一次泵变流量系统机房侧能耗动态模拟及节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中央空调系统能耗在建筑能耗中占有很大比重,占建筑总能耗的65%左右。目前我国绝大多数中央空调水系统均为定流量系统,在运行过程中系统冷冻水流量不能跟随负荷变化,水泵始终按照设计负荷全速运行。然而空调系统在大部分时间都是在部分负荷下运行,因此会浪费大量水泵输送能源。近年来,随着国家对能源问题的重视和对节能工作的要求越来越高,作为目前最有效的节能措施之一,中央空调一次泵变流量系统的研究和应用逐渐受到人们的重视。
     本文阐述了一次泵变流量的一些基本理论和常用的检测控制系统,提出了一次泵变流量系统设计与应用的几个关键的技术问题。分析了冷冻水和冷却水变流量对冷水机组效率的影响,从而得出冷水机组的冷冻水和冷却水采用变流量是完全可行的,其综合节能效益显著。对一次泵变流量系统在不同控制方式下的水力工况进行了分析比较,探讨了变流量系统水力工况的稳定性,并用实例进行了验证,提出了系统水力失调的平衡措施。
     水泵的变频调速调节因有显著的节能效益,被认为是一次泵变流量系统最好的调节方式,但这种方式的节能效益与管路特性有着密切的关系。在考虑水泵效率、电机效率和变频器效率对水泵能耗的影响下,本文通过理论分析和实例计算,研究了变速节能效益与系统恒压值之间的关系。
     在水泵变频调节和变台数调节相结合的系统中,对于同一个目标流量,可以有多种组合方案,并且各种方案能耗是不相同的。本文以三台并联水泵为例,对水泵各种运行方案的能耗进行了比较分析,得出并联水泵的最佳(最低能耗)运行方案。所得结论对于优化变频水泵运行台数控制有一定的指导意义。
     最后结合工程实例,借助模拟软件DeST-c软件建立某建筑的能耗分析模型,模拟出该建筑的全年逐时动态负荷。根据所得的建筑逐时动态负荷,分别模拟了主机在几种不同的运行状态下的动态能耗。根据水泵运行时的最佳(最低能耗)运行方案,分别模拟了冷冻水泵在不同控制方式下的动态能耗,以及冷却水泵在变流量和定流量时的动态能耗。比较不同运行状态下的主机能耗、冷冻水泵能耗和冷却水泵能耗,得出中央空调系统采用不同控制方式的条件下一次泵变流量系统机房侧设备的总节能效益,为今后一次泵变流量系统设计作参考。
The central air-conditioning system consumes high percent(about 65%)energy of building.Now the most building's air-conditioning system is the constant flow system. They can not adjust chilled-water with the actual load of air conditioning,and the pumps always run with the constant speed.But in a majority of time the air-conditioning system work with parts of load.Therefore there would be a great deal of water the pump transport energy was wasted.In recent years,as energy problem become more important,and nation require further intensify energy-saving work.As one of the most effective energy-saving measures,we begin to pay more attention to the research and application of variable primary-flow system.
     In this paper the basic theories and detection and control system of variable primary flow system are expatiated first,and several key problems in variable primary-flow system's design and application are proposed.The influence of variable flow rate of chilled water and cooling water on efficiency of the chiller's efficiency is analyzed,and finds it is feasible and energy efficient to let chilled-water and cooling-water through the chiller to be variable.Next the hydraulic characteristics of different control modes in variable primary-flow system are analyzed and compared, the stability of hydraulic characteristics is discussed,it is verified by an example,and the equilibrium measures of hydrothermal are proposed.
     There are remarkable energy-saving benefits of variable frequency control of pump,and it is deemed to be the best in VWV system.But there is consanguineous relationship between the energy-saving benefit of pump and networks' characteristics. Considering the influence of water pump efficiency,electric engine efficiency,the relations of the energy-saving benefits and the constant pressure are researched by theoretic analysis and calculation of an example.
