面向物联网应用的大容量光纤光栅传感网络的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网是物物之间的互联网络,通过传感网络和计算机网络使物物之间进行信息交互,在智能交通、环境监测、政府工作、智能消防、工业监测、食品溯源等多个领域有广泛的应用,是21世纪重要的智能化信息基础设施。而传感器技术、信号传输技术和智能信息处理技术是物联网的技术基础,因此本文从物联网对传感器及其网络的要求出发,针对传统光纤传感网络的在系统容量、多参数测量等方面的不足,研究面向物联网的大容量光纤光栅传感网络。
     本文的主要内容包括:
     一、理论分析并模拟了大容量光纤光栅传感网络的系统性能,结果表明:以超低反射率光纤光栅构成的大容量光纤传感网络性能优良。
     二、设计并制作了时域反射式低反射率光纤光栅传感网络,试验了在线写入光纤光栅阵列的方法,并对此传感网络的性能进行测试。
     (a)对其空间定位功能进行测试,结果表明,其空间定位功能优良。
     (b)对其应力响应进行测试,结果表明其应变响应良好。
     (c)对其波长噪声进行测试,得到0.02nm的波长典型测量精度,可知系统噪声对波长测量的精度影响较大。
     (d)以火灾报警的光纤传感系统为应用实例,对其测量速度进行测试,得到单次扫描的时间为4s以内,速度较快。
     三、设计并制作了频域反射式光纤光栅传感网络,并对其进行理论分析和模拟,设计了相应的测量程序,并对优化后的方案进行了实测。结果表明:增加了可用带宽,也提高了有效扫描时间和扫描的平稳性。
     结合频域反射技术与时域反射技术各自的优点,设计了一种光纤传感网络的新方案,实现高低分辨率相结合。
     四、将大容量、多参数光纤光栅传感网络技术、自动化技术、通信技术、数据处理技术及桥梁安全评估技术等应用于桥梁工程领域,构成了物联网系统,以实时监测反映桥梁安全状况的关键参数,并加以分析,以此可合理地进行交通管制;并科学地指导工程决策,实施有效的桥梁养护、维修与加固工程。
Internet of Things is the network for information interaction of things through sensing network and computer network, it is applied in intelligent transportation, environment monitoring, government affairs, intelligent fire extinguishing, industry monitoring, food tracing et. al., and it is the information infrastructure in21st century. Sensing technology, information transmission technology and Intelligent information processing technology is the base of internet of things, so large capacity optical FBG sensing network is researched in this thesis orienting the demand of the sensor and sensing network for internet of things, aiming the deficiency of traditional fiber sensing network on system capacity and multi parameter measurement et. al..
     The main contents of this thesis include:
     (1) Theoretic analysis and simulation of large capacity FBG sensing network are researched, and the result shows that large capacity sensing network based on ultra low reflective FBG performs better.
     (2)OTDR(optical frequency domain reflectometor) sensing network based on Ultra low reflective FBG is designed and manufactured, online FBG array writing method is tried, and the function of the network is tested.
     (a) Experiment for testing its location function shows that the location will perform very well.
     (b) Experiment for testing its strain response shows that its strain response also performed well.
     (c) Experiment for testing its wave shift noise shows that a typical accuracy of0.02nm is gained, so the noise affects the wave measurement accuracy heavily.
     (d) Experiment for testing its measurement speed shows that, for the fire warning application, mono scanning time is within4s, so the system is fairly fast.
     (3)OFDR(optical frequency domain reflectometor) sensing network based on FBG is designed and manufactured, theoretic analysis and simulation is also done, and an optimized scheme is tested, the result of testing shows that the optimized sensor raised the useful bandwidth and effective scanning time, and improve the smoothness during the scanning.
     To combine the merit of OTDR and OFDR, a new scheme of distributed sensing system is designed.
     High capacity and multi-parameter FBG sensing network technology, automation, communication, data processing technology and bridge safety evaluation technology are applied on bridge engineering, and composed into internet of things to monitor critical parameters of safety situation, and the parameters are analyzed for traffic control, directing engineering decision and bridge maintaining.
引文
[1]张在宣,金尚忠,王剑锋,等.分布式光纤拉曼光子温度传感器的研究进展[J],中国激光,2010年11月,第37卷第11期:2749-2761.
    [2]J. P. Dakin, D. J. Pratt, G. W. Bibby. Distributed anti-Stokes ratio thermometry[C]. Proc. OFS3, San Diego,1985.Postdeadline paper PDS-3.
