系统分析稻瘟病菌homeobox基因的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同源异型盒(homeobox)基因编码的同源异型盒蛋白作为一类转录调控因子,在真核生物的个体发育及细胞分化的调控中起着重要作用。对于动物,homeobox基因在胚胎发育、基因转录调节、细胞分化等方面发挥重要作用。对于植物,homeobox基因主要是调控胚胎发育、叶的发育及花的分化等方面的功能。在真菌中,有关homeobox基因的研究相对较少,但已有的研究表明,其参与调控菌丝的线性生长、产孢、致病性及有性生殖。
     稻瘟病菌(Magnaporthe grisea)是引起水稻重要病害稻瘟病的病原菌,也是研究丝状真菌的重要模式生物。该菌侵染循环过程经历了分生孢子与植物表面接触、萌发、附着胞分化、侵入栓的形成以及侵染生长,并最终产生新的分生孢子导致新一轮的病害循环。这一过程涉及复杂的细胞分化和信号转导。
     数据库分析结果表明,稻瘟病菌全基因组中有7个homeobox基因(HTF1,HTF2,HTF3,HTF4,HTF5,HTF6,PTH12)。本论文对稻瘟病菌基因组中homeobox家族蛋白成员(HTF1,HTF2,HTF3,HTF4,HTF5,HTF6)进行了系统性功能分析。此外,本论文还对调控稻瘟病菌产孢过程的HTF1基因进行了较为深入的分析。
     根据生物信息学方法分析确定在稻瘟病菌全基因组中有7个可能的homeobox基因,对这7个基因的蛋白序列特征进行分析,结果表明它们均有典型保守的HD(homeoboxdomain)结构域,而HTF2和HTF5还含有其他的结构域,这表明homeobox基因在进化过程中可能出现分枝,并最终导致其控制的生物学功能的多样性。
     通过对稻瘟病菌该家族6个基因的功能研究表明htf1,htf2,htf4和htf5突变体的生长速度没有明显改变,而htf3突变体的生长速度显著减慢,且其菌落变得更为致密;htf6突变体的生长速度稍微减弱。htf1突变体失去了产孢能力,其他突变体产孢能力未受影响,孢子形态也正常。通过本研究证明了HTF1调控稻瘟病菌的产孢发育,而HTF3调控稻瘟病菌的营养生长发育过程。进一步分析表明HTF1不影响分生孢子梗的发育,但对分生孢子的分化起关键作用。Htf1-GFP融合蛋白的亚细胞定位分析也表明其GFP信号在分生孢子梗的细胞核中突然明显的增强表达。定量RT-PCR的结果也表明HTF1参与产孢信号途径。htf1突变体在不利于产孢条件下并没有去抑制分生孢子梗的发育,因此htf1突变体产生比野生型菌株数量更多的分生孢子梗可能是由于其无法形成分生孢子的原因导致的,这也似乎预示了在稻瘟病菌中很有可能存在一些来自分生孢子的反馈信号以进一步抑制分生孢子梗的发育。
     尽管本论文对homeobox基因家族参与稻瘟病菌生长发育、产孢以及侵染致病的过程开展了较为深入的系统性研究,但对其调控的信号传导途径的研究仍然较为欠缺,因而在此基础上,对该问题作进一步深入探讨,对明确homeobox基因在稻瘟病菌乃至丝状真菌生长发育及侵染致病的分子调控机制将十分有益。
Homeobox genes,encoding proteins with homeodomain,function as a transcriptional regulatory factor,and play an important role in regulating the ontogeny development and cell differentiation in eukaryotes.For animals,homeobox genes play an important role in embryonic development,gene transcription,and cell differentiation.In plants,homeobox genes regulate embryonic development,leaf and flower development.In fungi,only a few studies on homeobox genes have indicated that they participate in the regulation ofmycelial growth,sporulation,pathogenicity,and the sexual reproduction.
     The rice blast fungus,Magnaporthe grisea,infects many economically important cereal crops,particularly rice.The complicated infection process starts when the fungal conidia land on and attach to a suitable surface,such as a rice leaf,germ tubes arise when moist condition is suitable.Subsequently,germ elongation ceases and the tip of the germ tube swells to form an appressorium surrounded by a thick melanized cell wall.Turgor pressure builds up inside the appressorium,forcing a penetration peg into the plant tissues;this is then followed by invasive growth and eventurally conidiation of the fungus.Thus the host invasion by the rice blast fungus involves a complex cell morphogenesis.The interaction of M.grisea and rice is also taken as a model for the study of fungus-plant interaction.
