方法[J].清华大学学报(自然科学版).2004,44(09):1214-1217.
    [40]聂孟喜,王旭升,张琳.单锚腿系泊系统动力响应的时域计算方法[J].海洋工程.2004,22(02):58-61.
    [41]张琳.单锚腿系泊系统数值模拟[D].北京:清华大学土木水利学院,2005.
    [42]聂孟喜,张琳.单锚腿系泊系统动力计算的新方法[J].海洋技术.2007,26(02):1-5.
    [43]Roveri F E, Rodrigues M V, Jacob B P. Coupled motion analysis of a semisubmersible platform in Campos Basin[C]. Vancouver, BC, Canada:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2004.
    [44]Garrett D L. Coupled analysis of floating production systems[J]. Ocean Engineering. 2005,32(7 SPEC. ISS.):802-816.
    [45]余龙,谭家华.基于准静定方法的多成分锚泊线优化[J].海洋工程.2005,23(01):69-73.
    [46]余龙,王娟.半潜式平台深水锚泊系统三维时域动力分析[J].中国海洋平台.2007,22(06):34-37.
    [47]童波,杨建民,李欣.深水半潜平台悬链线式系泊系统耦合动力分析[J].中国海洋平台.2008,23(06):1-7.
    [48]童波.半潜式平台系泊系统型式及其动力特性研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2009.
    [49]白雪平.深水半潜式平台系泊系统设计研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2008.
    [50]宋安科.深水半潜式钻井平台系泊系统方案设计与分析[D].哈尔滨:哈尔滨工程大学船舶工程学院,2008.
    [51]刘文玺.基于高阶面元的浮体运动与波浪载荷计算方法[D].哈尔滨:哈尔滨工程大学船舶工程学院,2009.
    [52]Zhi Qiang H, Leira B J, Sa L. Coupling Effect of Riser on Integrated FPS in Deepwater Area[J]. China Ocean Engineering.2009,23(4):613-622.
    [53]由际昆,王言英.深水半潜平台绷紧索系泊系统设计研究[J].中国海洋平台.2009,24(01):24-30.
    [54]范亚丽,吴宝山,缪泉明.张紧式系泊方式对深水半潜平台性能影响研究[J].中国海洋平台.2010,25(03):41-46.
    [55]史琪琪,杨建民.半潜式平台运动及系泊系统特性研究[J].海洋工程.2010,28(4):1-8.
    [56]耿宝磊.波浪对深海海洋平台作用的时域模拟[D].大连:大连理工大学水利工程学院,2010.
    [57]唐东洋.风浪联合作用下深水半潜式平台水动力性能实验研究[D].大连:大连理工大学水 利工程学院,2010.
    [58]李志海.深海半潜式平台多点系泊系统动力特性分析[D].北京:中国石油大学机电工程学院,2010.
    [59]冯爱春.深海平台及系泊与立管系统动力特性分析[D].上海:上海交通大学船舶海洋与建筑工程学院,2010.
    [60]王晴晴.深水锚泊半潜式平台的混合模型试验研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2011.
    [61]Kim M H, Tahar A, Kim Y B. Variability of TLP motion analysis against various design methodologies/parameters[C]. Stavanger, Norway:Proceedings of the International Offshore and Polar Engineering Conference,2001.
    [62]Ormberg H, Baarholm R, Stansberg C T. Time-Domain Coupled Analysis of Deepwater TLP, and Verification against Model Tests[C]. Honolulu, HI, United states:International Society Offshore& Polar Engineers,2003.
    [63]Chen X H, Ding Y, Zhang J, et al. Coupled dynamic analysis of a mini TLP:Comparison with measurements[J]. Ocean Engineering.2006,33(1):93-117.
    [64]Zou J. TLP Hull/Tendon/Riser Coupled Dynamic Analysis in Deepwater[C]. Honolulu, HI, United states:International Society Offshore& Polar Engineers,2003.
    [65]Wang T, Zou J. Hydrodynamics in Deepwater TLP tendon design[J]. Journal of Hydrodynamics.2006,18(3):386-393.
    [66]Ma W, Lee M Y, Zou J, et al. Deepwater nonlinear coupled analysis tool[C]. Houston, TX, USA:Proceedings of the Annual Offshore Technology Conference,2000.
    [67]Wichers J, Devlin P V. Benchmark Model Tests on the DeepStar Theme Structures FPSO, SPAR and TLP[C]. Houston, Texas:Offshore Technology Conference,2004.