    [3]A. H. Hartog, A. P. Leach. M. P.Gdd. Distributed temperature sensing in solid-core fibers [J]. Electron. Lett.,1985,21(23):1061-1062.
    [4]J. P. Dakin. D. J. Pratt, G. W. Bibbyet al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector [J].Electron. Lett.,1985,21(13):569-570.
    [5]J. P. Dakin, D. J. Pratt, G W. Bibby. Temperature distribution measurement using Raman ratio thermometry[C].SPIE,1985,566:249-253.
    [6]Gabriele Bolognini, M. A. Soto, Fabrizio Di Pasquale. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Perot lasers [J].IEEE Photon. Technol. Lett.,2009,21(20):1523-1525.
    [7]M.A.Soto.Gabriele Bolognini, Fabrizio Di Pasquale. Use of Fabry-Perot lasers for simultaneous distributed strain and temperature sensing based on hybrid Raman and Brillouin scattering [C].SPIE,2009,7503:750328.
    [8]Mohammad Belal,Yuh Tat Cho, Morten Ibsenet al.Atemperature compensated high spatial resolution distributed strainsensor[J].Meas. Sci. Technol.,2010,21(1):015204.
    [9]Kellie Brown, Anthony W. Brown, Bruce G. Colpitts. Combined Raman and Brillouin scattering sensor for simultaneous high-resolution measurement of temperature and strain [C]. SPIE,2006,6167:616716.
    [10]Yongkang Dong, Xiaoyi Bao, Wenhai Li. Fiber differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor[J].Appl.Opt.,2009,48(22):4297-4301.
    [11]张在宣.拉曼相关双波长光源自校正分布式光纤拉曼温度传感器:中国,200910102201[P].2010-02-03.
    [12]张在宣,王剑锋,张文生,等.新型色散与损耗光谱自校正分布式光纤拉曼温度传感器:中国,201010145912.x[P].2010.
    [13]张利勋,廖云,欧中华,等.分布式光纤拉曼温度传感器的对称解调[J].光学学报,2007,27(3):400-403.
    [14]张利勋,欧中华,刘永智.分布式光纤拉曼温度传感器的循环解调法[J].光子学报,2005,34(8):1176-1178.
    [15]张利勋,欧中华,刘永智,等.带光放大器的分布式光纤拉曼温度系统[J].强激光与粒子 束,2006,18(4):559-561.
    [16]P. C. Wait, K. De Souza, T. P. Newson. A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors [J].Opt. Commun.,1997,144(1-3): 17-23.
    [17]余向东,张在宣,张文生.采用序列脉冲编码解码的分布式光纤拉曼温度传感器:中国,201010169596.x[P].2010.
    [18]Lei Zhang, Xue Feng, Wei Zhanget al..Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm [J]. China.Opt.Lett., 2009,7(7):560-563.
    [19]周正仙,皋魏,席刚,仝芳轩.一种高分辨率分布式光纤温度传感系统的研究[J],光通信研究,2009年第6期(总第156期)2009.12:23-24,61.
    [20]K. Hotate and S.S.L.Ong, Distributed dynamic strain measurement using a correlation-based Brillouin sensing system[J], IEEE Photonics Technology Letters, Vol.15, No.2, Feb.2003:pp.272-274.
    [21]K. Hotate and T. Yamauchi. Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme[J],Japanese Journal of Applied Physics, Vol.44, No.32, pp.L1030-L1033, July 2005.
    [22]宋牟平,鲍翀,叶险峰.基于正交偏振控制的布里渊光时域分析长距离分布式光纤传感器[J].中国激光.2010年3月第37卷第3期:757-762.
    [23]岳慧敏,代志勇,刘永智,等BOTDR分布式光纤传感器研究进展[J].激光杂志,2007年第28卷第4期:4-5.
    [24]Horiguchi T. Nondestructive measurement of optical-fiber tensile stain distribution based on Brillouin spectroscop[J].Trans.IEICE.,1999 (2):144-152.
    [25]刘迪仁,宋牟平,章献民,等.基于连续光抽运的布里渊光时域分析仪新技术[J],光学仪器.2005年6月第27卷第3期:70-74.
    [26]郭彤,李爱群,宋永生,等.基于PPP-BOTDA的钢筋混凝土结构应变与变形监测实验研究[J].中国科学E辑:技术科学,2009年第39卷10期:1716-1724.