     The combine of variable frequency and running number of the pumps,according to a goal flow,there are a few combined schemes,and their energy consumption is different.Using three parallel pumps,in this paper the energy consumption of various schemes of pumps is analyzed and compared,and the optimal(the lowest energy) combined scheme of pumps is educed.Its conclusion is instructional in optimizing the operational number of variable frequency pumps.
     In addition,combining with a project instance,in this paper a model of a building's energy consumption through DeST-c of Tsing-Hua University,and the hourly dynamic air-conditioning load of this building is simulated.According to the hourly dynamic air-conditioning load,the dynamic energy consumption of chillers with different running states is simulated.According to the optimal(the lowest energy) combined scheme of parallel pumps,the dynamic energy consumption of chilled water pumps with different control modes,and dynamic energy consumption of cooling water pumps with variable water flow and constant water flow are simulated,the total energy-saving benefit in the plant of The central air-conditioning system which variable primary-flow system is adopted is educed by compared with the energy consumption of chillers,chilled water pumps and cooling water pumps which are operated in different states.In the end,the energy-saving benefit of variable primary-flow system in different outdoors weather parameters is researched,and its conclusion is instructional in design of variable primary-flow system.
引文
[1]汪训昌.合理用能—空调冷、热源之能源利用的分析[C].2003年全国技术交流会论文集,73-80.
    [2]梁春生,智勇.中央空调变流量控制节能技术[M].北京:电子工业出版社,2005.
    [3]江亿.《建筑节能技术与实践丛书》总序.2005,3.
    [4]孙一坚.空调水系统变流量节能控制[J].暖通空调,2001,31(6):5-7.
    [5]EppelheimerD.M Variable flow-the quest for system energy efficiency[J].ASHRAE Transactions,1996,102(1):673-678.
    [6]江训昌.空调冷水系统的沿革与变流量一次泵水系统的实践[J].暖通空调,2006,36(7):32-40.
    [7]薛志峰,江亿.北京市大型公共建筑用能状态与节能潜力分析[J].暖通空调,2004,24(9):8-10,24.
    [8]王云鹏,林永辉.流体高效输送节能技术在中央空调中的应用[J].能源工程.2005,(4):63-66
    [9]孙一坚.空调水系统变流量节能控制[J].暖通空调,2001,31(6):5-7.
    [10]一次泵变流量技术深入讨论—网易暖通首届高层论坛,网易暖通(http://co.163.com),2007,4.
    [11]张静波,朱苑中.浅谈空调变流量一次泵系统的节能[J].制冷空调,2006,107(27):49-51.
    [12]张谋雄.冷水机组变流量的性能[J].暖通空调,2000,30(6):56-58.
    [13]孟彬彬,朱颖心,林波荣.部分负荷下一次泵水系统变流量性能研究[J].暖通空调,2002,32(6):108-110.
    [14]朱伟峰.江亿.一次泵冷冻水系统直接应用变频的模拟分析及工程应用[J].制冷与空调,2003,3(1):25-31.
    [15]房立存,钱兴华,江玮等.螺杆式冷水机组能量的变频调节[J].暖通空调,2003,33(1):112-113.
    [16]李彬,肖勇全,李德英等.变流量空调水系统的节能探讨[J].暖通空调,2006,36(1):132-136.
    [17]李志生,张国强,刘建龙,等.基于冷水量变化的冷水机组性能测试与故障诊断[J].暖通空调,2006,36(8):108-112.
    [18]李苏珑,邹娜.空调冷却水变流量控制方法研究[J].暖通空调,2005,32(5):51-54.
    [19]刘晓梅,孙淑芬.变流量空调冷却水系统的技术探讨[J].能源工程,2001,(2):7-9.
    [20]陈剑,李斌.冷却水系统变流量可行性研究[C].全国暖通空调制冷2004年学术文集,188-193.
    [21]Schwedler,Mick.Variable primary-flow systems[J].Heating,Piping,Air-Conditioning Engineering.2000,72(4):41-44.