    [68]Yang C K, Padmanabhan B, Murray J, et al. The transient effect of tendon disconnection on the global motion of ETLP[C]. Berlin, Germany:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2008.
    [69]Yang C K, Kim M H. Transient effects of tendon disconnection of a TLP by hull-tendon-riser coupled dynamic analysis[J]. Ocean Engineering.2010,22(3):480-503.
    [70]董艳秋,胡志敏,张翼.张力腿平台及其基础设计[J].海洋工程.2000,18(04):63-68.
    [71]胡志敏,董艳秋,杨冠声,等.张力腿平台拟静态分析[J].中国海洋平台.2001,16(04):21-25.
    [72]胡志敏,董艳秋,张建民.张力腿平台水动力参数计算[J].海洋工程.2002,20(03):14-22.
    [73]崔毅.张力腿平台低频线性波浪载荷及响应研究[D].天津:天津大学建筑工程学院,2003.
    [74]杨冠声.张力腿平台非线性波浪载荷和运动响应研究[D].天津:天津大学建筑工程学院,2003.
    [75]鲍莹斌,李润培,顾永宁.中等水深轻型张力腿井口平台运动研究[J].海洋工程.1999,17(01):1-7.
    [76]鲍莹斌,舒志,李润培.中等水深轻型张力腿平台型式研究[J].海洋工程.2001,19(02):7-12.
    [77]何勇,金伟良,龚顺风.考虑几何非线性的张力腿平台随机响应等效线性化分析[J].海洋工程.2008,26(04):8-15.
    [78]余建星,张中华,于皓.张力腿平台总体响应分析方法研究[J].海洋通报.2008,27(02):97-102.
    [79]曾晓辉,沈晓鹏,刘洋,等.考虑多种非线性因素的张力腿平台动力响应[J].海洋工程.2006,24(02):82-88.
    [80]曾晓辉,沈晓鹏,吴应湘.张力腿平台有限振幅运动的方程和数值解[J].应用数学和力学.2007,28(01):34-44.
    [81]徐万海,曾晓辉,吴应湘,等.深水张力腿平台与系泊系统的耦合动力响应[J].振动与冲击.2009,28(02):145-150.
    [82]Zeng X H, Li X W, Liu Y, et al. Nonlinear Dynamic Responses of Tension Leg Platform with Slack-Taut Tether[J]. China Ocean Engineering.2009,23(1):37-48.
    [83]Ran Z, Kim M H, Zheng W. Coupled Dynamic Analysis of a Moored Spar in Random Waves and Currents (Time-Domain Versus Frequency-Domain Analysis) [J]. Journal of Offshore Mechanics and Arctic Engineering.1999,121(3):194-200.
    [84]Ran Z. Coupled dynamic analysis of floating structures in waves and currents[D]. United States — Texas:Texas A&M University,2000.
    [85]Arcandra. Hull/mooring/riser coupled dynamic analysis of a deepwater floating platform with polyester lines[D]. United States—Texas:Texas A&M University,2001.
    [86]Tahar A, Kim M H. Coupled-dynamic analysis of floating structures with polyester mooring lines[J]. Ocean Engineering.2008,35(17-18):1676-1685.
    [87]Tahar A, Halkyard J, Irani M. Comparison of time and frequency domain analysis with full scale data for the Horn Mountain Spar during hurricane Isidore[C]. Hamburg, Germany:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2006.
    [88]Chen X H, Zhang J, Johnson P, et al. Dynamic analysis of mooring lines by using three different methods[C]. Cupertino:International Society Offshore& Polar Engineers, 2001.
    [89]Chen X, Zhang J, Johnson P, et al. Dynamic analysis of mooring lines with inserted springs[J]. Applied Ocean Research.2001,23(5):277-284.
    [90]Chen X, Zhang J, Ma W. On dynamic coupling effects between a spar and its mooring lines[J]. Ocean Engineering.2001,20(4):424-432.
    [91]Chen X. Studies on dynamic interaction between deep-water floating structures and their mooring/tendon systems[D]. United States—Texas:Texas A&M University,2002.
    [92]Liu T J, Chen X H, Wu J F, et al. Global performance and mooring analysis of a truss spar[C]. Cupertino:International Society Offshore& Polar Engineers,2003.