    [27]宋牟平,庄白云.布里渊光时域分析传感器的消偏振衰落技术.光学学报,2007年4月第27卷第4期:711-715.
    [28]洪小斌,郭宏翔,伍剑.基于布里渊时域分析的分布式光纤传感入侵定位系统[J].中国激光,2010年4月,第37卷第4期:1037-1041.
    [29]张芙蓉,李永倩,张竞文.微波外调制BOTDA光纤传感系统[J],光纤与电缆及其应用技术2010年第1期:34-37.
    [30]张桂生,毛江鸿,何勇,金伟良.基于BOTDA的隧道变形监测技术研究[J].公路.2010年2月第2期:204-209.
    [31]Garcus D., Gogolla T, Krebber K et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurement[J]. Lightwave Technology,1997,15(4):654-662.
    [32]Zou L. F.,Bao X. Y. Distributed fiber Brillouin strain and temperature sensor with centimeter spatial resolution by coherent probe-pump technique[C]. Proc. of SPIE,17th International Conference on Optical Fiber Sensors,2005,5855:68-71.
    [33]Brooks A. Childers a, Mark E. Froggatt a, Sidney G. Allison b, et al. Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure[J]. Header for SPIE.
    [34]Jegley, D. C., and Bush, H. G. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box[J], NASA LaRC Technical Memorandum,2001-xxxx.
    [35]Kersey, Alan D., Davis, Michael A., Patrick, Heather J., LeBlanc, Michel, Koo, K. P., Askins, C. G, Putnam, M. A., Friebele, E. Joseph. Fiber Grating Sensors[J], Journal of Light wave Tech.15(8),8 August 1997.
    [36]Meng-Chou Wu, William H. Prosser.Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings [J]. SPIE,2003.
    [37]E J Friebele, C G Askins, A B Bosse, A D Kersey, H J Patrick, W R Pogue, M A Putnamf, W R Simon, F A Tasker, W S Vincent and S T Vohra. Optical fiber sensors for spacecraft Applications[J]. Smart Mater. Struct.8(1999):813-838.
    [38]裴福俊,万德钧.一种基于应变模态分析的舰船分布式挠曲姿态测量方法[J].中国惯性技术学报,2005,(01):17-22.
    [39]E J Friebele, C G Askins, A B Bosse, A D Kersey, H J Patrick, W R Pogue, M A Putnam, W. R. Simon, F.A.Tasker, W.S.Vincent and S.T.Vohra. Optical fiber sensors for spacecraft Applications[J]. Smart Mater. Struct.8 (1999):813-838.
    [40]Adachi S.Unjoh,M.Kondoh. Development of a shape memory alloy damper for int Y.elligent bridge systems[J].Shape Memoyr Materials,2000.327-3:31-34.
    [41]G.Camen,G.Sendeckyj. Review of the Mechanies of Embedded OPtical Senosrs[J]. ComPosites Technology and Researeh,1995.17(183):193-195.
    [42]匡维,宋春生.基于FBG分布式传感的简支板动态应变测量[J].武汉理工大学学报(信息与管理工程版),2010,(04):583-587.
    [43]史彦新,张青,孟宪玮.分布式光纤传感技术在滑坡监测中的应用[J].吉林大学学报(地球科学版),2008,(05):820-824.
    [44]赵鸣,何涛,李杰.光纤光栅传感器在大体积混凝土基础温度监测中的应用[J].实验力学,2005,20(01):23-29.
    [45]姜德生,左军,信思金,梁磊,南秋明.光纤Bragg光栅传感器在水布垭工程锚杆上的应用[J].传感技术,2005,(1):73-75.
    [46]马国明,李成榕,全江涛,等.架空输电线路覆冰监测光纤光栅拉力倾角传感器的研制[J].中国电机工程学报,2010,(34):132-138.
    [47]朱丹丹,李伟欣,李志全,王建军.分布式光纤光栅应变和温度同时测量系统[J].计量学 报,2008,(01):29-32.
    [48]郑立林,王莲芬,张瑜,刘皓淳.用可调谐F-P滤波器实现分布式应变与温度同时测量系统[J].红外与激光工程,2007,(S2):614-616.
    [49]毕卫红,李卫,傅广为.分布式光纤光栅实现应变和温度的同时测量[J].光电子.激光,2003,(08):827-829+834.
    [50]M. A. Davis and A. D. Kersey, Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering in Distributed and Multiplexed Fiber Optic Sensors VI [J], P roc. SPIE,1996,2838,114-123.