     Based on the M.grisea genome,there are seven homeobox genes(HTF1,HTF2,HTF3, HTF4,HTF5,HTF6,PTH12) in M.grisea.In this study,we have systematiely characterized these homeobox transcription factors in M.grisea.In addition,we have also analysed the regulation of conidiogenesis by a homeobox transcription factor gene(HTF1) in the rice blast fungus.
     The functional studies showed that the growth rate of htf1,htf2,htf5,and htf4 deletion mutant did not change significantly.However,the growth of htf3 knockout mutant significantly slowed down,and its colony became more tight compared with that of the wild type control and the htf6 knockout mutant growed slightly slow.Interestingly,Htf1 knockout mutant lost sporulation ability,other mutant sporulation ability and spores' morphology were normal.Further studies proved that HTF1 controls the conidiation,and HTF3 controls mycerial growth in M.grisea.HTF1 did not affect the development of conidiophore,but specifically blocked the condium development.GFP signals were observed in nuclei of conidiophore in transformants expressing the HTF1-GFP fusion construct.Quantitative RT-PCR results showed that HTF1 is involved in the conidiation pathway,Htf1 mutant is not de-repressed in conidiophore development under non-conducive conditions.The observed phenotype of enhanced conidiophore development in the htf1 mutant may result from its defect in conidium development.It is possible that some feedback signal from conidia may inhibit further conidiophore development in M.grisea.
     Although in this study,we have systematically characterized homeobox transcription factors in growth,conidiation and pathogenic infection in M.grisea,but the signal transduction pathway of these homeobox gene are still unclear.Therefore,further analysis on the signal transduction pathway may be helpful to understand the molecular regulation mechanism of growth development,conidiation and the pathogenesis in the fungus.
引文
[1]Schmitt S.Homeosis and atavistic regeneration:the "oiogenetic law' in Entwicklungsmechanik.Hist Philos Life Sci.2003;25(2):193-210
    [2]Bender W.Homeotic gene products as growth factors.Cell.1985;43(3 Pt 2):559-60.
    [3]Greenwald I.lin-12,a nematode homeotic gene,is homologous to a set of mammalian proteins that includes epidermal growth factor.Cell.1985;43(3 Pt 2):583-90.
    [4]Lawrence P.A new homeotic gene.Nature.1983;306(5944):643.
    [5]Struhl G.Spineless-aristapedia:a homeotic gene that does not control the development of specific compartments in Drosophila.Genetics.1982;102(4):737-49.
    [6]Barad M,Jack T,Chadwick R,et al.A novel,tissue-specific,Drosophila homeobox gene.EMBO J.1988;7(7):2151-61.
    [7]Mavilio F,Sirneone A,Boncinelli E,et al.Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid.Differentiation.1988;37(1):73-9.
    [8]Mlodzik M,Fjose A,Gehring WJ.Molecular structure and spatial expression of a homeobox gene from the labial region of the Antennapedia-complex.EMBO J.1988;7(8):2569-78.
    [9]Tomlinson A,Kimmel BE,Rubin GM.rough,a Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye.Cell.1988;55(5):771-84.
    [10]Blatt C,Aberdam D,Schwartz R,et al.DNA rearrangement of a homeobox gene in myeloid leukaemic calls.EMBO J.1988 Dec 20;7(13):4283-90.Erratum in:EMBO J 1989;8(4):1288.
    [11]Graham A,Papalopulu N,Krumlauf R.The murine and Drosophila homeobox gene complexes have common features of organization and expression.Cell.1989;57(3):367-78.
    [12]Sasaki H,Kuroiwa A.The nucleotide sequence of the cDNA encoding a chicken Deformed family homeobox gene,Chox-Z.Nucleic Acids Res.1990 Jan 11;18(1):184.
    [13]Schneuwly S,Kuroiwa A,Baumgartner P,et al.Structural organization and sequence of the homeotic gene Antennapedia of Drosophila melanogaster.EMBO J.1986;5(4):733-9.
    [14]Wang GV,Dolecki GJ,Carlos R,et al.Characterization and expression of two sea urchin homeobox gene sequences.Dev Genet.1990;11(1):77-87.
    [15]Alper S,Kenyon C.REF-1,a protein with two bHLH domains,alters the pattern of cell fusion in C.elegans by regulating Hox protein activity.Development.2001;128(10):1793-804.
    [16]Krumlauf R,Holland PW,McVey JH,et al.Developmental and spatial patterns of expression of the mouse homeobox gene,Hox 2.1.Development.1987;99(4):603-17.
    [17]Kadota C,Nagahama M,Tsutsui Y.Relationship between HOX2 homeobox gene expression and the human cytomegalovirus immediate early genes.J Gen Virol.1992;73(Pt 4):975-81.