    [93]Chen X, Ding Y, Zhang J, et al. Coupled dynamic analysis of a mini TLP:Comparison with measurements[J]. Ocean Engineering.2006,33(1):93-117.
    [94]Kim M, Ding Y, Zhang J. Numerical simulation of a spar interacting with a polyester mooring system[C]. Vancouver, BC, Canada:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2004.
    [95]Astrup 0 C, Nestegard A, Ronss M, et al. Coupled analysis strategies for deepwater Spar platforms[C]. Stavanger, Norway:International Society Offshore& Polar Engineers,2001.
    [96]Agarwal A K, Jain A K. Dynamic behavior of offshore Spar platforms under regular sea waves[J]. Ocean Engineering.2003,30(4):487-516.
    [97]Agarwal A K, Jain A K. Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves[J]. Ocean Engineering.2003,30(4):517-551.
    [98]Halkyard J, Liagre P, Tahar A. Full scale data comparison for the horn mountain spar[C]. Vancouver, BC, Canada:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2004.
    [99]Spanos P D, Ghosh R, Finn L D, et al. Coupled analysis of a Spar system accounting for top tensioned risers and mooring lines[C]. Kerkyra (CORFU), Greece:Fourth International Conference on Computational Stochastic Mechanics,2002.
    [100]Spanos P D, Ghosh R, Finn L D, et al. Efficient dynamic analysis of a combined spar system via a frequency domain approach[C]. Halkidiki, Greece:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2005.
    [101]Spanos P D, Ghosh R, Finn L D, et al. Coupled analysis of a Spar structure:Monte Carlo and statistical linearization solutions[J]. Journal of Offshore Mechanics and Arctic Engineering.2005,127(1):11-16.
    [102]Spanos P D, Nava V, Arena F. Coupled surge-heave-pitch dynamic modeling of spar-moonpool-riser interaction[J]. Journal of Offshore Mechanics and Arctic Engineering.2010,133(2).
    [103]Yang C K, Kim M H. Linear and Nonlinear Approach of Hydropneumatic Tensioner Modeling for Spar Global Performance[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME.2010,132(0116011).
    [104]袁梦,范菊,缪国平,等.系泊系统有限元模拟及分析[C].济南:第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会,2008.
    [105]张素侠.深海系泊系统松弛-张紧过程缆绳的冲击张力研究[D].天津:天津大学建筑工程学院,2008.
    [106]唐友刚,张若瑜,程楠,等.集中质量法计算深海系泊冲击张力[J].天津大学学报.2009,42(8):695-701.
    [107]Zhang S X, Tang Y G, Liu H X. Snap Tension in Mooring Lines of Deepwater Platform [J]. China Ocean Engineering.2009,23(3):415-428.
    [108]程楠.集中质量法在深海系泊冲击张力计算中的应用研究[D].天津:天津大学建筑工程学院,2008.
    [109]尚祖铭.深海中锚泊线动力特性研究[D].哈尔滨:哈尔滨工程大学船舶工程学院,2010.
    [110]李金伦.深水平台系泊系统冲击载荷计算的应力波方法[D].天津:天津大学建筑工程学院, 2008.
    [111]白兴兰,黄维平.钢悬链线立管与Spar整体分析初探[J].上程力学.2009,26(12):161-166.
    [112]彭程,孙春梅,祁丰雷,等.SPAR平台响应与系泊索关系研究[J].中国海洋平台.2009,24(04):9-13.
    [113]高喜峰,张则青,阴宾宾.深海SPAR平台系泊系统耦合动力分析[J].海洋技术.2010,29(1):70-73.
    [114]孙金伟,王树青.系泊模式对深水Spar平台运动性能的影响[J].中国海洋大学学报(自然科学版).2010,40(9):147-153.
    [115]Wang H, Luo Y, Hu K, et al. Mooring Truncation Design of a Deepwater SPAR[J]. Journal of Marine Science and Application.2010,9(2):168-174.
    [116]韩璇.深水锚索锚泊性能研究[D].大连:大连海事大学航海学院,2008.
    [117]刘海笑,黄泽伟.新型深海系泊系统及数值分析技术[J].海洋技术.2007,26(02):6-10.
    [118]黄维,刘海笑.新型深水系泊系统非线性循环动力分析[J].海洋工程.2010,28(02):22-28.
    [119]Junrong W, Huajun L, Ping L, et al. Nonlinear Coupled Analysis of a Single Point Mooring System[J]. Journal of Ocean University of China.2007,6(3):310-314.