    [51]F.H.Hara,A strain-isolated fiber Bragg grating sensor for temperature compensation of fiber Bragg grating strain sensor[J]. Measure Science Technology,1999.9:1165-1169.
    [52]李营,张书练.基于可调谐F-P滤波器的光纤光栅解调系统[J].激光技术,2005.29(3):237-240.
    [53]Mark Froggatt and Jason Moore, Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths [J], Applied Optics, April 1998,Vol.37,No.10:1741-1746.
    [54]黄景堂,黄旭光,赵华伟.阵列波导光栅解调的准分布式光纤光栅传感器[J].光学学报,2008,(11):2067-2071.
    [55]王彦,梁大开,周兵.强度解调的光纤光栅智能结构动态监测技术[J].光电子·激光,2008,19(03):361-364.
    [56]吴薇.大容量光纤光栅传感解调系统的研究与应用[D].武汉,武汉理工大学,2009.
    [57]F.H.Haran, A strain-isolated fiber Bragg grating sensor for temperature compensation of fiber Bragg grating strain sensor[J]. Measure Science Technology,1999.9:1165-1169.
    [58]Mark Froggatt. Distributed measurement of the complex modulation of a photo induced Bragg grating in an optical fiber [J], Appl. Opt. Vol.35, No.25,1 Sept 1996, pp 5162-5164.
    [59]梁磊,姜德生,南秋明.光纤Bragg光栅传感特性的实验研究[J].传感器技术,2003,22(7):7-9.
    [60]梁磊.光纤光栅智能材料与结构理论和应用研究[D],武汉理工大学博士毕业论文,2005.
    [61]Q. Sun, D. Liu, J. Wang,H. Liu, L. Xia P. Shum, Multi-point abnormal-temperature warning sensor system with different thresholds[J], Appl. Phys. B (2009) 96:833-841.
    [62]Luiz C.S. Nunes, Bruno S. Olivieri, Carla C. Kato,Luiz C.G. Valente, Arthur M.B. Braga FBG sensor multiplexing system based on the TDM and fixed filters approach[J]. Sensors and Actuators A,138 (2007):341-349.
    [63]Christophe Caucheteur,l, Marc Wuilpart, Chengkun Chen, Patrice Megret, and Jacques Albert,Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry [J]. Optics Express,27 Oct.2008,Vol.16, No.22,:17882-17890.
    [64]Youlong Yu, Luenfu Lui, Hwayaw Tam, and Wenghong Chung,Fiber-Laser-Based Wavelength-Division Multiplexed Fiber Bragg Grating Sensor System[P]. IEEE Photonics Technology Letters, Vol.13, No.7, July,2001:702-704.
    [65]C. Z. Shi, N. Zeng, C. C. Chan, Y. B. Liao, W. Jin, and L. Zhang. Improving the Performance of FBG Sensors in a WDM Network Using a Simulated Annealing Technique[J]. IEEE Photonics Technology Letters, Vol.16, No.1, January 2004:227-229.
    [66]Luiz Carlos Guedes Valente, A. M. B. Braga, Alexandre Sant'Anna Ribeiro, Rogerio Dias Regazzi, Wolfgang Ecke, Christoph Chojetzki, and Reinhardt Willsch. Combined Time and Wavelength Multiplexing Technique of Optical Fiber Grating Sensor Arrays Using Commercial OTDR Equipment[J]. IEEE Sensors Journal, Vol.3, No.1, Feb.2003:31-35.
    [67]刘川,饶云江,冉曾令,等.基于时分复用和窄波长扫描激光的长距离光纤布喇格光栅传感系统[J].光子学报,2010,(11):2004-2007.
    [67]吴飞,蔡璐璐,李志全.分布式光纤应变传感器的研究[J].仪器仪表学报,2005,(S1):159-161.
    [68]Christophe Caucheteur,1, Marc Wuilpart, Chengkun Chen, Patrice Megret, and Jacques Albert,Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry [J]. Optics Express,27 Oct.2008, Vol.16, No.22:17882-17890.
    [69]Po Zhang, H. H. Cerecedo-Nunez, B. Qi, G. Pickrell, Anbo Wang, Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg grating-based sensor system 2003 Society of Photo-Optical Instrumentation Engineers(June2003)[P]. Opt. Eng. 42(6):1597-1603.