    [22]Hartman,Thomas B.Design issues of variable chilled-water flow throchillers[J].ASHRAE Transactions,1996,102(2):679-683.
    [23]Redden,George H.Effect of variable flow on centrifugal chiller performance[J].ASHRAE Transactions,1996,102(2):684-687.
    [24]托马斯B.哈特曼.冷水机利用变流量冷冻水的若干设计问题[J].暖通空调,1997,27(3):29-33.
    [25]Schwedler,Mick.Variable primary-flow in chilled-water systems[J].Heating,Piping,Air-Conditioning Engineering,2003,75(3):37-45.
    [26]Peterson,Kent W.Variable primary-flow chilled-water-plant conversion[J].Heating,Piping,Air-Conditioning Engineering,2004,76(3):10-12,15.
    [27]Reindl,Douglas T.Using variable speed drives for evaporative condensers[J].ASHRAE Journal,2005,47(8):18-24.
    [28]Bahnfleth,William P.Varying views on variable-primary-flow chilled-wate systems[J].Heating Piping,Air-Conditioning Engineering,2004,76(3):5-9.
    [29]Moses,Terry.Variable-primary-flow:Important lessons learned[J].Heating Piping,Air-Conditioning Engineering,2004,76(7):40-43.
    [30]HartmanT.B.Design issues of variable chilled-water flow through chillers[J].ASHRAE Transactions,1996,102:679-683.
    [31]Ahmedo.DDC applications in variable-water-volume systems[J].ASHRAE Transactions,1991.97(1):751-758.
    [32]曹琦,傅明星,谢明华.空调供水系统变频控制的节能[J].自动化博览,2005,36(9):31-32.
    [33]李苏垅.一次泵系统冷水变流量节能控制研究[J].暖通空调,2006,32(7):72-75.
    [34]BYNUM HARRIS.Variable flow-a control engineers perspective[J].ASHRAE Journal,1990,32(10):30-59.
    [35]Avery G.Designing&commissioning variable flow hydronic systems[J].ASHRAE Journal.1993,35(7):45-59.
    [36]Tillack,L.Rishel,J.B.Proper control of HVAC variable speed pumps[J].ASHRAE Journal.1998.40(11):45-47.
    [37]曹琦.也谈空调变水量系统变频控制的节能田[J].制冷与空调,2001,(2):32.
    [38]朱贞涛.制冷空调系统中离心泵变频调速的性能分析与试验[J].流体机械,2001,29(11):58-60.
    [39]崔笑千.末端主动变流量的水力工况平衡[C].河北平衡阀门制造有限公司2004年论文摘编,2004.
    [40]Michel A,Bernier,Bernard Bourret.Pumping Energy and Variable Frequency Drivers[J].ASHRAE Journal,1999,(12):37-40.
    [41]Xing Shun Gao.Energy consumption of HVAC variable-speed pumping systems[D].Alabama:Doctor's thesis of The University of Alabama.2002.
    [42]Eppelheimer,Donald M.Variable flow-the quest for system energy efficiency[J].ASHRAE Transactions,1996,102(2):673-678.
    [43]Powell,R.Variable flow hot water heating systems a wonderful technology[J].Journal of the Association of Energy Engineering,2002,99(1):74-79.
    [44]方彦军.集中空调循环水系统变频调节节能技术研究[J].武汉大学学报(工学版),2002,35(1):59-60.
    [45]周国兵,张于峰等.供暖变流量水系统的调速水泵能耗分析[J].流体机械,2003,31(9):22-25.
    [46]罗新梅,周向阳,曾祖铭.水泵变流量运行性能分析[J]华东交通大学学武汉科技报,2004,21(4):19-21.
    [47]林红英.变频控制在宝钢纯水系统中的应用[J].电力需求侧管理,2004,6(1):47-49.
    [48]王庆丰,李国安,苗国宽.锅炉风机变频调节应用实践[J].节能技术,2004,22(1):57-58.
    [49]王厉,李念平,龙舜心等.压差控制法用于变水量空调系统[J].中国给水排水,2003,19(3):66-68.