    [18]Hall MN,Johnson AD.Homeo domain of the yeast repressor alpha 2 is a sequence-specific DNA-binding domain but is not sufficient for repression.Science.1987;237(4818):1007-12.
    [19]Vollbrecht E,Veit B,Sinha N,Hake S.The developmental gene Knotted-1 is a member of a maize homeobox gene family.Nature.1991;350(6315):241-3.
    [20]Sylvie Arnaise et al.pahl:a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserine.Molecular Microbiology.200139(1),54-64.
    [21]Winslow GM,Hayashi S,Krasnow M,et al.Transcriptional activation by the Antennapedia and.fushi tarazu proteins in cultured Drosophila ceils.Cell.1989;57(6):1017-30.
    [22]Kessel M,Schulze F,Fibi M,et al.Primary structure and nuclear localization of a routine homeodomain protein.Proc Natl Acad Sci U S A.1987;84(15):5306-10.
    [23]Desplan C,Theis J,O'Farrell PH.The sequence specificity of homeodomain-DNA interaction.Cell.1988;54(7):1081-90.
    [24]Otting G,Qian YQ,Mǖller M,et al.Secondary structure determination for the Antennapedia homeodomain by nuclear magnetic resonance and evidence for a helix-turn-helix motif.EMBO J.1988;7(13):4305-9.
    [25]Scott MP,Tamkun JW,Hartzell GW.The structure and function of the homeodomain.
    Biochim Biophys Acta.1989;989(1):25-48.
    [26]Mannermaa RM,Oikarinen J.A DNA-binding homeodomain in histone H1.Biochem Biophys Res Commun.1990 Apr 16;168(1):254-60.Erratum in:Biochem Biophys Res Commun 1990;170(3):1377.
    [27]Callebaut I,Momon JP.The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain,as revealed by sequence analysis.Ceil Mol Life Sci.1998;54(8):880-91.
    [28]Retie WG;Feldmann KA,Marks MD.The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis.Genes Dev.1994;8(12):1388-99.
    [29]Lincoln C,Long J,Yamaguchi J,et al.A knottedl-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants,Plant Cell.1994;6(12):1859-76.
    [30]Gubenko IS.Drosophila genes that encode LIM-domain containing proteins:their organization,functions,and interactions.Tsitol Genet.2006;40(4):44-67.Review.Russian.
    [31]Herzig MC,Thor S,Thomas JB,et al.Expression and function of the LIM homeodomain protein Apterous during embryonic brain development of Drosophila.Dev Genes Evol.2001;211(11):545-54.
    [32]Benveniste RJ,Thor S,Thomas JB,et al.Cell type-specific regulation of the Drosophila FMRF-NH2 neuropeptide gene by Apterous,a LIM homeodomain transcription factor.Dev.elopment.1998 Dec;125(23):4757-65.
    [33]Makiyama K,Hamada J,Takada M,et al.Aberrant expression of HOX genes in human invasive breast carcinoma.Oncol Rep.2005;13(4):673-9.
    [34]葛学铭,范明,2001。LIM同源盒基因家族在神经系统中的作用。中国神经科学杂志,17(3):239-242。
    [35]宫雁冰,2005。同源盒基因及其与细胞的分化和增殖研究进展。国外医学口腔医学分册,32(7):255-257。
    [36]Wang Y,Hung C,Koh D,et al.Differential expression of Hox A5 in human colon cancer cell differentiation:a quantitative study using real-time RT-PCR.Int J Oncol.2001;18(3):617-22.
    [37]曾郁等,2005。乳腺癌中同源异型盒基因(HOX)A5表达的研究。中华病理学杂志,34(9):569-574。
    [38]Raman V,Martensen SA,Reisman D,et al.Compromised HOXA5 function can limit p53 expression in human breast tumours.Nature.2000;405(6789):974-8.
    [39]Bhatt AM,Etchells JP,CanNes C,et al.VAAMANA-a BELl-like homeodomain protein,interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis.Gene.2004;328:103-11.
    [40]Byrne ME,Groover AT,Fontana JR,et al.Phyllotacfie pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER.Development.2003;130(17):3941-50.
    [41]Jasinski S,Kaur H,Tattersall A,et al.Negative regulation of KNOX expression in tomato leaves.Planta.2007;226(5):1255-63.
    [42]Luo H,et al.,.Up-regulation of OsBIHD1,a rice gene encoding BELL homeodomain transcriptional factor,in disease resistance responses.Plant Biology,2005;7(5):459-68.