    [120]Kim Y. Dynamic analysis of multiple-body floating platforms coupled with mooring lines and risers[D]. United States—Texas:Texas A&M University,2003.
    [121]Low Y M, Langley R S. Time and frequency domain coupled analysis of deepwater floating production systems[J]. Applied Ocean Research.2006,28(6):371-385.
    [122]Low Y M. Prediction of extreme responses of floating structures using a hybrid time/frequency domain coupled analysis approach[J]. Ocean Engineering.2008, 35(14-15):1416-1428.
    [123]Low Y M, Langley R S. A hybrid time/frequency domain approach for efficient coupled analysis of vessel/mooring/riser dynamics[J]. Ocean Engineering.2008,35(5-6): 433-446.
    [124]Berteaux. H O. Buoy engineering[M]. New York:Wiley,1976
    [125]Bathe K J. Finite Element Procedures[M]. Upper Saddle River, N. J.:Prentice Hall, 1996
    [126]Chatjigeorgiou I K, Mavrakos S A. Comparative evaluation of numerical schemes for 2D mooring dynamics [J]. International Journal of Offshore and Polar Engineering.2000, 10(4):301-309.
    [127]刘应中,缪国平.船舶在波浪上的运动理论[M].上海市:上海交通大学出版社,1987.
    [128]戴遗山.舰船在波浪中运动的频域与时域势流理论[M].北京市:国防工业出版社,1998.
    [129]王惟诚,顾之浩.任意形状大尺度固定式近海建筑物波浪荷载的数值计算——三维表而布源法[J].海洋工程.1989,7(02):50-61.
    [130]Wehausen J V, Laitone E V. Surface waves[M]. Berlin:Springer-Verlag,1960
    [131]Noblesse F. The green-function in the theory of radiation and diffraction of regular water-waves by a body[J]. Journal of Engineering Mathematics.1982,16(2):137-169.
    [132]Newman J N. Double-precision evaluation of the oscillatory source potential[J]. Journal of Ship Research.1984,28(3):151-154.
    [133]Newman J N. An expansion of the oscillatory source potential[J]. Applied Ocean Research.1984,6(2):116-117.
    [134]Newman J N. Approximation for the Bessel and Struve functions[J]. Mathematics of Computation.1984,43(168):551-556.
    [135]Newman J N. Algorithms for the free-surface green function[J]. Journal of Engineering Mathematics.1985,19(1):57-67.
    [136]Hess J L, Smith A M 0. Calculation of nonlifting potential flow about arbitrary three dimensional bodies[J]. Journal of Ship Research.1964,8(2):22-44.
    [137]Martin P A. Multiple scattering of surface water waves and the null-field method[C]. 15th Symp. on Naval Hydrodynamics Session III:1984.
    [138]Miao G P, Liu Y Z. Hydrodynamical coefficients of a column with footing in finite-depth waters[C]. Proceedings of the 3rd International Offshore Mechanics and Arctic Engineering Symposium, New Orleans, U.S. A:1984.
    [139]Miao G P. On the computation of ship motions in regular waves[R]. Division of Ship Hydrodynamics, Chalmers Univ. of Technology, Sweden,1980.
    [140]Ogilvie T F, Shin Y S. Integral-equation solutions for time-dependent free-surface problems[C]. Tokyo Japan:日本造船学会论文集,1978.
    [141]孙亮.不规则频率的消除及其在波浪与结构物作用的高频和多物体干涉问题中的应用[D].大连:大连理工大学水利工程学院,2009.
    [142]孙亮,滕斌,张晓兔,等.消除“不规则频率”的非连续高阶元方法[J].海洋工程.2004,22(04):51-59.
    [143]Lee C H, Newman J N, Zhu X. An extended boundary integral equation method for the removal of irregular frequency effects[J]. International Journal for Numerical Methods in Fluids.1996,23:637-660.
    [144]段文洋,贺五洲.一种消除水动力求解中不规则频率影响的边界元法[J].水动力学研究与进展A辑.2002,17(02):156-161.
    [145]戴世强,梅强中,周显初整理.水波动力学[M].北京市:科学出版社,1984.
    [146]Cummins W E. The impulse response function and ship motions[J]. Schiffstechnik. 1962(9):101-109.
    [147]Chitrapu A S, Ertekin R C. Time-domain simulation of large-amplitude response of floating platforms[J]. Ocean Engineering.1995,22(4):367-385.