    [70]Youlong Yu, Luenfu Lui, Hwayaw Tam, and Wenghong Chung,Fiber-Laser-Based Wavelength-Division Multiplexed Fiber Bragg Grating Sensor System[P]. IEEE Photonics Technology Letters, Vol.13, No.7, July,2001:702-704.
    [71]C. Z. Shi, N. Zeng, C. C. Chan, Y. B. Liao, W. Jin, and L. Zhang. Improving the Performance of FBG Sensors in a WDM Network Using a Simulated Annealing Technique[J]. IEEEPhotonicsTechnology Letters,Vol.16,No.1,January 2004:227-229.
    [72]Hirotaka Igawa, Keiichi Ohta, Tokio Kasai, et al. Distributed Measurements with a Long Gauge FBG Sensor Using Optical Frequency Domain Reflectometry[J]. Journal of Solid Mechanics and Materials Engineering Vol.2, No.9,2008:1242-1252.
    [73]Kersey, Alan D., Davis, Michael A., Patrick, Heather J., LeBlanc, Michel, Koo, K. P., Askins, C. G., Putnam, M. A., Friebele, E. Joseph. Fiber Grating Sensors[J], Journal of Light wave Tech.15(8),8 August 1997.
    [74]Jegley, D. C., and Bush, H. G. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box[J], NASA LaRC Technical Memorandum,2001-xxxx.
    [75]Brooks A. Childers a, Mark E. Froggatt a, Sidney G. Allison b, et al. Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure[J]. Header for SPIE.
    [76]Yunmiao Wang, Jianmin Gong,, Dorothy Y. Wang, Bo Dong, Weihong Bi, and Anbo Wang, A Quasi-Distributed Sensing Network With Time-Division-Multiplexed Fiber Bragg Gratings,IEEE Photonics Technology Letters, Vol.23, No.2, Jan.2011:70-72.
    [77]C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser, Proc. LEOS, Jun.2000, Vol.36, pp.2-4.
    [78]高占凤.大型结构健康监测中信息获取及处理的智能化研究[D],北京,北京交通大学,2010.6.
    [79]任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动试验与分析[J].实验力学,第21卷,2006年8月,第4期:418-426.
    [80]李佳林.我国应变与振动检测技术的现状、发展和未来[J].中国仪器仪表,2008年第12期:24-33.
    [81]毛良明,王为胜,沈省三.振弦式传感器及自动化网络测量系统在桥梁安全监测系统中的应用[J].传感技术学报,2002年3月,第1期:73-76.
    [82]王蕊,黄钊洪,李敏毅.新型InSb-In薄膜磁阻式振动传感器的设计[J].传感器技术,2005年第24卷第7期:54-56.
    [83]杨继红,刘明治,龙英春.CCD在桥梁振动检测中的应用[J].,控制工程,2007年5月第14卷增刊:189-191.
    [84]刘本永.非平稳信号分析导论[M],国防工业出版社,2005.
    [85]倪俊芳,奚立峰,钱志良,蒋祖华.基于Morlet小波结构健康监测中的时间延迟[J].东南大学学报(自然科学版),2008.6期:1094-1098.
    [86]Ren W X, Zong Z H. Output-only modal parameter identification of civil engineering structures [J]. Structural Engineering and Mechanics,2004,17(324):429-444.
    [87]魏明果.实用小波分析[M].北京:北京理工大学出版社,2005.
    [88]郝文广,丁常富,梁娜.小波降噪与FFF降噪比较[J].电力科学与工程.2011.3:59-61.
    [89]郑辉,吴谨.基于小波分频与直方图均衡的图像增强算法[J].现代电子技术,2010,33(16):149-150,153.
    [90]王嘉梅.基于Matlab的数字信号处理与实践[M].西安:西安电子科技大学出版社,2007.
    [91]祝志慧,孙云莲,李洪.基于EMD的时频分析方法的电力故障信号检测[J].武汉大学学报(工学版),2007,40(5):119-124.
    [92]李夕兵,张义平,左宇军,等.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),2006,37(1):150-154.
    [93]胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J],振动、测试与诊断,2011年8月第31卷第4期:429-437.
    [94]Wu Zhao-hua, Huang E. Ensemble Empirical Mode Decomposition-A Noise-Assisted Data Analysis Method [J]. Calverton:Center for Ocean-Land-Atmosphere Studies,2005.
    [95]时世晨,单佩韦.基于EEMD的信号处理方法分析和实现[J],现代电子技术,2011年1月,第34卷第1期:88-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700