    [43]Knight SA,Yamai KT,Kosman D J,et al.Identification and analysis of a Saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein.Mol Cell Biol.1994;14(12):7792-804.
    [44]Casselton LA,Olesnicky NS.Molecular genetics of mating recognition in basidiomycete fungi.Microbiol Mol Biol Rev.1998;62(1):55-70.
    [45]Peltenburg LT,Murre C.Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins.Development.1997;124(5):1089-98.
    [46]K(a|¨)mper J,Reichmann M,Romeis T,et al.Multiallelie recognition:nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis.Cell.1995;81(1):73-83.
    [47]Schulz B,Banuett F,Dahl M,et al.The b alleles of U.maydis,whose combinations program pathogenic development,code for polypeptides containing a homeodomain-related motif.Cell.1990;60(2):295-306.
    [48]Ou SH.Pathogen variability and host resistance in rice blast disease[J].Annual Review of Phytopathology,1980,18:167-187
    [49]Jia Y,McAdams SA,Bryan GT et aI.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J].European Molecular Biology Organization Journal,2000,19,4004-4014
    [50]Xu JR and Xue CY.Time for a blast:genomics of Magnaporthe grisea[J].Molecular Plant Pathology,2002,3:173-176
    [51]Sesma A,Osbourn AE.The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.Nature.2004 Sep 30;431(7008):582-6.
    [52]Valent B.Plant disease:underground life for rice foe.Nature.2004 Sep 30;431(7008):516-7.
    [53]Talbot NJ.On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J].Annual Review of Microbiology,2003,57:177-202
    [54]Valent B and Chumley FG.Molecular genetic analysis of the rice blast fungus,Manaporthe grisea[J].Annual Review of Phytopathology,1991,29:443-467
    [55]Zhu Y,Chen H,Fan J,et al.Genetic diversity and disease control in rice.Nature.2000;406(6797):718-22.
    [56]Hamer JE,Howard RJ,Chumley FG,Valent B,.A mechanism for surface attachment in spores of a plant pathogenic fungus.Science,1988;15:288-290.
    [57]Howard RJ and Valent B,1996.Breaking and entering:Host penetration by the fungal rice blast pathogen Magnaporthe grisea.Annual Review of Microbiology,50:.491-512.
    [58]Koga H,Nakayachi O.Morphological studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice.Journal of Genetic and Plant Pathology,2004;70:11-15.
    [59]Hamer JE,Howard RJ,Chumley FG et al.A mechanism for surface attachment in spores of a plant pathogenic fungus[J].Science,1988,239:288-290
    [60]Howard RJ.Cell biology of pathogenesis[M].1994.Pages 3-22 in:Rice Blast Disease,R S.Zeigler,S.A.Leong,and P.S.Teng,eds.CAB Inter.,Wallingford,UK.
    [61]Howard RJ and Valent B.Breaking and entering:host penetration by the fungal rice blast pathogen Magnaporthe grisea[J].Annual Review of Microbiology,1996,50:491-512
    [62]Howard R J,Ferrari MA,Roach DH,and Money NP.Penetration of hard substrates by a fungus employing enormous turgor pressures.Proc Natl Acad Sei.USA,1991;88:11281-11284.
    [63]De Jong JC,Mccormack J,SminoffN,Talbot N J,.Glycerol generates tttrgor in rice blast.Nature,1997;389:244-255.
    [64]Bourett TM,Howard RJ.In vitro development of Penetration structures in the rice blast fungus Magnaporthe grisea.Canadian Journal of Botany,1990;68:329-342.
    [65]Money NP,Howard RJ.Confirmation of a link between fungal pigmentation,turgor pressure,and pathogenicity using a new method o turgor measurement.Ftmgal Genetics and Biology,,1996;20:217-227.
    [66]Talbot NJ,Ebbole D J,Hamer JE.Identification and characterization of MPG1,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.Plant Cell,1993;5:1575-1590.
    [67]Talbot NJ.Having a blast:exploring the pathogenicity of Magnaporthe grisea.Trends in Microbiology,1995;3:9-16.
    [68]Zeigler RS.Recombination in Magnaporthe grisea,Annual Review of Phytopathology,1998;36:9-275.