    [148]Deboom W C, Pinkster J A, Tan P. Motion and tether force prediction for a TLP[J]. Journal of Waterway Port Coastal and Ocean Engineering-ASCE.1984,110(4):472-486.
    [149]Zhao C. Theoretical investigation of springing-ringing problems in tension-leg-platforms[D]. United States—Texas:Texas A&M University,1996.
    [150]Ran Z, Kim M H. Nonlinear coupled responses of a tethered spar platform in waves[J]. International Journal of Offshore and Polar Engineering.1997,7(2):111-118.
    [151]Newman J N. Marine Hydrodynamics[M]. The MIT Press,1977
    [152]Abramowitz M, Stegun I A. Handbook of mathematical functions[M]. New York:Dover Publications,1965
    [153]李玉成,滕斌.波浪对海上建筑物的作用[M].北京市:海洋出版社,2002.
    [154]Newman J N. Second-order, slowly-varying forces on vessels in irregular waves[C]. London, IME:International Symposium on the Dynamics of Marine Vehicles and Structures in Waves,1974.
    [155]Nielsen F G, Herfjord K, Hunstad G, et al. Dynamic characteristics of a large catenary moored production platform [C]. Massachusetts, USA:Proceedings Behaviour of Off shore Structures,1994.
    [156]Wichers J E W. On the low-frequency surge motion of vessels moored in high seas[C]. Houston, Texas:14th Annual OTC,1982.
    [157]Prislin I, Blevins R D, Halkyard J E. Viscous damping and added mass of solid square plates[C]. Lisbon, Portugal:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,1998.
    [158]Chakrabarti S K. Non-Linear Methods in Offshore Engineering[M]. Elsevier, Amsterdam, 1990
    [159]Forristall G Z. Wind Spectra and Gust Factors over Water[C]. Houston, Texas:Proc. of 20th Offshore Technology Conf,1988.
    [160]Ochi M K, Shin Y S. Wind turbulent spectra for design considerations of offshore structures[C]. Houston, Texas:Proc. of 20th Offshore Technology Conf,1988.
    [161]Feikema G J, Wichers J E W. Effect of wind spectra on the low-frequency motions of a moored tanker in survival condition[C]. Proceedings-Annual Offshore Technology Conference,1991.
    [162]Jain A K, Chandrasekaran S. Aerodynamic behavior of offshore triangular tension Leg platforms[C]. Toulon, France:Proceedings of the International Offshore and Polar Engineering Conference,2004.
    [163]Zaheer M M, Islam N. Fluctuating wind induced response of double hinged articulated loading platform[C]. Berlin, Germany:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2008.
    [164]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船.1986(02):1-15.
    [165]Garrett C J R. Wave Forces on a Circular dock[J].1971,46(1):p129-p139.
    [166]Hulme A. The wave-forces acting on a floating hemisphere undergoing forced periodic oscillations[J]. Journal of Fluid Mechanics.1982,121:443-463.
    [167]滕斌.波浪对三维浮体的二阶作用[J].水动力学研究与进展A辑.1995,10(03):316-327.
    [168]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body Part 1. Monochromatic incident waves [J]. Journal of Fluid Mechanics.1989(200): 235-264.
    [169]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body Part 2. Bichromatic incident waves and body motions[J]. Journal of Fluid Mechanics.1990,211:557-593.
    [170]Bunnik T H J, De Boer G, Cozijn J L, et al. Coupled mooring analysis in large scale model tests on a deepwater CALM buoy in mild wave conditions[C]. Oslo, Norway: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2002.
    [171]Cozijn I J L, Bunnik I T H J. Coupled mooring analysis for a deep water calm buoy[C]. Vancouver, BC, Canada:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2004.
    [172]Cozijn H, Uittenbogaard R, Ter Brake E. Heave, roll and pitch damping of a deepwater CALM buoy with a skirt[C]. Seoul, Korea, Republic of:Proceedings of the International Offshore and Polar Engineering Conference,2005.
    [173]Berhault C, Guerin P, Le Buhan P, et al. Investigations on Hydrodynamic and Mechanical Coupling Effects for Deepwater Offloading Buoy[C]. Toulon, France:The Fourteenth (2004) International Offshore and Polar Engineering Conference,2004.