    [50]狄洪发,李吉生,戴斌文.开式系统中变速泵的节能分析[J].暖通空调,2002(1):59-61.
    [51]符永正,吴克启.背压对泵与风机变速调节节能效益的影响[J].暖通空调,2004,34(03):70-73.
    [52]董宝春,刘传聚,杨伟.变流量水系统优化运行的探讨[J].暖通空调,2007,37(1):55-59,62.
    [53]丁云飞.变频调速水泵的能耗分析[J].流体机械,2001,29(3):26-26,7.
    [54]孙一坚.空调水系统变流量节能控制(续1):变频调速水泵的合理应用[J].暖通空调,2004,34(7):60-62,69.
    [55]孙一坚.空调水系统变流量节能控制(续2):变频调速水泵的合理应用[J].暖通空调,2005,35(10):90-92,113.
    [56]曹琦.认识水泵、风机的相似定理[J].制冷空调,2005,104(26):1-3
    [57]William P B,Eric P.Variable primary-flow chilled water system:potential benefits and application issues[R]. Final Report to ARTI of ARI,Arlington VA,2004.
    [58]周谟仁.流体力学 泵与风机[M].北京:中国建筑工业出版社,1994.
    [59]罗新梅.一次泵冷水变流量系统设计及控制策略[C].2006年暖通年会,合肥.
    [60]汪训昌,2006年暖通年会,空调冷水系统的演变与变流量一次泵系统设计[C].2006年暖通年会,合肥.
    [61]曾振威.节能小能因小失大—兼与《集中空调冷却水系统的节能运行》商榷[J].暖通空调,2002,32(4):32-33.
    [62]徐菱红,王凌云.集中空调冷却水系统的节能运行[J].暖通空调,2000,30(3):82-84.
    [63]孙一坚.关于集中空调冷却水系统节能运行—评《节能不能因小失大》[J].暖通空调,2003,33(2):39.
    [64]史佑吉.冷却塔运行与试验fM]北京:水利电力出版社,1990.
    [65]彦启森,徐邦裕.空气调节用制冷技术(第2版)[M].北京:中国建筑工业出版社,1984.
    [66]TRANE.CenTraVac Liquid Chillers.Centrifugal Liquid Chillers/Water Cooled.1999.
    [67]Roy Ahlgren.《ITT小红学校中国八月》[R].北京建工学院重点实验室演讲教材.2002.
    [68]董宝春,刘传聚.刘东等.一次泵/二次泵变流量系统能耗分析[J].暖通空调,2005,35(7):82-85.
    [69]董宝春.工厂区域供冷变流量系统的经济运行研究[D].上海:同济大学硕士学位论文.2006.3.
    [70]付祥钊,王岳人,王元等.流体输配管网[M].北京:中国建筑工业出版社,2001.
    [71]李彬,肖勇全,李德英,绍宗义.变流量空调水系统的节能探讨[J].暖通空调,2006,36(1):132-136.
    [72]王晓松.暖通空调变流量水力系统的全面平衡[J].暖通空调,2005,35(7):77-81.
    [73]Gil Aver.The pros and cons of balancing a variable flow water system[J].ASHRAE Journal,1990,(10):30-36.
    [74]Anon.Point/counterpoint-Journal readers continue the debate on how tobalance variable flow water systems[J].ASHRAE Journal,1991,33(4):30-36.
    [75]Avery G.Designing and commissioning variable flow hydronic systems[J].ASHRAE Journal,1993,35(7):27-31.
    [76]ASHRAE handbook,HVAC systems and equipment[M].2000.
    [77]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,1986.
    [78]薛志峰,江亿.商业建筑的空调系统能耗指标分析[J].暖通空调,2005,35(1):37-41.
    [79]Tian Zhen Hong,Yi Jiang.A new multizone model for the simulation of building Thermal performance[J].Building and Environment.1997,32(2):123-128.
    [80]清华大学DeST开发组.建筑环境系统模拟分析方法—DeST[M].北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700