    [69]Hamer JE,Farrall L,Orbach MJ et al.Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen[J].Proceeding of the National Academy of Sciences,1989,86(24):9981-9985
    [70]Lee YH and Dean RA.cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea[J].The Plant Cell,1993,5(6):693-700
    [71]Beckerman JL and Ebbole DJ.MPG1,a gene encoding a fungal hydrophobin of Magnaporthe grisea,is involved in surface recognition[J].Molecular-Plant Microbe Interactions,1996,9(6):450-456
    [72]Talbot NJ,Kershaw MJ,Wakley GE et al.MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea[J].The Plant Cell,1996,8(6):985-999
    [73]Kershaw MJ,Wakley G and Talbot NJ.Complementation of the mpgl mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins.The EMBO Journal,1998,17(14):3838-3849
    [74]DeZwaan TM,Carroll AM,Valent B et al.Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues[J].The Plant Ceil,1999,11(10):2013-2030
    [75]Mitchell TK and Dean RA.The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea[J].The Plant Cell,1995,7(11):1869-1878
    [76]Xu JR,Urban M,Sweigard JA et al.The CPKA gene of Magnaporthe grisea is essential for appressorial penetration[J].Molecular-Plant Microbe Interactions,1997,10:187-194
    [77]Xu JR,Staiger CJ and Hamer JE.Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J].Proceeding of the National Academy of Sciences,1998,95(21):12713-12718
    [78]Choi W and Dean RA.The adenylate cyclase gene MAC1 ofMagnaporthe grisea controls appressorium formation and other aspects of growth and development[J].The Plant Call,1997,9(11):1973-1983
    [79]Liu S and Dean RA.G protein alpha subunit genes control growth,development,and pathogenicity of Magnaporthe gfisea[J].Molecular-Plant Microbe Interactions,1997,10(9):1075-1086
    [80]Nishimura M,Park G and Xu JR.The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea[J].Molecular Microbiology,2003,50(1):231-243
    [81]Xu JR and Hamer JE.MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J].Genes &Development,1996,10(21):2696-2706
    [82]Zhao X,Kim Y,Park G et al.A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea[J].The Plant Cell,2005,17(4):1317-1329
    [83]Xue C,Park G,Choi Wet al.Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus[J].The Plant Call,2002,14(9):2107-2119
    [84]Park G,Xue C,Zheng Let al.MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea[J].Molecular-Plant Microbe Interactions,2002,15(3):183-192
    [85]Park G,Bruno KS,Staiger CJ,Talbot NJ,Xu JR.Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.Mol Microbiol.2004;53(6):1695-707.
    [86]Hamer J E,Valent B.Chumley F G.Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus.Genetics,1989;122:351-361.
    [87]Shi Z,Leung.H.Genetic analysis of sporulation ofMagnaporthe grisea byehemical and insertional mutagenesis.Mol.Plant-Microbe Interact,1995;85:329-207.
    [88]Shi Z,Leung.H.Genetic Interactions between spore morphogenetic mutations affect cell types sporulation and pathogenesis in Magnaporthe grisea.Mol.Plant Microbe Interact.1998;11:199-207
    [89]Odenbach D,Breth B,Thines E,et al.The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea.Mol Microbiol.2007;64(2):293-307.
    [90]Lau G W;Hamer J E.Acropetal:a genetic locus required for eonidiophore architecture and pathogenicity in the rice blast fungus.Fungal Genet.Biol.1998;24:228-239
    [91]王刚,杨之为,彭友良。稻瘟菌产孢和生长基因的鉴定。河南大学学报,2002;32(3):11-15.
    [92]Jeon J,Park SY,Chi MH,et al.Genome-wide functional analysis of pathogenicity genes in the rice blast fungus.Nat Genet.2007;39(4):561-5.
    [93]Zheng W,Chen J,Liu W,et al.A Rho3 homolog is essential for appressorium development and pathogenicity ofMagnaporthe grisea.Eukaryot Call.2007;6(12):2240-50.
    [94]Dean RA,Talbot N J,Ebbole DJ et al.The genome sequence of the rice blast fungus Maguaporthe grisea[J].Nature,2005,434(7036):980-986.
    [95]Mannhaupt G,Montrone C,Haase D et al.What's in the genome of a filamentous fungus?Analysis of the Neurospora genome sequence[J].Nucleic Acids Research,2003,31(7):1944-1954.
    [96]Nierman WC,Pain A,Anderson MJ et al.Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus[J].Nature,2005,438(7071):1151-1156.
    [97]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯.1996.分子克隆实验指南(第二版):1-1062
    [98]Zhao X,Xue C,Kim Y,et al,.A ligation-PCR approach for generating gene replacement
    constructs in Magnaporthe grisea.Fungal Genet.Newsl.2004;51,17-18.
    [99]全国稻瘟病菌生理小种研究协作组.中国稻瘟病菌小种的研究[J].植物病理学报,1980,10(2):71-82
    [100]张学博,余菊生.福建省稻瘟病菌生理小种的研究[J].福建农学院学报,1981,10(1):20-32
    [101]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods.2001;25(4):402-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700