    [174]Ryu S, Duggal A S, Heyl C N, et al. Coupled analysis of deepwater oil offloading buoy and experimental verification[C]. Seoul, Korea, Republic of:Proceedings of the International Offshore and Polar Engineering Conference,2005.
    [175]Ryu S, Duggal A S, Heyl C N, et al. Coupled analysis of deepwater oil offloading buoy and experimental verification[J]. International Journal of Offshore and Polar Engineering.2006,16(4):290-296.
    [176]Le Cunff C, Ryu S, Duggal A, et al. Derivation of CALM buoy coupled motion RAOs in frequency domain and experimental validation[C]. Lisbon, Portugal:Proceedings of the International Offshore and Polar Engineering Conference,2007.
    [177]Salem A G, Ryu S, Duggal A S, et al. Linearization of quadratic drag to estimate calm buoy pitch motion in frequency-domain and experimental validation[C]. Honolulu, HI, United states:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2009.
    [178]Monroy C, Ducrozet G, Bonnefoy F, et al. RANS simulations of a CALM buoy in regular and irregular seas using the SWENSE method[C]. Beijing, China:Proceedings of the International Offshore and Polar Engineering Conference,2010.
    [179]李远林,吴家鸣.多锚链系泊浮筒非线性漂移运动的时域模拟[J].海洋工程.1990,8(01):25-33.
    [180]张子俊,张祖枢.深海资料浮标体及系泊系统的阻力试验研究[J].海洋技术.1993,12(3):7-15.
    [181]潘斌,高捷,陈小红,等.浮标系泊系统静力计算[J].重庆交通学院学报.1997,16(01):68-73.
    [182]谢楠,郜焕秋.浮标—缆—物体综合系统动力学二维时域分析[J].水动力学研究与进展:A 辑.2000,15(2):202-213.
    [183]Zong Yu C, Chang Mi X, Hua Jun L, et al. Nonlinear Dynamic Behavior of Moored Buoy Excited by Free Surface Waves[J]. China Ocean Engineering.2009,23(3):585-592.
    [184]Johnson R R, Mansard E P D, Ploeg J. Effects of Wave Grouping on Breakwater Stability[C]. Hamburg:Proceedings of Sixteenth Coastal Engineering Conference,1978.
    [185]Murray J J, Wilkie B P, Muggeridge D B. An experimental and analytical study of the effects of wave grouping on the slowly varying drift oscillation of a floating rectangular barge[J]. Ocean Engineering.1987,14(4):255-274.
    [186]Sawaragi T, Aoki S, Takada M. Effects of wave grouping on the low frequency motion of a moored rectangula vessel and the characteristics of nonlinear hydrodynamic forces[J]. Coastal Engineering in Japan.1988,31(1):167-182.
    [187]Weiqi L, Peiji H. The wave grouping effect on wave forces on a vertical breakwater [J]. Chinese Jo,urnal of Oceanology and Limnology.1996,14(1):91-95.
    [188]Balaji R, Sannasiraj S A, Sundar V. Laboratory simulation and analysis of wave groups[C]. Hamburg, Germany:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2006.
    [189]Balaji R, Sannasiraj S A, Sundar V. Detection of wave groups from the motion behaviour of a discus buoy[J]. Journal Of Hydro-Environment Research.2008,1(3-4):195-205.
    [190]Xu D L, Hou W, Zhao M, et al. Statistical simulation of wave groups [J]. Applied Ocean Research.1993,15(4):217-226.
    [191]谢世楞,贾绍德,李荫.波群的统计特性及其对海上水工建筑物的作用[J].港工技术.1984(01):11-16.
    [192]杨宪章,吴舸.波群引起的二阶长波对系泊船舶动力特性的影响[J].港口工程.1990(3):36-42.
    [193]陈志军.波群对垂直桩柱作用力的研究[D].青岛:青岛海洋大学工程学院,1991.
    [194]Yuxiu Y, Manhai G. Numerical Simulation and Physical Simulation of Sea Wave Groups [J]. China Ocean Engineering.1996,10(3):295-305.
    [195]Si L, Liu S, Li J, et al. An emperical wave envelope spectrum and the simulation of irregular sea wave groups[C]. Beijing, China:Proceedings of the International Offshore and Polar Engineering Conference,2010.
    [196]桂满海.海浪的波群特性及波群的数值与物理模拟[D].大连:大连理工大学水利工程学院,1995.
    [197]包艳.多向不规则波波群的数值模拟研究[D].大连:大连理工大学水利工程学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700